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Abstract

We cast multi-sentence compression as a structured prediction problem. Related sentences are
represented by a word graph so that summaries constitute paths in the graph (Filippova, 2010).
We devise a parameterised shortest path algorithm that can be written as a generalised linear
model in a joint space of word graphs and compressions. We use a large-margin approach to
adapt parameterised edge weights to the data such that the shortest path is identical to the desired
summary. Decoding during training is performed in polynomial time using loss augmented infer-
ence. Empirically, we compare our approach to the state-of-the-art in graph-based multi-sentence
compression and observe significant improvements of about 7% in ROUGE F-measure and 8%
in BLEU score, respectively.

1 Introduction

Automatic text summarisation is one of oldest forms of natural language processing (Luhn, 1958; Bax-
endale, 1958). The goal is to extract the most important part of the content from either a single document
or a collection of documents (Mani, 2001; Roussinov and Chen, 2001; McKeown et al., 2005).

Frequently, the information of interest is contained in only a part of a sentence or may be distributed
across parts of several sentences. Identifying the content carrying part(s) constitutes an essential tech-
nique not only for single- and multi-document extractive summarisation but also text simplification in
general. Generating a simplified version of a text traditionally has many applications in question answer-
ing (Hermjakob et al., 2002) and speech synthesis (Kaji et al., 2004). Due to limited display sizes of
mobile devices, recent applications also deal with summarising/simplifying news articles, social media,
emails, or websites (Corston-Oliver, 2001).

Multi-sentence compression (MSC) unifies many of the mentioned characteristics and challenges and
can be seen as a key to text summarisation and simplification (Jing and McKeown, 2000). The task in
multi-sentence compression is to map a collection of related sentences to a grammatical short sentence
that preserves the most important part of the content. Sentence compression methods have been devised
using manually crafted rules (Dorr et al., 2003), language models (Hori et al., 2003; Clarke and Lapata,
2008), or syntactical representations (Barzilay and Lee, 2003; Galley and McKeown, 2007; Filippova and
Strube, 2008). Filippova (2010) introduces an elegant graph-based approach to multi-sentence compres-
sion that simply relies on the words of the sentences and efficient dynamic programming. Her approach
implements the observation that the frequency of words influences their appearance in human summaries
(Nenkova et al., 2006). Although being an intuitive rule that does work well in practice, frequency-based
strategies often remain heuristic.

In this paper we propose a structured learning-based approach to multi-sentence compression. In
analogy to Filippova (2010), related sentences are represented by a word graph (the input). Words are
identified with vertices and directed edges connect adjacent words in at least one sentence, so that the
summarising sentence (the output) is contained as a path in the graph. Generally, learning mappings
between complex structured and interdependent inputs and outputs challenges the standard model of
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learning a mapping from independently drawn instances to a small set of labels. To capture the involved
dependencies we represent input graphs G and output paths p jointly by a (possibly rich) feature repre-
sentation Φ(G, p). The goal is to find a linear function f(G, p) = λ>Φ(G, p) in joint space such that

p = argmin
p̃

f(G, p̃) (1)

is the desired summary for the collection G. Our approach can therefore be seen as translating the work
by Filippova (2010) into the structured prediction framework (Tsochantaridis et al., 2005; Taskar et al.,
2004). Instead of applying heuristics, we adapt the decoding machinery to the data by parameterising
a shortest path algorithm. The latter admits a representation as a generalised linear model in joint in-
put output space. We devise a structural support vector machine (SVM) (Tsochantaridis et al., 2005)
to learn the shortest path in possibly high dimensional joint feature spaces and propose a generalised,
loss-augmented decoding algorithm that is solved exactly by an integer linear program in polynomial
time. Empirically, we evaluate the structural support vector machine on a real world news headline
summarisation task. Our experiments show that a very rudimentary set of five features already suffices
to significantly improve the state-of-the-art in graph-based multi-sentence compression. We observe an
increase of 7% in in ROUGE F-measure and 8% in BLEU score, respectively.

