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Abstract 

Active learning has proved effective in many fields of natural language processing. However, 

in the field of spoken language understanding which is always dealing with noise, no complete 

comparison between different active learning methods has been done. This paper compares the 

best known active learning methods in noisy conditions for spoken language understanding. 

Additionally a new method based on Fisher information named as Weighted Gradient 

Uncertainty (WGU) is proposed. Furthermore, Strict Local Density (SLD) method is proposed 

based on a new concept of local density and a new technique of utilizing information density 

measures. Results demonstrate that both proposed methods outperform the best performance 

of the previous methods in noisy and noise-free conditions with SLD being superior to WGU 

slightly. 

1 Introduction 

Spoken language understanding (SLU) is currently an emerging field in the intersection of speech 

processing and natural language processing (Tur and De Mori, 2011). The task of an SLU system is to 

extract meaning from speech utterances. Example real-world applications are AT&T's How May I Help 

You? and BBN's Call Director. In the field of SLU, as well as other fields of natural language processing, 

gathering data is fairly cheap but labeling is quite expensive and time-consuming. Thus, active learning 

methods apply very well and can greatly reduce costs. This article evaluates different techniques of 

active learning in the context of statistical SLU to reduce the labeling effort as much as possible. Also, 

SLU deals with the most amount of noise, in comparison with other fields of NLP, making robustness 

one of its most important issues (Tur and De Mori, 2011). Therefore, in this article noisy conditions of 

SLU are explored too. In this paper, we concentrate on statistical approaches for modeling the SLU 

system. Specifically conditional random fields (Lafferty et al., 2001) are used with a flat semantic frame 

to represent meaning and to model the SLU system. 

While there have been a couple of studies on active learning in the context of SLU, they have mostly 

used only methods in the frameworks of uncertainty sampling (Tur et al., 2003; Jars and Panaget, 2008) 

and query-by-committee (Gotab et al., 2009). In addition, noisy conditions which are an important aspect 

of SLU have not been addressed thoroughly. 

In this paper, performance of various known active learning methods namely uncertainty sampling, 

query-by-committee, Fisher information ratio (Settles and Craven, 2008) and instability sampling (Zhu 
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and Ma, 2012) are examined and analyzed in noise-free and noisy conditions of SLU. Also a new method 

for measuring informativeness of instances based on the Fisher information framework is developed and 

evaluated along with other methods. Besides, to deal with noisy conditions, the new concept of local 

density and a new technique to utilize density measures are introduced and described. 

The rest of this paper is organized as follows: Section 2 briefly describes CRFs, pool-based active 

learning framework, and selected active learning methods applicable to CRFs. Section 3 describes the 

first proposed method: Weighted Gradient Uncertainty. Section 4 introduces the local density concept, 

describes its motives and the proposed method of SLD is described. In Section 5, the noise model is 

described and experiments are performed in both noisy and noise-free conditions. Finally in Section 6 

conclusions are derived. 

2 Active Learning and CRFs 

CRFs (Lafferty et al., 2001) are statistical graphical models which have demonstrated state-of-the-art 

accuracy in many fields as well as in SLU. A linear-chain CRF with parameter vector 𝜃, defines the 

probability of �⃗� being the true label sequence for observation sequence �⃗� (with length T) as: 

𝑃 (�⃗�|�⃗�; �⃗�) =  
1

𝑍�⃗⃗⃗�(�⃗�)
 ∙ exp (∑∑𝜃𝑖𝑓𝑖(𝑦𝑗−1, 𝑦𝑗 , �⃗�, 𝑗)

𝐾

𝑖=1

𝑇

𝑗=1

). (1) 

𝑍
�⃗⃗⃗�
(�⃗�) is the normalization factor and ensures that sum of 𝑃 (�⃗�|�⃗�; 𝜃) over all possible labelings equals 

1. There are K feature functions 𝑓𝑘(𝑦𝑗−1, 𝑦𝑗, �⃗�, 𝑗) in a linear-chain CRF along with their weights 𝜃𝑘. 

Each feature 𝑓𝑘, is a function of the whole observation sequence, the position of current observation and 

the current and previous labels. Training is the process of finding the optimum weight vector 𝜃 to 

maximize the conditional log-likelihood of training instances in the labeled data set ℒ: 

ℓ(ℒ; 𝜃) =  ∑ log𝑃(�⃗�|�⃗�; 𝜃)

(𝑥,�⃗⃗�)𝜖ℒ

−∑
𝜃𝑘
2

𝜎2

𝐾

𝑘=1

. (2) 

The second term is a regularization penalty to prevent over-fitting. After training, the labels can be 

predicted using the Viterbi algorithm. 

