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Abstract

We present a novel approach to the problem of multilingual conceptual metaphor recognition.
Our approach extends recent work in conceptual metaphor discovery by combining a complex
methodology for facet-based concept induction with a distributional vector space model of lin-
guistic and conceptual metaphor. In the evaluation of our system in English, Spanish, Russian,
and Farsi, we experiment with several state-of-the-art vector space models and demonstrate a
clear benefit to the fine-grained concept representation that forms the basis of our methodology
for conceptual metaphor recognition.

1 Introduction

The role of metaphor in language has been defined by Lakoff et al. (1980; 1993) as a cognitive phe-
nomenon which operates at the level of mental processes, whereby one concept or domain is viewed
systematically in terms of another. For example, the phrase “to cure poverty” is a metaphor which subtly
conveys a wide variety of information to the listener. In order to mentally process this phrase, we must
first recognize that a metaphor is being used and that “cure” (as a medical term) is being used figura-
tively. Then, we assume some relationship between “poverty” and “things that can be medically cured“
which leads to the conceptual mapping “POVERTY as DISEASE.” This conceptual mapping enables the
listener to transfer a variety of properties and associations between the two concepts, such as their as-
sociation with a feeling of helplessness, the existence of sustained efforts to end them, the potential for
them to spread, and their mutual relationship with ill-health and death. Therefore, by identifying the con-
ceptual domains associated with this linguistic metaphor, we are able to reason about the target domain
(POVERTY) using concepts and terms associated with the source domain (DISEASE).

Any natural language processing system capable of processing metaphor in text with human-level
competence must, therefore, overcome three problems in sequence:

1. the identification of metaphorical expressions (also known as linguistic metaphors (LMs))

2. the discovery of a conceptual domain mapping or conceptual metaphor (CM) which consists of

(a) the conceptual domain of the metaphor target (e.g., POVERTY); and
(b) the conceptual domain of the metaphor source (e.g., DISEASE)

3. the real-world interpretation of the metaphorical text which uses the conceptual metaphor frame-
work to transfer knowledge between the source and target domains.

While a significant amount of recent work has presented interesting and promising methodologies for
multilingual LM identification (Shutova and Sun, 2013; Wilks et al., 2013; Strzalkowski et al., 2013),
the work presented in this paper is focused on (2), the problem of multilingual CM recognition, which
will be made to serve as the foundation for a more fine-grained interpretation of metaphor.
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We cast the CM recognition process as a two-part methodology which (a) selects the target domain
associated with a particular LM that has been detected; and (b) determines the source domain to which
it should be mapped in order to produce a satisfactory interpretation. In this work, we assume that the
target domains are known and belong to one of the following conceptual spaces: POVERTY, WEALTH, or
TAXATION. Pragmatically speaking, research in CM recognition presupposes some methodology for LM
identification, and to this end, we have employed an existing state-of-the-art LM identification system
which has been developed to detect linguistic metaphors in four languages: English, Spanish, Russian,
and Farsi (Bracewell et al., 2014).

In order to generate a CM which can serve as the basis for an interpretation of an LM, we have
developed an approach that is based on the following hypotheses:

CONCEPTUAL HYPOTHESIS: When an LM has been identified as a pair of lexical items that
represent the source (e.g., “cure”) and the target (e.g., “poverty”), we can generate a conceptual
mapping by selecting the conceptual domains that are, a priori, the most likely for the source and
target lexemes.1

DISTRIBUTIONAL HYPOTHESIS: It is possible to decide which conceptual space better repre-
sents a given lexeme by

1. expanding the lexical space with additional terms (which we call “grammatical co-occurrents”)
that are strongly associated with the lexeme through grammatical relations such as AGENT,
PATIENT, INSTRUMENT, and ATTRIBUTE;

2. using these lexical expansions to produce distributional vectors; and
3. uncovering the selectional constraints of particular domain facets by clustering the distribu-

tional vectors within a semantic space.

DOMAIN HYPOTHESIS: The grammatical co-occurrents of the LM are themselves very likely to
belong to the same conceptual domain as the lexeme (e.g., “cure patient”, “cured of AIDS”, and
“doctor cured”).