The remainder of the paper is organised as follows. Section 2 reviews related work and Section 3
introduces word graphs and shortest paths. Our technical contribution is presented in Section 4. We
report on empirical results in Section 5 and Section 6 concludes.

2 Related Work

The goal of automatic text summarisation is to produce a summary of a given text (or text collection)
that preserves the most important information (Luhn, 1958; Edmundson, 1969). Summarisation systems
usually rely on clues or features that help to identify key elements such as the main topic of a document
(Salton et al., 1994). Such features may be extracted from sentences (e.g., the length of a sentence, its
position in the text), words (e.g., frequency of a word, relative position in sentence) as well as from style
and structure elements (Kupiec et al., 1995; Teufel and Moens, 1997; Marcu, 1997).

A special case of text summarisation is sentence compression; given a sentence, the task is to produce
a summary of the input that preserves the most important information and is grammatically correct (Jing,
2000). Sentence compression is thus relevant for many NLP tasks including question answering, machine
translation, text simplification, speech synthesis applications and multi-sentence compression (e.g., Lin
(2003)).

Multi-sentence compression extends sentence compression to collections of related sentences that are
to be summarised in a single output sentence. Traditionally, contributions to multi-sentence compression
exploit linguistic properties based on lexical information and syntactic dependencies. Dorr et al. (2003)
for instance propose a headline generation system based on linguistically-motivated, hand-crafted heuris-
tics. Barzilay and Lee (2003) study sentence compression with dependency trees. The aligned trees are
represented by a lattice from which a summary is extracted by an entropy-based criterion over all possi-
ble traversals of the lattice. Similarly, Barzilay and McKeown (2005) combine syntactic trees of similar
sentences by a multi-sequence alignment candidate selection and summary generation. Wan (2007) de-
ploys a language model in combination with maximum spanning trees to rank candidate aggregations
satisfying grammatical constraints. Hori et al. (2003) propose a statistical model for automatic speech
summarisation without using parallel data or syntactic information. Instead they focus on language mod-
els to provide a scoring function and use dynamic programming for searching the compression with the
highest score. Clarke and Lapata (2008) cast sentence compression as an optimisation problem. They
use linguistically motivated constraints and integer linear programming to infer globally optimal com-
pressions.

Recently, graph-based approaches to multi-sentence compression have been proposed. The underly-
ing idea is that syntax may help to find important content. Thus, instead of using hand-crafted rules,
parsers, or language models, a simple and robust graph-based method can be used to generate reason-
able summaries. Graph-based multi-sentence compression approaches identify the summary with the
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shortest path in word graphs (Filippova, 2010). Shortest paths of unweighted word graphs however do
not necessarily lead to satisfying summaries. As a remedy, Filippova (2010) introduces heuristic edge
weights based on normalised frequencies of the connected words. Boudin and Morin (2013) propose an
additional re-ranking scheme to identify summarisations that contain key phrases. The underlying idea
is that particular key phrases give rise to certain topics and thus lead to more informative aggregations.

In this paper, we parameterise the graph-based framework by Filippova (2010) such that the short-
est path algorithm is adapted to labeled data at hand. Adapting the dynamic programming to the data
renders the use of heuristics unnecessary. Instead, word graphs and compressions are embedded in a
(possibly high-dimensional) joint feature space where a generalised linear scoring function learns to sep-
arate between compressions of different quality. We develop a generalised, loss-augmented shortest path
algorithm that is solved exactly by a (relaxed) integer linear program in polynomial time.

3 Preliminaries

3.1 Word Graphs
In a nutshell, word graphs represent collections of sentences efficiently in a graph by mapping identical
words to a single vertex while the graph structure preserves the local neighbourhood of words.