  

Figure 1. Pool-based active learning (Settles and Craven, 2008). 

 

The focus of this paper is on pool-based active learning in which a learner should select most 

informative instances for labeling from a pool of unlabeled ones. We adopt the same notation used by 

Settles and Craven (2008) for the generic pool-based algorithm, sketched in Figure 1. Query strategy 

Given:   Labeled set ℒ, unlabeled pool 𝒰, query 
startegy 𝜙(∙), query batch size ℬ 

repeat 

       // learn a model using the current ℒ 
     𝜃 = 𝑡𝑟𝑎𝑖𝑛(ℒ);  
     for b = 1 to ℬ do 
 // query the most informative instance 
 𝐱𝑏

∗ = argmax
𝑥𝜖𝒰

𝜙(𝒙) ; 

 // move the labeled query from 𝒰 to ℒ 
 ℒ = ℒ ∪ 〈𝐱𝑏

∗ , 𝑙𝑎𝑏𝑒𝑙(𝐱𝑏
∗ )〉 ; 

 𝒰 =  𝒰 − 𝐱𝑏
∗  ; 

      end 

until some stopping criterion; 
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𝜙(∙) is a function which evaluates how informative an unlabeled instance is. Most methods of active 

learning are a definition for this function. In the following subsections the best known active learning 

methods are briefly described. 

2.1 Uncertainty Sampling 

In this very common framework the learner queries the instance that it is most uncertain how to label. 

Two methods in this framework proved effective according to Settles and Craven (2008) which are 

presented here. First is the least confident (LC) method: 

𝜙𝐿𝐶(�⃗�) =  1 − 𝑃(�⃗�∗|�⃗�; 𝜃), (3) 

where �⃗�∗ is the most likely label sequence. Second query strategy is the sequence entropy (SE) method 

which measures informativeness of an instance based on entropy in different labelings: 

𝜙𝑆𝐸(�⃗�) =  −∑ 𝑃(�⃗�|�⃗�; 𝜃)�⃗⃗�𝜖𝒴 log𝑃(�⃗�|�⃗�; 𝜃),  (4) 

where 𝒴 is the set of all possible labelings for �⃗�. 

2.2 Query-By-Committee 

Query-by-committee (QBC) is another well-studied and common framework for active learning. There 

are many approaches in this framework, but we use the approach suggested by Settles and Craven (2008) 

which has performed best with CRFs: in each round of active learning, ℒ is sampled |ℒ| times (with 

replacement) to create a unique modified labeled set ℒ
(𝑐)

. This is done C times to create C unique labeled 

sets. Then a committee of C models is trained: Each model 𝜃(𝑐) is trained using its corresponding labeled 

set ℒ
(𝑐)

. Then the disagreement among the committee members about labeling an instance is measured 

as its informativeness: 

𝜙𝑄𝐵𝐶(�⃗�) =  − ∑ 𝑃(�⃗�|�⃗�; 𝐶)

�⃗⃗�𝜖𝒩𝐶

𝑙𝑜𝑔 𝑃(�⃗�|�⃗�; 𝐶). (5) 

In this equation, 𝒩𝐶 is the union of N-best labelings of all models in the committee, and 𝑃(�⃗�|�⃗�; 𝐶) =

 
1

𝐶
∑ 𝑃(�⃗�|�⃗�; 𝜃)𝐶
𝑐=1  is the consensus posterior probability for some label sequence �⃗�.  

2.3 Representativeness 

It is suggested that considering representativeness of instances can reduce the chance of selecting outliers 

in the process of active learning (Roy and McCallum, 2001). Representativeness can be measured by 

density of each instance, defined as the average similarity of an instance to other instances. Because the 

computation of density can be quite time-consuming in large-scale data sets, it is suggested to compute 

density in clusters (Tang et al., 2002; