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Abstract

In this paper, we systematically explore lexicalized and non-lexicalized local syntactic features
for the task of Native Language Identification (NLI). We investigate different types of feature
representations in single- and cross-corpus settings, including two representations inspired by a
variationist perspective on the choices made in the linguistic system. To combine the different
models, we use a probabilities-based ensemble classifier and propose a technique to optimize and
tune it. Combining the best performing syntactic features with four types of n-grams outperforms
the best approach of the NLI Shared Task 2013.

1 Introduction and related work

Native Language Identification (NLI) is the task of identifying the native language of a writer by analyz-
ing texts written by this writer in a non-native language. NLI started to attract attention in computational
linguistics with the work of Koppel et al. (2005). Since then, the interest has increased steadily, leading
to the First NLI Shared Task in 2013, with 29 participating teams (Tetreault et al., 2013).

The task of NLI is usually treated as a text classification problem with the L1s as classes. A wide range
of features, reaching from character or word-based n-grams to different types of syntactic models have
been employed in NLI. For example, Wong and Dras (2011) utilized character and part-of-speech (POS)
n-grams as well as cross-sections of parse trees and Context-Free Grammar (CFG) features, i.e., local
trees. Their approach with a binary representation of non-lexicalized rules (except for those rules lexi-
calized with function words and punctuation) outperformed a setup using only lexical features, such as
n-grams, on data from the International Corpus of Learner English (ICLE; Granger et al., 2002). Swanson
and Charniak (2012) used binary feature representations of CFG and Tree Substitution Grammar (TSG)
rules replacing terminals (except for function words) by a special symbol. TSG outperformed CFG fea-
tures in their settings. Among several options, Brooke and Hirst (2012) explored using non-lexicalized
CFG production rules in a binary feature encoding on three corpora: ICLE, FCE (Yannakoudakis et al.,
2011), and Lang-8 (Brooke and Hirst, 2013a). The authors conclude that including CFG features gen-
erally boosts the performance of the system. In the context of the First NLI Shared Task, in Bykh et al.
(2013) we showed that non-lexicalized frequency-based CFG features contribute relevant information.
Other recent work has focused on TSGs (Tetreault et al., 2012; Brooke and Hirst, 2013b; Swanson and
Charniak, 2012; Swanson and Charniak, 2013; Swanson, 2013; Malmasi et al., 2013).

Before extending syntactic modeling further, in this paper we want to systematically explore the range
of options involving CFG rule features for NLI. We consider non-lexicalized and lexicalized CFG fea-
tures, and different feature representations, from binary encodings to a normalized frequency encoding
inspired by a variationist sociolinguistic perspective.

Previous research in this domain often limited the use of lexicalized rules given that the lexicalization
may lead to an unintended topic or domain dependence. Yet, NLI research has since established that
lexical features, such as word-based n-grams, are among the best performing features both in single-
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and in cross-corpus settings (Brooke and Hirst, 2012; Bykh and Meurers, 2012; Jarvis and Crossley,
2012; Brooke and Hirst, 2013b; Bykh et al., 2013; Gebre et al., 2013; Jarvis et al., 2013; Lynum, 2013),
making them an essential component of any approach with state-of-the-art performance. At the same
time, the question whether an NLI approach and its results capture general characteristics of language
and language learning instead of only encoding the characteristics of a specific data set remains an
essential concern. In the experiments in this paper, we thus include experiments on both a topic-balanced
single-corpus and on a highly heterogeneous cross-corpus data set.

The range of feature types used in NLI research raises a further question, namely how the different
sources of information are best combined. The most simple solution is to put all features into a single
vector. However, Tetreault et al. (2012) pointed out that the performance can be increased by using a
probability-estimate based ensemble (meta-classifier), which was confirmed in Bykh et al. (2013) and
Cimino et al. (2013). But which models are worth integrating into such a meta-classifier? Some of
the models may be redundant despite performing well individually; on the other hand, some models
may improve the ensemble despite performing relatively poorly by itself. We explore this issue by
implementing a basic ensemble optimization algorithm performing model selection.