From a collection of related sentences a word graph is constructed as follows: Initially, every sentence
is augmented by a preceding start token 〈S〉 and a terminal end symbol 〈E〉 so that beginning and end
of the sentences are preserved in the final graph. Starting with the empty graph, sentences are added
one after another. The first word of the first sentence is the auxiliary 〈S〉 that is converted into the first
vertex v〈S〉. The second word of the first sentence also becomes a vertex v and the two vertices are
connected with a directed edge v〈S〉 → v. The procedure continues with the third word and so on until
the end symbol 〈E〉 is reached. The other sentences are incorporated analogously. A special case arises
if the graph already contains a vertex v that is identical to the word that is just to be added. Instead
of adding a redundant vertex, the already existing vertex v is used and, if v 6= v〈S〉, connected to the
respective predecessor as before. In that case, the vertex v has an in-degree of (at least) two and is used
as the predecessor for the next word to be added. The procedure continues until all n sentences are
incorporated in the graph.

Note that merging nodes to the same vertex requires an appropriate preprocessing of the sentences.
Simple lower- or upper-case representations of words often suffice but more complex preprocessing
schemas are also possible such as merging vertices carrying synonyms or words possessing small Word-
Net distances (Miller, 1995; Fellbaum, 1998). As word graphs are a condensed representation of the
input sentences, word graphs are also known as compression graphs. The described construction gives
us a directed graph G = (V, E), where V is the set of unique words in the sentences and E the set of
neighbouring words. An exemplary word graph is shown in Figure 1.

3.2 Shortest Path Algorithms
Given a directed weighted graph G = (V, E , cost) where V is the set of vertices and E ⊆ V × V the set
of edges. The function cost : (v, v′) 7→ <+ assigns positive weights to every edge (v, v′) ∈ E . A path
p from a vertex vs ∈ V to a vertex ve ∈ V is a sequence of edges connecting vertices of G. We write
P(vs, ve) to denote the set of all possible paths starting in vs and terminating in ve. The cost of a path is
given by the sum of the weights of the edges on the path.

The shortest path from a start vertex vs ∈ V to an end vertex ve ∈ V is defined as the path in G from
vs to ve with the lowest costs. Introducing auxiliary binary variables p(v,v′) indicating whether an edge
(v, v′) ∈ E lies on the path (pv,v′ = 1) or not (pv,v′ = 0) the shortest path can be computed by the
following optimisation problem

p∗ = argmin
p

∑
(v,v′)∈E

pv,v′ cost(v, v′) s.t. p ∈ P(vs, ve). (2)

There exist many algorithms for computing shortest paths efficiently (Bellman, 1958; Ford, 1956; Dijk-
stra, 1959). Usually, these methods are based on dynamic programming or (relaxed) integer program-
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Figure 1: The word graph constructed from the sentences: ”Yahoo in rumoured $1.1bn bid to buy white-
hot Tumblr”, ”Yahoo buys Tumblr as David Karp stays as CEO”, ”Yahoo to buy Tumblr for $1.1bn”.
The shortest path is highlighted.

ming, where an approximation of the exact quantity is iteratively updated until it converges to the correct
solution, which is achieved in polynomial time. A prominent algorithm for computing the k-shortest
paths is Yen’s algorithm (Yen, 1971). Intuitively, the approach recursively computes the second best
solution by considering deviations from the shortest path, the third best solution from the previous two
solutions, and so on. Figure 1 visualises the shortest path for the displayed compression graph.

4 Learning to Summarise Related Sentences

4.1 Problem Setting

Given a word graph G, we aim to find a ranking function f(G, p) that assigns the lowest score to the

best summary p∗, that is, p∗ != argminp f(G, p). Note that f is defined jointly on G and p to allow for
exploiting dependencies between word graph and summary. Our approach can thus be seen as an instance
of structured prediction models. The quality of f is measured by the Hamming loss ∆, ∆(p∗, p̂) =
1
2

∑
(vi,vj)∈V [[p∗ij 6= p̂ij ]], that details differences between the best summary p∗ and the prediction p̂,

where [[z]] is the indicator function returning one if z is true and zero otherwise. The generalisation error
is given by

R[f ] =
∫

∆

(
p, argmin

p̃
f(G, p̃)

)
dP (G, p)

and approximated by its empirical counterpart

R̂[f ] =
m∑
i=1

∆

(
pi, argmin

p̃
f(Gi, p̃)

)
(3)

on a finite m-sample of pairs {(Gi, pi)}mi=1 where Gi is a word graph and pi the best summarising sen-
tence. However, minimising the empirical risk directly leads to an ill-posed optimisation problem as
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there generally exist many indistinguishable but equally well solutions realising an empirical loss of
zero. We thus focus on the minimisation of the regularised empirical risk

R̂reg[f ] = Ω(f) +
m∑
i=1

∆

(
pi, argmin

p̃
f(Gi, p̃)

)
.

The additive regularisation Ω(f) acts like a prior on f , e.g. to enforce smooth solutions. In the remainder
we use Ω(f) = ‖f‖2.

4.2 Representation
The idea of our approach is as follows: We adapt the cost function of the graph to the training sample such
that the shortest path of the compression graph is identical to the desired summary. Recall the general
form of the cost function of Section 3.2. Instead of a constant or hand-crafted function (Filippova, 2010),
we deploy a linear mixture of features φi, parameterised by λ,

cost(v, v′) =
∑

i
λiφi(v, v′) = λ>φ(v, v′).

Features φi(v, v′) are drawn from adjacent vertices v, v′ in the word graph to capture local dependencies
of the connecting edge. Examples for feature functions are frequency-based counts or indicators such as
POS-transitions of the form φ234(v, v′) = [[v is a noun∧v′ is a verb]]. Note that complex features using
the context of the edge are straight forward by extending the feature representation to the input graph
φ(v, v′,G). The final feature vector is obtained by stacking-up all feature functions, that is, φ(v, v′) =
(. . . , φi(v, v′), . . .)>.

Using the parameterised costs in the computation of the shortest path in Equation (2) yields the fol-
lowing objective function (ignoring the constraints for a moment) that can be rewritten as a generalised
linear model in joint input output space

∑
(vi,vj)∈V

pij λ
>φ(vi, vj) = λ>

 ∑
(vi,vj)∈V

pijφ(vi, vj)


︸ ︷︷ ︸

≡Φ(G,p)

= λ>Φ(G, p) = f(G, p)

where the joint feature representation is given by

Φ(G, p) ≡
 ∑

(vi,vj)∈V
pijφ(vi, vj)

 .

Decoding the shortest path p̂ for a fixed parameter vector λ can now be computed by

p̂ = argmin
p

f(G, p) s.t. p ∈ P(〈S〉, 〈E〉)

using standard shortest path algorithms (Yen, 1971). In addition, reformulating the objective as a gener-
alised linear model allows to adapt the parameters λ to the data to identify shortest paths with summaries.

4.3 Optimisation
Recall that the goal of the optimisation is to find the ranking function f(G, p) that takes the smallest value
for the best summary. That is, for the i-th training instance (Gi, pi), we aim at fulfilling the constraints

λ>Φ(Gi, p)− λ>Φ(Gi, pi) > 0 (4)

for all p ∈ P(〈S〉, 〈E〉)\pi. We extend the constraints in Equation (4) by a term that induces a margin
between the best path pi and all alternative paths. A common technique is called margin-rescaling and
implies to scale the margin with the actual loss that is induced by decoding p̃ instead of pi. Thus,
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rescaling the margin by the loss implements the intuition that the confidence of rejecting a mistaken
output is proportional to its error. In the context of learning shortest paths, margin-rescaling gives us the
following constraints

λ>Φ(Gi, p̃)− λ>Φ(Gi, pi) > ∆(pi, p̃)− ξi

for all p ∈ P(〈S〉, 〈E〉)\pi. The non-negative ξi ≥ 0 is a slack-variable that allows point-wise relaxations
of the margin. Solving the equation for ξi shows that margin rescaling also effects the hinge loss that
now augments the structural loss ∆,

`∆(Gi, pi, f) = max
[
min
p̃

[∆(pi, p̃)− f(Gi, p̃) + f(Gi, pi)]
]
.

The effective hinge loss upper bounds the structural loss ∆ for every pair (Gi, pi) and trivially also

m∑
i=1

`∆(Gi, pi, f) ≥
m∑
i=1

∆(pi, argmin
p̃

f(Gi, p̃))

holds. A max-margin approach to learning shortest paths therefore leads to the following optimisation
problem that is also known as structural support vector machine (Tsochantaridis et al., 2005)

min
λ,ξ≥0

‖λ‖2 + C
m∑
i=1

ξi s.t. ∀i ∀p̃ ∈ P\pi : f(p̃)− f(pi) > ∆(pi, p̃)− ξi. (5)

The parameter C trades-off margin maximisation and error minimisation and needs to be adjusted by
the user. The above optimisation problem can be solved efficiently by cutting plane methods. The idea
behind cutting planes is to instantiate only a minimal subset of the exponentially many constraints. That
is, for the i-th training example, we decode the shortest path p̂ given our current model and consider two
cases: (i) For p̂ 6= pi the prediction is erroneous and p̂ is called the most strongly violated constraint
as it realises the smallest function value and f(Gi, p̂) < f(Gi, p) holds for all p 6= p̂. Consequentially,
the respective constraint of the above optimisation problem is instantiated and influences the subsequent
iterations. (ii) If instead the prediction is correct, that is p̂ = pi, we need to verify that the runner-up p̂(2)

fulfils the margin constraint. If so, we proceed with the next training example, otherwise we instantiate
the corresponding constraint, analogously to case (i). Luckily, we do not need to rely on an expensive
two-best shortest path algorithm but can compute the most strongly violated constraint directly via the
cost function

Q(p̃) = ∆(pi, p̃)− λ>Φ(Gi, p̃) + λ>Φ(Gi, pi) (6)

that has to be maximised wrt p̃. The following proposition shows that we can equivalently solve a shortest
path problem for finding the maximiser of Q.

Proposition 1. The argmax p̃ of Q in Equation (6) can be computed by minimising a shortest path
problem with cost function cost(vi, vj) = pij + λ>φ(vi, vj).

Proof. We treat the ground truth paths p as graphs and write V(p) for the set of nodes on the path and
E(p) to denote the set of edges that lie on the path. If, for instance, an element of the binary adjacency
matrix representing path p equals one, e.g., pij = 1, we write pi, pj ∈ V(p) and (pi, pj) ∈ E(p). First,
note that the Hamming loss can be rewritten as

∆(p, p̃) =
∑

(pi,pj)∈E(p)

(1− pij p̃ij) .
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We have

p̂ = argmax
p̃

∆(p, p̃) + λ>Φ(Gi, p)− λ>Φ(Gi, p̃)

= argmax
p̃

∆(p, p̃)− λ>Φ(Gi, p̃)

= argmax
p̃

∑
(pi,pj)∈E(p)

(1− pij p̃ij)− λ>Φ(Gi, p̃)

= argmax
p̃
−
∑

(pi,pj)∈E(p)

pij p̃ij − λ>Φ(Gi, p̃)

= argmin
p̃

∑
(pi,pj)∈E(p)

pij p̃ij + λ>Φ(Gi, p̃)

= argmin
p̃

∑
(pi,pj)∈E(p)

pij p̃ij + λ>
[∑

(xi,xj)∈E(G)

p̃ijφ(vi, vj)
]

= argmin
p̃

∑
(vi,vj)∈E(G)

pij p̃ij + λ>
[∑

(xi,xj)∈E(G)

p̃ijφ(vi, vj)
]

= argmin
p̃

∑
(vi,vj)∈E(G)

[
pij + λ>φ(vi, vj)

]
p̃ij

The output p̂ is the shortest path with costs given by pij + λ>φ(vi, vj).

Using this result, the following lemma shows that we can compute the most strongly violated constraint
directly by a linear program.
Lemma 1. The maximizer p̃ of function Q in Equation (6) and thus the shortest path of Proposition 1
can be computed in polynomial time by the following linear program

min
p̃

∑
ij

(
pij + λ>φ(vi, vj)

)
p̃ij

subject to the constraints

∀k ∈ V(G)\{〈S〉, 〈E〉} :
∑
j

p̃kj −
∑
i

p̃ik ≤ 0 ∧ −
∑
j

p̃kj +
∑
i

p̃ik ≤ 0

∑
j

p̃〈S〉,j −
∑
i

p̃i,〈S〉 ≤ 1 ∧ −
∑
j

p̃〈S〉,j +
∑
i

p̃i,〈S〉 ≤ −1

∑
i

p̃i,〈E〉 −
∑
j

p̃〈E〉,j ≤ 1 ∧ −
∑
i

p̃i,〈E〉 +
∑
j

p̃〈E〉,j ≤ −1

∀(i, j) : p̃ij ≤ G(i,j) ∧ ∀(i, j) : p̃ij ∈ {0, 1}.
Proof. For lack of space, we only motivate the constraints. The first line of constraints guarantees that
every inner node of the path has exactly as many incoming as outgoing edges, the second line forces the
path to start in v〈S〉 and, analogously, the third line ensures that it terminates in v〈E〉. The last line of
constraints requires the edges of the path p̃ to adhere to existing paths of G.

4.4 Parallelisation
Using the result by Zinkevich et al. (2011) the proposed approach can easily be distributed on several
machines. Note that cutting planes treat one input (G, p) at a time. Thus, several models can be trained
independently in parallel on disjoint subsets of the data. A subsequent merging process aggregates the
models where each models impact is proportional to the amount of data it has been trained on. Note that
the described parallelisation can easily be realised by the MapReduce/Hadoop framework. Processing
training instances and updating local models is performed by (one or more) mappers while the merge
operation is carried out by a reduce task.
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Table 1: Left: Collection of related sentences. Right: Candidate compressions and number of votes.

related sentences
White House: Hong Kong had ’plenty of time’ to stop Snowden live coverage
Edward Snowden leaves reporters chasing shadows around an airport
US warns Moscow not to let Edward Snowden escape Russia
WikiLeaks forced to defend Ecuador as Edward Snowden seeks asylum
Snowden is ’not on plane’ to Cuba

summary #
snowden seeks asylum 5
snowden live coverage 5
snowden escape russia 1
edward snowden seeks asylum 3
wikileaks forced to cuba 1

5 Empirical Results

5.1 Data Preparation

We crawl RSS feeds of 6 major news sites and harvest news headlines of a predefined set of categories
including sports, technology, and business. The headlines are processed automatically by a spectral clus-
tering. The data is thus transformed into a fully connected graph where vertices correspond to headlines
and edges are weighted by the number of shared non-stopwords. The clustering is performed for each
category on a daily basis. Resulting clusters are headlines that belong (with high probability) to the same
event and form our related input sentences. Groups with less than five sentences are discarded.

To identify the best summaries, we conduct a crowd sourcing experiment on Crowdflower1. Every
annotator is given a group of related sentences together with 10 possible summaries generated by a 10-
best Yen’s algorithm (Yen, 1971). The task of the annotator is to pick the best summary or mark the
collection as inappropriate. Each collection is labeled by at least 10 annotators. The group is discarded
if the majority of the annotators mark the group as inappropriate. Otherwise, the three most frequent
summaries are extracted, ties are broken by the authors. The most frequent summary is used as the
ground-truth annotation in the learning phase, the other two are used additionally in the evaluation. The
described process leaves us with 1024 sentences that are divided into 164 annotated groups of related
sentences. Table 1 shows an exemplary collection of related sentences (left) and a selection of summaries
together with the number of votes from the annotators. The overall distribution of votes is displayed in
Figure 2. The figure shows the mean value per rank of all 164 normalised and sorted histograms. The
best summary receives on average 8% more votes than the runner-up (not shown).

Figure 2: Distribution of annotations.

5.2 Baselines and Features

We compare our learning approach to graph-based sentence compression techniques proposed by Filip-
pova (2010), Boudin and Morin (2013). The two baselines construct word graphs as presented in Section
3.1 and output the weighted shortest path. Filippova (2010) uses a frequency-based heuristic for edges
weights and Boudin and Morin incorporate a keyphrase detection framework to re-rank summaries ac-
cording to the number and importance of keyphrases found. In addition, we also include an unweighted
shortest path strategy which is a straight forward application of Yen’s algorithm (Yen, 1971) and trivially
returns the shortest path in terms of the number of edges. Additional straw men are a random (Random)
input sentence and the shortest input sentence (Shortest).