MAPPING HYPOTHESIS: The semantic space representations of both the LM source and its gram-
matically associated terms can be used to produce mappings into a high dimensional space in which
source domains are known to exist.

While other computational linguistics research in metaphor has made use of the CONCEPTUAL and
DISTRIBUTIONAL hypotheses, to our knowledge the DOMAIN and MAPPING hypotheses have not
yet been explored in combination with a distributional approach.

The remainder of this work is organized as follows. In Section 2, we discuss related work in the field
of metaphor interpretation and unsupervised concept induction. In Section 3, we introduce the overall
architecture of our CM recognition system. In Section 4, we describe our method for representing lexical
items and conceptual metaphors in a distributional vector space. Then, in Section 5, we explain our
methodology for creating and ranking clusters of LM co-occurrents which are then mapped to conceptual
metaphors within our vector space. In Section 6, we describe our experimental setup and provide the
results of our experiments. Finally, in Section 7 we present our conclusions.

2 Related Work

Research in metaphor processing can broadly be divided into two categories: metaphor identification and
metaphor interpretation. Although some recent work on metaphor interpretation has skirted the issue of
conceptual metaphor entirely by casting the problem of metaphor interpretation as an instance of lexical
paraphrase (Shutova, 2010; Bollegala and Shutova, 2013) or textual entailment (Mohler et al., 2013), the
mapping and modeling of conceptual metaphors has historically served as an important foundation for

1If the target domains are pre-selected, this hypotheses is reduced to selecting only the most likely source domain.
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more robust interpretation of metaphor. Indeed, a significant amount of research in metaphor interpreta-
tion has been concentrated on the development of highly-structured, manually curated representations of
both the CM source and CM target domains. Notable in this regard are the KARMA system (Feldman
and Narayanan, 2004) which was designed to simulate neurological modeling of verbs – both abstract
and metaphorical – and the ISOMETA system (Beust et al., 2003) which made use of differential tables
of CM domain lexical items to drive their metaphor interpretation process. The CorMet system (Ma-
son, 2004) sought to model conceptual metaphors by detecting individual source-target mappings that
provide evidence for a known CM by quantifying the overlap between clusters of terms with a strong
selectional preference to the most representative verbs within the source and target domains. After a man-
ual inspection of the source/target cluster pairs across domains, the directionality and the systematicity
of these underlying conceptual mappings were quantified in order to produce an overall confidence in
the mapping. As part of their development of the Hamburg Metaphor Database (HMD), Reining and
Lönneker-Rodman (2007) performed a a manual categorization of lexical items into conceptual source
domains with a facet-level granularity and enriched their domains using a WordNet-based lexical expan-
sion. In the same vein, Chung et al. (2005) chose to model source domains by expanding their lexical
items by exploiting the links between WordNet glosses and the SUMO ontology.

In recent years, however, research has focused on automating the modeling and classification of con-
ceptual metaphors as much as possible in order to encourage the scaling up of metaphor research in
general. Veale and Hao (2008), as part of the Talking Points system, developed what they refer to as a
Slipnet which defines linked chains of meaning that connect a source to a target through shared (or re-
lated) attributes and actions. As a step in this process, they combined WordNet relations with pragmatic
relations extracted from text and clustered nouns according to their relation (and attribute) similarity in
order to define a weak conceptual mapping within the clusters. In a similar way, Shutova et al. (2010),
beginning with a seed set of noun/verb linguistic metaphor pairs, performed spectral clustering on a large
set of nouns and verbs in order to predict metaphors which participate in the same conceptual metaphor
mapping. In particular, she modeled verbs according to their subcategorization frames parameterized by
a model of their selectional preferences, while nouns were modeled according to the verbs with which
they frequently co-occurred in a dependency relation.

More recently, Gandy et al. (2013) approached the CM discovery problem as a set covering problem.
For a given nominal target lexeme, they began by finding all facets (i.e., verbs/adjectives) that share
a positive PMI with the target. Then, they would find the set of nouns that also have a positive PMI
with those facets, compute their confidence in each association, and heuristically select pairs of concepts
(defined as rooted WordNet synset trees) which subsume a large percentage of those nouns and cover a
large portion of the overlapping facets. Similarly, Shutova and Sun (2013) detect conceptual mappings by
performing hierarchical graph factorization clustering on a graph in which the vertices are defined to be
nouns (i.e., concepts) and the edges are weighted using Jensen-Shannon Divergence. For a given input
LM source, its likely conceptual metaphors are then discovered by determining its non-literal cluster
membership. Finally, Strzalkowski et al. (2013) discovered terms (literal and metaphoric) which often
co-occur with an LM source in a corpus and clustered those terms using WordNet and corpus statistics
to form “ProtoSources” which could be further inspected to define CM source concepts.

Two vector-based approaches to concept representation are of particular interest in understanding the
present work. In the first of these, Schütze (1998) described an approach to word sense identification
using second-order co-occurrence vectors which were used to cluster first-order vectors of the in-context
terms into senses.2 Lin (1998), in developing a methodology for evaluating the quality of thesauri,
defined a word vector space that moved beyond simple co-occurrence by integrating information about
the relations between the word and its co-occurrents. In particular, a word’s vector was defined by the
number of times that word occurred within a set of (word, relation, word) tuples. Our DepVec space
represents an extension to Lin’s space insofar as we incorporate additional information about relational
(i.e., selectional) preference.

2While context is critical in word sense disambiguation, we hasten to point out that one mark of metaphoricity is its discon-
nect from the surrounding literal context.
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Figure 1: The architecture of our conceptual metaphor recognition system. This system takes a linguistic
metaphor as input, induces potential concepts using vector-space clustering, and maps these clusters onto
a conceptual metaphor domain.

3 A New Methodology for Conceptual Metaphor Recognition

Figure 1 shows the overall flow of our metaphor processing architecture. We begin with a set of doc-
uments gathered from a variety of online news-wire sources. These documents are fed to our state-
of-the-art LM detection system which employs a binary logistic regression classifier using a variety of
feature modules including imageability and concreteness estimation, topicality modeling, pattern match-
ing, semantic categorization, selectional preference violation, and source/target vector space similarity.
The methodology used in this system is beyond the scope of this work, but it is described in detail by
Bracewell et al. (2014). The LMs provided by the detection system are validated by a group of native-
language experts before being sent for CM recognition system for concept-level interpretation.

Once the LMs have been collected and validated, the CM recognition system begins by extracting,
weighting, and clustering the common grammatical contexts of the LM source term. By grammatical
context, we refer to the syntactic relations (along with their arguments) which have been found to fre-
quently co-occur with the LM source term in open text. In order to model this grammatical context, we
have syntactically parsed a wide collection of documents in each of our focus languages: English, Span-
ish, Russian, and Farsi. From these parsed documents, we have extracted the most common grammatical
co-occurrents of each word in the corpus along with the relation that connects them and the number
of times they are connected by that relation. For a given word, we refer to the set of its grammatical
co-occurrents as the “concept candidates” associated with that word, as they represent potential concepts
within the same conceptual domain as the given word (the DOMAIN HYPOTHESIS). For example,
grammatical co-occurrents of the noun “battle” would include many WAR concepts such as “fought“,
“died in“, “waged”, “naval”, and “losing”.

Since a conceptual domain is made up of several interacting concepts, we perform a clustering over
the grammatical co-occurrents to produce groups of terms which are likely to represent individual con-
cepts within a domain. The clustering is performed within a high-dimensional, distributional vector
space which we describe in Section 4. The clusters are then merged and aligned with a set of 51 pre-
defined source concept domains (see Table 1) that have been found to occur frequently in conceptual
metaphors about POVERTY, WEALTH, or TAXATION. For each of these known conceptual domains, we
have amassed a collection of lexical items for the purpose of modeling the domains and aligning them
to our automatically discovered domains. The collection of lexical items associated with each domain
have been further partitioned into three to five facets which provide a more fine-grained representation of
the domain. For instance, the conceptual domain of ABYSS as been subdivided into facets representing
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Full Source Concept List
A GOD COMPETITION ENSLAVEMENT LIGHT NATURAL PHYSICAL FORCE PORTAL
A RIGHT CONFINEMENT FOOD LOW POINT OBESITY RESOURCE
ABYSS CRIME FORCEFUL EXTRACTION MACHINE PARASITE SCHISM
ACCIDENT CROP GAME MAZE PATHWAY STRUGGLE
ADDICTION DARKNESS GEOGRAPHIC FEATURE MEDICINE PHYSICAL BURDEN VERTICAL SCALE
ANIMAL DESTROYER GOAL DIRECTED MONSTER PHYSICAL HARM VISION
BLOOD SYSTEM DISEASE HIGH POINT MORAL DUTY PHYSICAL LOCATION
BODY OF WATER ENABLER HUMAN BODY MOVEMENT PHYSICAL OBJECT
BUILDING ENERGY IMPURITY MOVEMENT ON A VERTICAL SCALE PLANT