In terms of the structure of the paper, in section 2 we first introduce the corpora used in the single-
corpus and cross-corpus settings. Section 3 then presents the first set of experiments, systematically
exploring lexicalized and unlexicalized Context-Free Grammar Rules (CFGR) as features. Given the
significant complexity of the overall feature space, we then explore model selection for optimizing the
ensemble classifier in section 4. In section 5, we combine the CFGR features with n-grams, resulting in
the best accuracy reported for the standard TOEFL11 test set. Section 6 sums up the paper and sketches
some directions for future research.

2 Data

The research in this paper makes use of two sets of data:
First, there is the TOEFL11 (T11) data set (Blanchard et al., 2013), which was introduced for the NLI

Shared Task 2013 and has become a standard frame of reference for NLI research. We use this standard
setup for single-corpus evaluation, where each L1 is represented by 1100 essays, of which 100 essays
are singled out in the standard test set. The remaining 1000 essays per L1 (= T11 train ∪ dev) constitute
our training data in the single-corpus settings.

Second, we make use of a range of other learner corpora to study how well the results generalize.
Concretely, for our cross-corpus settings we employ the NT11 corpus of Bykh et al. (2013), which
consists of the ICLE (Granger et al., 2009), FCE (Yannakoudakis et al., 2011), BALC (Randall and
Groom, 2009), ICNALE (Ishikawa, 2011), and TÜTEL-NLI (Bykh et al., 2013) corpora. In total NT11
includes 5843 texts, with the following division into languages: Arabic (846), Chinese (1048), French
(456), German (500), Hindu (400), Italian (467), Japanese (447), Korean (684), Spanish (446), Telugu
(200), Turkish (349). In the cross-corpus settings, we train on NT11 and test on the standard T11 test set.

3 Systematically exploring Context-Free Grammar Rules (CFGR)

3.1 Features
In this paper, we focus on the CFG production rules (CFGR) as syntactic features for the task of NLI.
CFG rules are the most basic and widely used local syntactic units modularizing the overall syntactic
analysis of a sentence. We parsed the T11 and NT11 corpora using the Stanford Parser (Klein and
Manning, 2002) and extracted all CFG rules from the T11 and NT11 training sets. On this basis we
defined the following tree feature types:

1. CFGRph : Only phrasal CFG production rules excluding all terminals
• S→ NP VP, NP→ D NN, . . .

2. CFGRlex : Only lexicalized CFG production rules of the type preterminal→ terminal
• JJ→ nice, JJ→ quick, NN→ vacation, . . .

3. CFGRph∪lex = CFGRph ∪ CFGRlex (i.e., the union of the above two)
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A variationist perspective on feature representation We explore four different feature representa-
tions: The two standard ones are a frequency-based (freq) representation, where the values are the raw
counts of the occurrences of the rule in the given parsed document, and a binary (bin) representation,
which only indicates whether a rule is present or absent in that document.

Complementing these standard feature representations, we explored two options that take as starting
point the observation that CFG rules with the same left-hand side category represent different ways to
rewrite that category. So in a sense, under a top-down perspective, there is a choice between different
ways of realizing a given category.

This is reminiscent of variationist sociolinguistic analysis, where one studies the linguistic choices
made by a given speaker and connects the choices with extra-linguistic variables such as the age or
gender of a speaker. For example, in William Labov’s field-defining study “The Social Stratification
of (r) in New York City Department Stores” from his book “Sociolinguistic Patterns” (Labov, 1972),
he found that the presence or absence of the consonant [r] in postvocalic position (e.g., car, fourth)
correlates with the ranking of people in status or prestige, i.e., social stratification. Speakers thus make
choices in how to realize a given variable by producing one of the variants (see also Tagliamonte, 2011).
Inspired by this perspective, in Meurers et al. (2013) we discussed how a variationist perspective on
syntactic alternations can provide interpretable features for NLI classification.