In our learning-based approach, every edge between vertices v and v′ is associated with a feature
vector. Let w = #(v) the frequency of word v, w′ the analogue for v′, e = #(v, v′) the fre-
quency of the edge, and n = |V| the number of vertices in the graph. The feature vector φ(v, v′) of

1http://crowdflower.com
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Table 2: ROUGE F-measure scores

training set size
22 35 48 61 74 87 100

R1 Random 46.72 46.82 46.41 46.20 46.39 46.53 46.88
Shortest 45.93 45.77 46.39 46.56 47.01 47.59 48.04
Yen 45.14 44.47 45.12 45.13 45.63 46.14 46.39
Filippova 52.70 52.94 52.16 52.02 52.22 52.45 51.81
Boudin 52.72 53.12 53.43 53.52 53.10 52.81 52.35
SVM 48.39 50.30 55.09 54.59 57.39 54.89 57.66

R2 Random 30.43 30.63 30.56 30.31 30.38 30.64 31.09
Shortest 27.65 27.43 27.90 27.93 28.64 29.47 30.10
Yen 31.38 30.82 31.16 31.40 31.90 32.30 32.56
Filippova 36.12 36.52 35.56 35.49 35.75 35.98 35.64
Boudin 36.71 37.01 37.79 37.65 36.97 36.75 36.31
SVM 33.64 35.40 40.46 40.68 43.44 40.45 43.58

RW1.2 Random 35.91 35.97 35.74 35.58 35.80 35.93 36.07
Shortest 34.47 34.29 34.77 34.85 35.32 35.9 36.16
Yen 34.85 34.26 34.74 34.83 35.22 35.62 35.77
Filippova 40.30 40.53 39.88 39.70 39.94 40.12 39.56
Boudin 40.79 40.99 41.37 41.31 40.92 40.83 40.36
SVM 37.94 39.06 42.61 42.33 44.63 42.90 45.00

the edge v → v′ consists of the normalised joint frequency φ1(w,w′) = e
n , the maximal word fre-

quency φ2(w,w′) = max
{
w
n ,

w′
n

}
, the lexical relevance φ3(w,w′) = 2

n
w·w′
w+w′ , the normalised PMI

φ4(w,w′) = (log e
w·w′ )/ − log e

n (Bouma, 2009), and φ5 captures the average location of the phrase in
the input sentences (Turney, 2000),

φ5(w, w̃) =


1.0 : [0− 10]%
0.4 : [10− 30]%
0.8 : [30− 60]%
0.6 : [60− 80]%
1.0 : [80− 100]%.

Note that φi ∈ [0, 1] holds for 1 ≤ i ≤ 5. Also note that φ denotes a rudimentary set of features.
Elaborate representations could for instance also contain POS-tags or named entities.

5.3 Experimental Setup and Results
For the news headline experiment, we draw m ∈ {22, 35, 48, 61, 74, 87, 100} training instances without
replacement at random from the collected data. The remaining instances are split randomly into equally
sized holdout and test sets. We perform model selection for adjusting the trade-off parameter of the
support vector machine on the interval C ∈ [2−10, 212]. We report average ROUGE F-measures (Lin,
2004) and BLEU scores (Papineni et al., 2012) over 10 repetitions with distinct training, holdout, and
test sets. In each repetition, all algorithms are trained and/or evaluated on identical data splits.

ROUGE measures the concordance of system and human generated summaries by determining n-
gram, word sequence, and word pair matches. We use unigrams (R1), bigrams (R2), and the weighted
longest common subsequence (RW1.2) to evaluate compressions. Note that R1 has been found to corre-
late well with human evaluations based on various statistical metrics (Lin and Hovy, 2003). Moreover,
R1 and R2 emulate human pyramid and responsiveness scores (Owczarzak et al., 2012).