Sample Lexical Items
ANIMAL bite, bark, claw, bird, beaver MEDICINE dosage, prescription, heal
ENSLAVEMENT servant, oppression, ruler STRUGGLE enemy, fight, combat, attack

Table 1: The 51 source conceptual domains along with some sample English lexical items for a subset
of them.

DEPTH (e.g., “deep”, “bottomless”), ENTRANCE (e.g., “plunged into”, “falling into”), and EXIT (e.g.,
“climb out of”).

3.1 Motivating Example
Table 2 shows a sample of the concept candidates associated with the word “cure” along with the relation
that connects them. Our methodology for extracting these terms is discussed in Section 5.1.

nsubj
NIH, WHO, therapist, doctor, vaccine,

prep of
cancer, AIDS, HIV, malaria, influenza,

drug, medicine, chef, butcher seizures, allergies

dobj
cancer, polio, Goji Berries, man,

prep by
bone marrow transplant, spleen cells,

genetic defects, aging, infant, woman, acupuncture, smoking, salting,
depression, meat, fish, garlic doxycycline, drying, burying, dipping

prep without
surgery, operation, suppuration, salt

prep to−1 need, project, brine, mineral,
chemotherapy, injections coalition, run, walk, salt, nitrite

prep in
mice, children, baby, spices, salt,

prep for
grinding, smoking, voyages, lox,

monkeys, drug trial, breakthrough, transportation, preservation, jerky,
brine, smokehouse, basement, fridge sausages, bacon, sale

Table 2: Terms that are frequently a part of the grammatical context of “cure” along with their associated
relations

It is clear from the concept candidates shown that there are at least two coarse-grained senses of
“cure” present – corresponding to the domains of MEDICINE and FOOD. Table 3 shows a sample
result of clustering these concept candidates. These clusters are organized according to their domain
with MEDICINE-related clusters in the left grouping, FOOD-related clusters in the top-right grouping,
and clusters not strongly related to either domain in the bottom-right grouping. Each row of the table
represents a single cluster. In addition, it can be observed that these clusters correspond to particular
semantic facets of the conceptual domain. For instance, there is a cluster that defines “procedures which
result in medical cures” (“acupuncture”, “surgery”, “operation”, etc.), one that defines “individuals who
cure food products” (“chef”, “butcher”), and one that defines “diseases that can (potentially) be cured”
(“cancer”, “polio”, “AIDS”, etc.). Our methodology for automatically inducing such clusters is described
in Section 5.2.

Once the clusters have been identified, they can be used to define a mapping from the original LM
(“cure”) onto a pre-defined set of CM source domains (the MAPPING HYPOTHESIS). In particular,
individual concept candidates are mapped to CM domains by calculating the distance between the can-
didate and one or more vectors representing each domain in a high-dimensional distributional vector
space.