Under a variationist perspective, producing one of the variants of a given variable also means not
choosing the other variants of that variable. So it is this grouping of observations that we want to take
into account in terms of encoding local trees as features when we interpret the mother category as the
variable to be realized and the different CFG rules with that left-hand side as variants of that variable.
This results in two feature representations, a simple one (vars) and a weighted one (varw).

The vars and varw frequency normalizations for each variant v from the set of variants V realizing a
particular variable out of the set of variables V is defined as follows:

vars(v ∈ V ) =
f(v)
F (V )

varw(v ∈ V ) = vars(v) · w(V )

Here, f(v) yields the frequency x of a particular variant v, F (V ) is the sum over the frequencies of
all variants v realizing the variable V , and w(V ) is the weight for the variable V :

f(v) = x

F (V ) =
∑
v∈V

f(v)

w(V ∈ V ) =
F (V )

n∑
i=1

F (V i)

The weighting applied in varw takes into account the frequency proportion of each variable V in the
overall variables set V , assigning higher weights for more frequent variables. Mathematically it reduces
to normalizing each variant by the sum of the frequencies over all variants across all variables, i.e., to
the relative frequency of each variant v with respect to the set of all variables V . At the same time,
we will see in the next section that the individual variables keep an independent status in terms of the
classification setup, where we train a separate classifier for each variable.
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3.2 Results

Classifier We use the L2-regularized Logistic Regression from the LIBLINEAR package (Fan et al.,
2008), which we accessed through WEKA (Hall et al., 2009). To obtain results for all feature repre-
sentations which are comparable across the different settings we uniformly scale all values employing
the -Z option of WEKA. This means that the freq feature representation based on the raw frequencies
in essence also becomes normalized. This is particularly relevant in the context of the cross-corpus
evaluation, where raw frequencies are particularly questionable given highly variable text sizes.

Single- vs. cross-corpus results The results for the three feature types using the four different feature
representations are presented in Table 1. The chance baseline for the given data setup is 9.1%. There
are big accuracy differences between the single- and cross-corpus settings despite very similar feature
counts. The drop for the cross-corpus settings is roughly around 1

2 compared to the single-corpus settings.
This is in line with previous results on the same data sets using a wide range of features (Bykh et al.,
2013), confirming the fact that obtaining high cross-corpus results remains challenging in NLI.

features single-corpus (sc): T11 training
freq bin vars varw feat. #

CFGRph 50.00% 44.27% 48.45% 49.82% 14,713
CFGRlex 75.73% 72.45% 71.00% 76.91% 83,402
CFGRph∪lex 78.18% 73.55% 75.36% 78.82% 98,115

features cross-corpus (cc): NT11 training
freq bin vars varw feat. #

CFGRph 21.27% 22.91% 26.27% 27.73% 15,253
CFGRlex 26.73% 32.00% 28.82% 36.82% 78,923
CFGRph∪lex 28.27% 34.27% 32.55% 38.82% 94,176

Table 1: Results for the CFGR feature variants obtained on the standard T11 test set

Best feature type The CFGRlex feature type clearly outperforms the more abstract CFGRph feature
type, yielding up to 28% difference in accuracy for the single-corpus and up to 9% for the cross-corpus
settings. In contrast to previous research assuming that lexicalized trees are too topic-specific, the results
show that CFGRlex is a valuable feature type in both the single-corpus and the cross-corpus settings.
The CFGRlex features combine syntactic and lexical information, such as the fact that a given token with
a particular POS is used, e.g., the token can being used as a noun in There is a can of beer in the fridge
instead of as the more frequent modal verb use in He can dance. Note that this is different from using
word and POS unigrams as features, where the relevant connection is lost. In both the T11 data, which
is topic balanced, for single-corpus evaluation and the very heterogeneous NT11 data containing a wide
range of topics for cross-corpus evaluation, we obtained consistently better results for CFGRlex than for
CFGRph. Some syntactic rules including lexical information thus seem to generalize well across topics.
Combining CFGRph and CFGRlex into CFGRph∪lex gives an additional boost in performance.