Table 2 shows the resulting ROUGE scores for the news headline experiment. Significant results are
marked in bold face according to a paired t-test using a significance level of 5%. For small training sets,
the structural support vector machine performs only slightly better than the unweighted application of
Yen’s algorithm and is clearly outperformed by the unsupervised baselines. However, the SVM improves
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Table 3: BLEU scores

training set size
22 35 48 61 74 87 100

B1 Random 38.56 38.40 36.49 36.77 36.00 36.87 37.35
Shortest 37.45 38.37 38.46 37.25 37.28 37.17 36.64
Yen 29.46 28.3 29.39 29.98 29.99 31.20 30.64
Filippova 44.26 43.29 44.66 44.57 45.21 43.10 43.52
Boudin 44.00 42.54 44.75 44.39 44.80 43.22 43.96
SVM 39.60 41.96 48.44 47.10 50.20 46.90 50.39

B2 Random 34.85 34.80 33.12 33.48 32.65 33.77 34.12
Shortest 33.34 34.27 34.54 33.39 33.39 33.43 33.45
Yen 28.51 27.27 28.34 28.74 29.06 30.05 29.73
Filippova 39.92 39.36 40.05 40.27 41.14 39.26 39.60
Boudin 39.43 38.45 39.99 40.02 40.52 39.20 39.84
SVM 36.37 38.63 45.31 44.15 47.40 43.75 47.44

B3 Random 35.91 35.97 35.74 35.58 35.80 35.93 36.07
Shortest 34.47 34.29 34.77 34.85 35.32 35.90 36.16
Yen 27.85 26.64 27.61 27.84 28.38 29.34 28.93
Filippova 36.07 35.88 35.86 36.42 37.37 35.55 35.97
Boudin 35.05 34.39 35.40 35.76 36.17 34.93 35.85
SVM 33.26 35.39 42.31 41.05 44.54 40.52 44.51

continuously with increasing training set sizes and outperforms the baselines significantly for more than
50 training examples. The unsupervised baselines cannot utilise the valuable annotations of the data and
remain constant. For 100 training instances, we observe performance improvements of about 5-7% for
all three ROUGE F-measures.

The BLEU metric computes scores for individual segments, then averages these scores over the whole
corpus for a final score. For our experiments we use BLEU-1, BLEU-2 and BLEU-3 to evaluate com-
pressions. Table 3 shows the corresponding results, significant results are again marked in bold face
according to a paired t-test with a significance level of 5%. The table draws a similar picture than the
previous one. The SVM continuously improves the performance with increasing training set sizes and
beats the baselines again at about 50 training examples significantly. For 100 training instances, all three
BLEU scores are improved by about 7-8%, respectively.

5.4 Analysis

The Pearson correlation between BLEU scores per instance and the number of vertices is -0.1886. The
negative correlation implies that summarising larger word-graphs is more challenging. A negative corre-
lation of -0.1267 is also observed for the lexical diversity of the collection; diverse groups of sentences
are thus more difficult to summarise. A possible remedy could be features that are not frequency-based,
such as POS-transitions. By contrast, the density of the graph given by |E|/|V|(|V| − 1) shows a positive
correlation of 0.1851. The more dense a graph, the more edges interconnect vertices and there exist more
paths. These paths however frequently pass through the same vertices and as a consequence the lexical
diversity is low. A positive correlation of graph density is therefore closely connected to a negative
correlation of lexical diversity.

6 Conclusion

We proposed to learn shortest paths in word graphs for multi-sentence compression. A shortest path
algorithm is parameterised and adapted to labeled data at hand using the structured prediction frame-
work. Word graphs and summaries are embedded in a joint feature space where a generalised linear
scoring function learns to separate between compressions of different quality. Decoding is performed
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by a generalised, loss-augmented shortest path algorithm that can be solved by an integer linear pro-
gram in polynomial time. Empirically, we observe that a very rudimentary set of five features suffices to
significantly improve the state-of-the-art in graph-based multi-sentence compression.
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