4 Distributional Representations

Our method for identifying conceptual metaphor domains relies on determining when multiple words
should be grouped as belonging to the same conceptual class (the DISTRIBUTIONAL HYPOTHESIS).
Previous work in semantic similarity has shown two types of approaches to work well: (a) hand-coded
knowledge such as WordNet or SUMO, and (b) distributional approaches which rely on statistics of
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NIH, WHO, therapist, doctor chef, butcher
vaccine, drug, medicine, doxycycline project, coalition
spleen cells, bone marrow transplant meat, fish, sausages, jerky, bacon, lox
acupuncture, surgery, operation garlic, Goji Berries
chemotherapy, injections, suppuration smoking, salting, drying, dipping
HIV, malaria, influenza burying
cancer, polio, AIDS salt, brine, spices, nitrite, mineral
genetic defects, aging, depression smokehouse, basement, fridge
seizures, allergies run, walk
drug trial, breakthrough voyages, transportation
infant, man, woman, children, baby mice, monkeys

Table 3: Terms from Table 2 grouped into conceptual clusters – one per line. These clusters are organized
according to their domain association: MEDICINE (left), FOOD (top-right), unclear (bottom-right).

word usage in corpora. We adopt the distributional approach in order to facilitate research in languages
(such as Farsi) for which coverage of existing knowledge bases is limited. The only requirements for our
approach are a corpus with documents written in that language and a syntactic parser for the language.
We use the Malt dependency parser to obtain syntactic parses for web documents in each language.

Table 2 of Section 3.1 shows some of the words which participate regularly with the word “cure”
in a dependency relation. These syntactic contexts of the word “cure” form the basis for one semantic
representation we use to find other similar words, which we will call DepVec. All of the dependency
relations for a word are used to form a vector-based distributional representation for that word. This
representation projects words which are semantically similar to one another onto vectors which are near
to each other in the vector space. In the following subsection, we describe DepVec along with LSA and
word2vec which are alternative vector space models of word meaning. These vector spaces are then used
to calculate similarities between words in order to cluster them and to align them with lexicons which
model our existing conceptual spaces.

4.1 Dependency Vectors (DepVec) space

In our DepVec vector space model, each word is represented by a vector whose elements correspond
to syntactic contexts of the word. Each element of the vector for word w corresponds to the fre-
quency of a unique dependency relation (w, r, w′) seen in the corpus. For example, if the relation
(whale, nsubj−1, swim) is extracted once, then the vector for “whale” contains a 1 in the element
for (nsubj−1, swim) , and the vector for “swim” contains a 1 for the element (nsubj, whale). This
representation corresponds that proposed by Lin (1998).

However, the use of raw frequency counts in these vectors leads to a situation in which words that
are more frequent in the corpus (e.g., “of”, “the”, “one”) will have higher frequencies in the vectors by
chance alone, and so a high co-occurrence count for those words is not indicative of a significant relation
to the word. We overcome this limitation by replacing the raw frequency counts in each vector with their
corresponding G-test scores. The G-test is a measure of statistical significance for proportions, similar to
the Chi-square test, which measures the degree to which a particular triple (w, r, w′) was found to occur
more frequently than expected given all relations (w′′, r, w′). If w′ occurs far more often with w than
it does with other words, then it will receive a high G-test score for w. In particular, the G-test score is
computed according to the following equation:

G = 2
∑

i

Oi · ln(Oi/Ei)

where the index i ranges over the four cells of a 2x2 contingency table, Oi is the observed count in cell
i, and Ei is the expected count in the same cell.
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Language Source # Documents Language Source # Documents
English ClueWeb 13,361,743 Spanish ClueWeb 3,682,478
Russian ruWac 1,173,590 Farsi Online news sites 835,588

Table 4: Statistics of the corpora used to construct the vector space models

4.2 Latent Semantic Analysis (LSA)
While the DepVec model provides information about the immediate contexts a word can be expected
to occur in, it does not directly capture information about the broader contexts typical of that word,
such as topical information. Latent Semantic Analysis (LSA) is a well-studied model (Landauer and
Dumais, 1997) which does capture such topical information. The LSA model utilizes a singular value
decomposition of a TF-IDF weighted matrix representation of the term-document co-occurrences. Terms
and documents are then represented in a reduced dimensionality space using only the information from
the eigenvectors with the k largest eigenvalues.