Best feature representation There are clear differences in Table 1 between the results for the four
feature representations. varw yields the best accuracies in five out of six settings, across different feature
types and corpora.

The results show that WEKA-normalized raw frequencies such as freq yield the worst results in a
cross-corpus setting but perform very well single-corpus, which is in line with the assumption that raw
frequency features do not generalize well. In our experiments, the performance of freq in a cross-corpus
setting is up to 10.55% worse than what is yielded by varw, despite comparable single-corpus perfor-
mance. freq also consistently performs worse than vars in the cross-corpus setting, despite outperforming
vars single-corpus.
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Using binary features (bin) yields better results cross-corpus than freq, whereas in the single-corpus
setting it is the other way round. The abstraction introduced by the binary feature representation thus
shows a positive effect in terms of the capability of the features to generalize to other data sets.

For the abstract CFGRph features, vars performs better than freq or bin in the cross-corpus setting.
The fact that the varw is performing consistently better than vars shows that weighting is important.

Hence, incorporating the insight from variationist sociolinguistics is not only conceptually interesting as
a theoretical perspective, but also provides a quantitative advantage in terms of performance.

CFGR categories as variables As mentioned above, the best performance is achieved by combining
CFGRph and CFGRlex into the CFGRph∪lex feature type using the weighted variationist feature rep-
resentation varw. Thus, we focused on that feature type and explored it more in depth. We did so by
splitting the overall varw normalized CFGRph∪lex feature set by the variable, i.e., the different mother
nodes. We trained separate models, where each of those models consists of features encoding the differ-
ent variants, i.e., the different realizations in which a given mother node can be rewritten. Our aim was
to investigate the accuracy of the individual variable-based models and their contribution to the overall
performance. Figures 1 and 2 depict the single-corpus (sc) and cross-corpus (cc) accuracies yielded by
each individual variable-based model, for presentation reasons shown separately for the CFGRph and
the CFGRlex subsets.
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Figure 1: Accuracy for the individual CFGRph variable based models, varw normalized

The CFGRph results in Figure 1 show that a small subset of variables performs relatively well. Most
of the models perform poorly, yielding accuracies close to the chance baseline. The best performing
variables are essentially the main phrasal categories, such as S, NP, VP, PP, ADJP, ADVP or SBAR.

The results for the CFGRlex in Figure 2 show a similar pattern. There is a subset of variables which
perform relatively well, usually models based on the main POS categories, such as the nominal (NN) and
verbal (VB) categories as well as adjectives (JJ), prepositions (IN) and adverbs (RB). Some punctuation
marks also seem to play a role. The rest of the models yields accuracies around the chance baseline.
This might be due to data sparsity given that the main POS categories also are the most frequent. But
those main categories also have the highest number of variants through which they can be realized. The
good performance of the models for the variables with the highest number of variants thus confirms the
assumption that the choice of one of the realization options of a given category is influenced by the L1.

Should we focus only on those high-performing models – or do the other models also contain relevant,
independent information which is worth preserving? We address that question in the next section.
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Figure 2: Accuracy for the individual CFGRlex variable based models, varw normalized

4 Ensemble optimization and tuning

Ensemble generation To combine the individual models, we employ a probability-estimate-based en-
semble approach, following Tetreault et al. (2012) and Bykh et al. (2013). This meta-classifier combines
the probability distributions provided by the individual classifier for each of the incorporated models as
features. To obtain the ensemble training files, we performed 10-fold cross-validation for each model on
the corresponding training set and took the probability estimate distributions. For testing, we took the
probability estimate distribution yielded by each individual model trained on the corresponding training
set and tested on the T11 test set. To obtain the probability estimates for the individual models we used
LIBLINEAR as described in section 3.2. The ensembles were trained and tested using LIBSVM with an
RBF kernel (Chang and Lin, 2011), which outperformed LIBLINEAR for this purpose.

Ensemble optimization (+opt) The growing range of features used for NLI raises the question of how
to perform model selection. Even when analyzing a single feature type in depth, as we do in section 3.2,
we already must determine which of the low-performing models to keep in an ensemble. We approach
the question with a simple incremental ensemble optimization algorithm performing model selection.

Algorithm 1 Ensemble Optimization / Ensemble Model Selection
Ma ← {m1, ...,mn} . overall ensemble, i.e., all ensemble models
Mb ← ∅ . current best performing ensemble
while Ma 6= ∅ do . iterate until Ma is empty

mb ← MAX(Ma) . get the model with the highest accuracy mb out of Ma

Mt ←Mb ∪ {mb} . join the previous best performing ensemble Mb and {mb}
if ACC(Mt) > ACC(Mb) then . check if the new ensemble is performing better than Mb

Mb ←Mt . if the accuracy improves, store the new ensemble in Mb

end if
REMOVE(mb, Ma) . remove mb from Ma

end while
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In each iteration step the optimization algorithm shown in Algorithm 1 retrieves the current best single
model mb out of the model set Ma (which is initialized with the overall model set for a particular setting),
joins it with the previous best performing ensemble Mb (which is initialized to ∅), compares the accuracy
of that new ensemble with the accuracy of the previous best ensemble. It retains the new ensemble as the
best ensemble if the accuracy improves, or keeps the previous best ensemble as best ensemble otherwise.
In Algorithm 1, we describe only the gist of the optimization, omitting some details to keep it transparent.
Some ambiguities have to be resolved. If there are several models in Ma yielding the same accuracy, one
has to decide, which of them to pick as the next mb. We resolve that issue by always picking the model
with the least number of features. When several models yield the same accuracy and have the same
number of features, we resort to alphabetical order. The optimization is always carried out using 10-fold
cross-validation results on the training data (to obtain the accuracy ranking on Ma and to perform each
optimization step). The test set is not part of the optimization at any point. Only after optimization is the
resulting ensemble applied to the test set and we report the corresponding accuracies.

Ensemble tuning (+all) In order to further tune the ensemble, we explore the following idea: We
generate a single ensemble model mn+1 based on all of the features used in a particular setting, i.e., all the
features incorporated by the models m1 . . . mn. Then we include that mn+1 model in the Ma ensemble
as just another model, and use that new M+1

a ensemble either directly or as basis for the optimization.
Since mn+1 incorporates all of the features of interest for a particular setting, it is expected to yield more
reliable probability estimates than the other individual ensemble models in M+1

a , each covering only
a subset of that feature set. Incorporating such an mn+1 into the ensemble may stabilize the resulting
system, i.e., the machine learning algorithms may learn to rely on mn+1 in settings, where the rest of
the included models m1 . . . mn show a rather poor individual performance and are of limited use. In the
tables and explanations below, we refer to the model mn+1 as [all] and to the M+1

a ensemble as +all.
For building the mn+1 model included in the M+1

a ensemble there are two options. We can build
it on the basis of the probabilities of the models or on the union of the original feature values of those
models. In the former case, the final ensemble model essentially is a meta-meta-classifier. For the settings
integrating the same type of feature representations (cf. results in Tables 2 and 4), we use the original
feature values merged into a single vector to build mn+1. For the settings integrating different feature
types (cf. results in Table 6), we use the probability estimates from the models m1 . . . mn to build mn+1.

Ensemble results for the CFGR variables The ensemble results for the separate variable-based mod-
els for the CFGRph∪lex feature type are presented in Table 2. We provide single-corpus (sc) and cross-
corpus (cc) results for different ensemble settings, where +/- opt states whether ensemble optimization
was performed, and +/- all whether tuning was employed. Concretely, (-opt, -all) means that the ensem-
ble Ma was used without any optimization or tuning, and correspondingly (+opt, +all) means that the
optimized and tuned version of Ma (i.e., the optimized version of the ensemble M+1

a ) was employed. In
the remaining two cases (+opt, -all) and (-opt, +all) either optimization or tuning was used, respectively.
The column baseline lists the corresponding results from Table 1, which were obtained by putting all the
features in a single vector. The number in parentheses specifies the number of models combined in the
ensemble: in the features column, it shows the overall number of separate variable-based models, and in
the +opt columns, it is the number of models selected by the optimization algorithm.