4.3 Continuous skip-gram model (W2V)
Mikolov et al. (2013) recently presented a new method for determining distributional word representa-
tions based on a shallow neural network model. The values of the latent vector for each word are trained
to optimize prediction of the words within a 10 token window. This prediction is performed using the
term’s latent vector as the input to a series of log-linear classifiers with outputs which correspond to
probability distributions over the tokens within the context window. Each position in the context window
is assigned its own classifier weights, so that the model used for making predictions about words imme-
diately following the input term is different than the model which makes predictions about the words two
tokens after the term, and so on. Because these latent vector representations are in a low dimensionality
space (300 dimensions in our case), the training process will tend to move the representations for similar
words closer together in this space in order to maximize the predictive accuracy of their contexts.

One benefit of the continuous skip-gram model is that it creates representations which capture some
local context as in the DepVec model, which is required to make predictions about the previous and next
tokens. However, it must also encode some topical knowledge in order to make accurate predictions
about the words seven tokens away. Therefore, using the latent term representations from the continuous
skip-gram model as a vector space puts it in a convenient position in between the two others we presented.

4.4 Corpus Processing
The vector models described above were developed using web-scale corpora collected from a combina-
tion of frequently used NLP corpora and web crawls on news websites. Table 4 indicates the number of
documents used for each language along with their source. These corpora were part-of-speech tagged
with in-house POS taggers for English and Spanish, TreeTagger3 for Russian, and hunpos4 for Farsi. The
open-source MaltParser was used to produce dependency parses for all four languages (Nivre, 2003). De-
pendency counts for all words occurring fewer than 40 times and for triples occurring fewer than three
times were discarded to minimize noise.

5 Concept Induction and CM Recognition

In Section 4, we described our DepVec representation of terms as vectors in a high-dimensional dis-
tributional space. These vector representations encode both the dominant grammatical contexts of a
term as well as the selectional preference information associated with it in the form of G-test scores. In
this section, we describe our methodology for inducing conceptual domains for a linguistic metaphor
by adapting techniques for unsupervised word-sense induction (Erk and Padó, 2008; Korkontzelos and
Manandhar, 2010; Hope and Keller, 2013). In particular, we induce conceptual domains in an uncon-
strained manner by extracting the grammatical co-occurrents of an LM source term (i.e., the ‘concept
candidates’) and clustering them into semantically-related concept clusters. Both the clusters and our

3http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/
4http://code.google.com/p/hunpos/
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given source domains are then mapped into a distributional vector space, allowing us to compute cluster-
to-domain scores. Finally, each source domain is assigned a score based on its affinity to each individual
cluster with these affinity scores weighted according to cluster quality. This results in an overall weighted
ranking of the given source conceptual domains for the linguistic metaphor.

5.1 Extracting Concept Candidates

Given a linguistic metaphor which consists of a metaphor source, s (e.g., “cure”), and a metaphor target,
t (e.g., “poverty”), our system extracts a set of terms (i.e., “concept candidates”) from the typical gram-
matical contexts of s as found in the web-scale corpus described in Section 4.4. In order to extract these
candidates, we first determine the syntactic relation, r, which exists between s and t. This relation is the
key point of interaction between the domains of the source and the target for the given LM and, as such,
it provides an indication of which terms will contribute the most to our understanding of the underly-
ing conceptual mapping. In addition, we make use of a predefined set of relations that are semantically
meaningful – specifically the subjects and objects of verbs (i.e., “nsubj”, “nsubjpass”, and “dobj”),5 at-
tributes and verbs associated with nouns (i.e., “amod”, “dobj−1”, “nsubj−1”, and “nsubjpass−1”), the
terms modified by adjectives or adverbs (i.e., “advmod−1” and “amod−1”), and prepositional relations
(e.g., “prep by”, “prep of”, “prep for”). Using this set of relations, R, we extract the set of candidate
terms, X , that have been found to co-occur with the term s within some relation ri ∈ R in the prepro-
cessed, web-scale corpus described in Section 4.4 such that X = {x|(s, ri, x)exists in the corpus}.