features data baseline ensemble
-opt +opt

-all +all -all +all
CFGRph∪lex (71) sc 78.82% 66.00% 79.18% 71.27% (14) 79.64% (8)

cc 38.82% 18.09% 34.18% 32.55% (10) 39.00% (1)

Table 2: Results for the CFGRph∪lex ensembles with different optimization settings

The results show that generating an ensemble using all of the individual variable-based models without
optimization and tuning (-opt, -all) leads to a big accuracy drop compared to the baseline. The fact that
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the drop in the cross-corpus setting is more than 20% is particularly striking. We assume that this is due
to the poor performance of most of the individual models, yielding probabilities of little use overall. The
few relatively well-performing models we discussed in section 3.2 apparently are flooded by the noise
introduced by the others. Thus, for a set of rather low-performing models without any optimization, it
seems preferable to provide the classifier with access to the individual features instead of to the noisy
probability estimates. The optimization (+opt, -all) leads to a clear improvement over the non-optimized
settings. In the single-corpus setting only 14 of the 71 models were kept and in cross-corpus only 10.

Table 3 shows the selected models in the order in which they are selected by the ensemble optimization
algorithm. For (+opt, -all), the table basically consists of the best performing variables (i.e., the models
containing as features the different ways to rewrite the given mother category) as discussed in section 3.2,
suggesting that the algorithm makes meaningful choices.

data CFGRph∪lex : selected models
+opt, -all +opt, +all

sc [NN]+[JJ]+[RB]+[NNS]+[VB]+[NP]+[S]+[VP] [all]+[NN]+[JJ]+[RB]+[PRP]+[VBN]+[NNP]+[WDT] (8)
+[IN]+[VBP]+[VBG]+[VBN]+[NNP]+[,] (14)

cc [NN]+[JJ]+[NNS]+[NP]+[RB]+[VB]+[VP]+[NNP] [all] (1)
+[S]+[IN] (10)

Table 3: The CFGRph∪lex model sets selected by optimization

The flipside of the coin is that low-performing models generally were not found to have a positive
effect and thus were not included. Yet, optimization by itself is not successful overall given that the
(+opt, -all) accuracy remains below the single feature set baseline.

Applying tuning without optimization (-opt, +all) outperforms the optimization result. Thus, includ-
ing the overall model [all] in the ensemble improves the meta-classifier. In the single-corpus setting, the
accuracy is slightly higher than the baseline, in cross-corpus it remains below the baseline.

Turning on both optimization and tuning (+opt, +all) yields the overall best results of Table 2, 79.64%
for single-corpus and 39% for the cross-corpus setting. The corresponding entry in Table 3 shows that
tuning significantly reduces the number of selected models. This is not unexpected given that the overall
model [all] essentially includes all the information. In the cross-corpus setting, [all] indeed is the only
model selected. Interestingly, in the single-corpus setting, the optimization algorithm identifies some
additional models to improve the accuracy, mainly ones that also perform well individually. While this
amounts to adding information that in principle is already available to the [all] model, the improvement
may stem from the abstract nature of the probability estimates used as features of the meta-classifier.
When both optimization and tuning are applied, the tuning apparently stabilizes the ensemble leading to
higher performance, and the optimization algorithm further improves the result by reducing the noise.

5 Combining CFGR with four types of n-grams

Based on the systematic exploration of the CFGR domain, we turn to combining our new feature type
CFGRph∪lex with n-gram features as the best performing features for NLI (Tetreault et al., 2013; Jarvis
et al., 2013). Adapting the n-gram approach we presented in Bykh and Meurers (2012), we use all
recurring n-grams with 1 ≤ n ≤ 10 at different levels of representation, including the word-based (W),
open-class POS-based (OP) and POS-based (P) n-grams from our previous work as well as lemma-based
(L) n-grams (Jarvis et al., 2013). We employ binary feature encoding for all n-gram types.

For POS-tagging we use the OpenNLP1 toolkit, for lemmatizing we employ the MATE2 tools
(Björkelund et al., 2010). To obtain a fine grained, flexible n-gram setting, we generate an ensemble
model for each n-gram type and each n, which results in 40 n-gram models.

1http://opennlp.apache.org
2https://code.google.com/p/mate-tools
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Table 4 provides the results for the n-gram ensembles built on the basis of the recurring word-, lemma-,
POS-, OCPOS-based n-grams with 1 ≤ n ≤ 10 in the same format as Table 2 for CFGRph∪lex.3

Different from the CFGRph∪lex case, the results for the n-gram ensemble model without optimization
or tuning (-opt, -all) already are 4–5% higher than the single vector baseline.

features data baseline ensemble
-opt +opt

-all +all -all +all
N-GRAMS (40) sc 77.09% 82.27% 82.55% 83.00% (13) 82.27% (8)

cc 31.00% 34.91% 34.55% 36.45% (6) 35.45% (6)

Table 4: Results for the n-gram ensembles with different optimization settings

The best results, 83% for single-corpus and 36.45% for the cross-corpus setting, are obtained by ap-
plying the optimization. The n-gram ensembles seem to benefit more from optimization than from tuning
in general. The feature counts for the n-grams (single-corpus: 4,822,874; cross-corpus: 3,687,375) are
far higher than for CFGRph∪lex (single-corpus: 98,115; cross-corpus: 94,176), so there may be more
noise in the [all] model, making it less useful for the tuning step.

Table 5 lists the models selected by the optimization algorithm in order in which they are selected.
The n-gram types and the n of the model is indicated, e.g., “[OP-3]” means “OCPOS-based trigrams”.

data N-GRAMS: selected models
+opt, -all +opt, +all

sc [W-2]+[L-2]+[W-1]+[L-1]+[L-3]+[W-3]+[OP-3] [all]+[W-2]+[L-2]+[W-1]+[L-1]+[L-3]+[OP-4]+[L-4] (8)
+[OP-1]+[OP-5]+[P-3]+[P-5]+[P-2]+[OP-8] (13)

cc [W-2]+[W-1]+[L-1]+[L-3]+[W-3]+[OP-2] (6) [W-2]+[W-1]+[all]+[L-1]+[L-3]+[P-4] (6)

Table 5: The n-gram model sets selected by optimization

For the more surface-based n-gram (word- and lemma-based), the optimizer selected only up to n = 3,
whereas for the more abstract ones (POS- and OCPOS-based), models up to n = 8 were included. Thus,
when abstracting from the surface, one can get some useful information out of longer n-grams that
apparently is not contained in the short surface-based ones. Different from the CFGRph∪lex variables-
based ensemble, we here find that relatively low-performing models such as those considering longer n
n-grams are kept when optimizing the ensemble.

Having established the performance of the n-gram ensembles, we can turn to combining the
CFGRph∪lex and n-gram models. The results are presented in Table 6.

features data ensemble
-opt +opt

-all +all -all +all
(a) CFGRph∪lex (71) + N-GRAMS (40) sc 82.09% 82.91% 82.91% (20) 83.55% (6)

cc 34.09% 36.00% 36.73% (8) 38.45% (3)
(b) CFGRph∪lex (71) + N-GRAMS [+opt, -all] (ME) sc 83.09% 83.73% 82.64% (4) 84.18% (5)

cc 37.36% 39.55% 38.00% (3) 40.27% (3)
(c) CFGRph∪lex [+opt, +all] (ME) + N-GRAMS (40) sc 83.73% 84.82% 84.73% (13) 83.82% (13)

cc 36.82% 38.91% 42.00% (5) 43.00% (4)
(d) CFGRph∪lex [+opt, +all] (ME) + N-GRAMS [+opt, -all] (ME) sc 83.45% 83.45% 83.45% (2) 83.36% (2)

cc 41.27% 42.00% 41.27% (2) 40.55% (2)

Table 6: Optimization results combining n-grams and CFGRph∪lex

3For space reasons, we cannot present the individual results for the separate n-gram models here, but interested readers
can consult Bykh and Meurers (2012), where word-, POS- and OCPOS-based n-gram results are discussed in detail. The
lemma-based n-grams we are adding here perform very much like the word-based n-grams.
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We explore four different ways to combine the two model sets, and the table shows the best results for
each of the setups in bold, once for the single-corpus and once for the cross-corpus setting.