To improve the quality of our extracted candidates, we apply three criteria to isolate those that best
exemplify the underlying non-metaphorical senses of s. First, we anticipate that any term in X which
does not co-occur with s at least k times will not be informative,6 and so we remove such terms from
further processing. Next, we predict that poorly imageable terms (i.e., highly abstract terms) are likely to
represent metaphorical usages of s and so are unlikely to be integral to a given literal source domain, so
these are filtered out as well.7 Finally, to improve our ability to map these candidates into a conceptual
domain, we remove terms that are not significantly related to any of our provided source domains (i.e.,
those that are off-topic) along with terms that are strongly related to multiple source domains (i.e., those
that are ambiguous) as these provide little evidence to distinguish the most appropriate concept for the
given LM.8 We determine the relatedness of a term to a source domain by measuring the similarity of
the term and domain vectors in our distributional space as described in Section 5.3.

5.2 Clustering Concept Candidates

Once the candidates have been extracted, they are clustered using a hierarchical agglomerative clustering
algorithm with the distance metric defined as the cosine distance between the vectors within one of our
distributional vector spaces. Each cluster is then assigned a quality score based on its size (to prefer large
clusters with a large amount of semantic evidence), average internal distance (to prefer tighter clusters),
and co-occurrence frequency with the LM source (to prefer more closely related terms). Formally, we
define the weight associated with a given cluster using the following equation:

w(C) = (1− IDIST (C)) ∗ (S2(C) + FREQ(C) ∗ (1 + S2(C)))

S2(C) =
max(SIZE(C)2, k)

k

where IDIST (C) represents the average vector distance between all pairs of terms in cluster C,
FREQ(C) represents the total co-occurrence frequency of the terms in C with the original LM,

5These dependency relation types come from the MaltParser.
6We empirically set k to 3.
7We estimate candidate imageability by combining the scores of the candidate’s most distributionally similar words for

which an imageability score is available in the MRC psycholinguistics database (Coltheart, 1981) using the ranked weighting
methodology described in Mohler et al. (2014).

8Note that filtering by conceptual domain relatedness is only necessary when mapping the induced concepts to a predefined
set of source concepts.
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SIZE(C) represents the number of unique terms in C, and k is a tuning parameter meant to favor
large clusters.9 Singleton clusters are discarded.

5.3 Assigning Domain Scores to Concept Candidates

We propose two methods for calculating domain scores for candidates – one which attempts to compare
candidate vectors to a source domain directly, and and another which attempts to compare them to indi-
vidual facets of the domain. These two methods rely on representing sources [CentS], or facets [CentF],
as centroids which take the average of the vectors of each the lexemes assigned to that source (or facet).
Our three vector spaces – DepVec, W2V, and LSA – along with our two methods for mapping terms to
domains – CentS and CentF – correspond to six approaches to modeling a CM domain in some vector
space.

In each case, the result for a given candidate is a distribution over all source domain scores. This
distribution is then normalized by subtracting the mean score between the candidate vector and any of
the source concepts. Formally, we define the normalized distribution for concept candidate x as:

S(x,Dy) = (1−DIST (x,Dy))−

∑
Dk∈D

(1−DIST (x,Dk))

|D|
where D is defined as the set of all known source domains and DIST (x, d) is the cosine distance from
x to a CM domain d in one of our vector spaces.

5.3.1 Assigning Domain Scores to Clusters
Within a given cluster (found as described in Section 5.2), the individual concept domain scores can then
be combined to produce cluster-level domain scores. For a given cluster Cx, the score associated with a
particular source domain Dy is defined as follows:

S(Cx, Dy) =
N∑

i=1

S(Cxi, Dy)
αi

where N represents the number of concepts in Cx with a positive score for the domain Dy, Cxi is the
i-th highest score associated with any candidate in the cluster, and α is a tuning parameter which bounds
the growth of the cluster-level score.10 Any cluster with a maximum domain score that does not exceed
a threshold is discarded as being weakly related to any CM source domain.

5.3.2 Assigning Domain Scores to the Linguistic Metaphor
We then sum the cluster-level source domain scores, scaling each by its associated cluster quality weight
w(c) as computed in Section 5.2. By scaling cluster domain scores in this way, we ensure that the most
pure and discriminating clusters contribute the most to the overall LM domain scores. The final result
measuring the association between the given LM and the source domain Dy is then defined as:

S(Dy) =
∑

Cx∈C

w(Cx) ∗ S(Cx, Dy)

Applied across all known domains, we therefore produce a ranked and scored list of CM source do-
mains (i.e., a mapping) that are associated with the given linguistic metaphor and can be used to drive
more robust interpretation of the metaphor.