For the results of setup (a), we use the ensemble consisting of all individual models separately.
In (b), the CFGRph∪lex models are included as in (a), but we replace the n-gram models by a single

meta-ensemble model (ME) generated using the best n-grams setting (+opt, -all), which consists of 13
models for single-corpus and six models for the cross-corpus setting (see Table 4). ME thus is a meta-
meta-classifier, generated by applying the ensemble model generation routine to an ensemble.

In (c), we invert the (b) setting: The CFGRph∪lex features are replaced by a meta-ensemble generated
using the best performing CFGRph∪lex setting (+opt, +all), which consists of eight models for the
single-corpus, and one model for the cross-corpus setting (see Table 2).

Finally, in (d) we combine the meta-ensemble for CFGRph∪lex with the meta-ensemble for the n-
grams obtaining an ensemble consisting of two models

The best results of 84.82% in the single-corpus setting and 43% cross-corpus, underlined in the table,
are obtained in setup (c). These are the overall best results across all experiments described in this paper.
The best result in the single-corpus setting involves tuning only, whereas in the cross-corpus setting it
involves tuning and optimization selecting the models [all]+[CFGR +all +opt]+[W-2]+[W-1].

The single-corpus accuracy of 84.82% is the best result reported so far for the NLI Shared Task 2013
data with the T11 train ∪ dev set for training and the T11 test set for testing. The best previous result
was 83.6% (Jarvis et al., 2013).

In the cross-corpus setting, the 43% accuracy also outperforms the previous best result on the
NT11 data (Bykh et al., 2013) by 4.5%.

In sum, the overall best results in the single-corpus and cross-corpus settings are obtained starting with
the whole n-gram model set plus an optimized CFGRph∪lex meta-ensemble. This confirms the useful-
ness of the optimized ensemble setup and underlines that combining a range of linguistic properties, from
n-grams at different levels of abstraction to local syntactic trees characteristics, is a particularly fruitful
approach for native language identification as a good example of an experimental task putting linguistic
modeling to the test with real-life data.

6 Conclusions

In the research presented, we systematically explored non-lexicalized and lexicalized CFG production
rules (CFGR) as features for the task of NLI using both single-corpus and cross-corpus settings. Includ-
ing lexicalized CFG rule features clearly improved the results in both setting so that it seems worthwhile
not to discard them a priori, which was the standard in previous research.

Pursuing a variationist perspective to CFGR feature representation resulted in improved performance
and it supported an in-depth exploration of the contribution of the different variables and variants as
well as of the value of local syntactic features for NLI in general. Training a separate classifier for each
variable provides quantitative advantages by facilitating high-performing ensemble setups and supports
a qualitative discussion of the categories reflecting the choices made by the learners with a given L1.

Investigating different meta-classifier setups, we explored ensemble optimization and tuning tech-
niques that improved the accuracy over putting all features in a single vector or a basic ensemble setup.

Combining the syntactic CFGR with four types of n-grams yielded a single-corpus accuracy of 84.82%
on the TOEFL11 test set. To the best of our knowledge this is the highest accuracy reported so far on
this standard data set of the NLI Shared Task 2013. The combined model also outperformed our best
previous cross-corpus result on the NT11 corpus.

In terms of future work, we intend to explore a broader range of linguistic features from a variationist
perspective, for example on the morphological level. To investigate the generalizability of the types of
features used, we also plan to apply our approach to NLI targeting second langauges other than English.
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