6 Evaluation

We evaluate two aspects of our end-to-end CM recognition system. First, we analyze the impact of our
choice of vector space. Specifically, we compare the use of our DepVec space to link concept candidates

9In our experiments, k is set to 5.
10We have used a value of α = 2 which ensures that the result remains within the bounds [0.0,1.0].
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with source domains against two off-the-shelf vector space models – the continuous skip-gram model
[W2V] (Mikolov et al., 2013) 11 and latent semantic analysis [LSA] (Landauer and Dumais, 1997). Both
alternative models were trained over the same corpus as in our DepVec space using a predefined number
of dimensions (300 for W2V; 400 for LSA). Second, we have experimented with two different metrics for
calculating the distance between a vector and a source concept – the cosine distance to the source-level
centroid (CentS) and the cosine distance to the facet-level centroid (CentF).

Our evaluation dataset consists of a held out, unseen set of documents taken from a variety of news
articles, opinion pages, and blogs on the open web. These documents consist of 3 to 5 sentences each
and cover four of our focus languages.12 They were then annotated by two native-proficiency speakers in
the following way. For each LM, they were instructed to choose the most closely related source concept
from our list of 51 provided. Any source concepts selected by at least one annotator were considered
correct. Since our CM recognition system produces a ranked list of source concepts, we report both the
accuracy associated with our top-ranked concept and the accuracy of the system when allowed to select
two.

Cluster Linking
English Spanish Russian Farsi

Vector Space Distance Acc@1 Acc@2 Acc@1 Acc@2 Acc@1 Acc@2 Acc@1 Acc@2
DepVec CentS 28.0% 44.1% 33.3% 43.4% 24.4% 32.6% 16.5% 27.5%

CentF 25.8% 40.9% 33.3% 49.4% 25.6% 34.9% 26.4% 40.7%
LSA CentS 34.4% 45.2% 31.0% 41.4% 27.9% 41.9% 22.0% 27.5%

CentF 38.7% 54.9% 27.6% 46.0% 29.1% 47.7% 31.9% 44.0%
W2V CentS 24.7% 36.6% 42.5% 55.2% 31.4% 43.0% 25.3% 34.1%

CentF 28.0% 44.1% 46.0% 58.6% 34.9% 48.8% 35.2% 48.4%

Table 5: The accuracy of our conceptual interpretation system. We experiment with three vector spaces
(LSA, W2V, and DepVec) and two source concept centroid representations – source-level (CentS) and
facet-level (CentF).

These results indicate that the continuous skip-gram vector space [W2V] is well suited to the task of
cluster-level concept mapping, consistently and significantly outperforming both the LSA space and the
DepVec space in every language but English. We believe that this is a result of its probabilistic represen-
tation of local context which implicitly collects many of the same relations as the DepVec model while
incorporating the advantages associated with dimensionality reduction which has not been incorporated
into our DepVec model.13 We further observe an unmistakable dominance of the facet-level centroid
representation over the source-level representation. Based on these results, we believe that we have suc-
cessfully demonstrated the contribution of our system’s vector-space clustering component which groups
concept candidates at a facet-level granularity.

7 Conclusion

In this paper, we have presented a novel approach to the problem of multilingual conceptual metaphor
recognition which combines facet-based concept induction with a distributional vector space represen-
tation of metaphor. We have experimentally demonstrated the advantage of our fine-grained concept
induction approach within a variety of vector space models, including our novel DepVec space. Taken
together, we hypothesize that a facet-level conceptual model represented in a relational context vec-
tor space will serve as a reliable foundation enabling high-quality metaphoric interpretation in future
metaphor research. Future work includes expanding the set of concept candidates through higher-order
dependency contexts, improved clustering techniques, and evaluating the induced clusters directly.

11We make use of the implementation included as part of the gensim python package: http://radimrehurek.com/
gensim/

12This dataset consists of the following counts of documents: English (92), Spanish (86), Russian (85), Farsi (90).
13During our pilot experiments, we applied singular value decomposition (SVD) to the DepVec space without any significant

improvement to system performance.
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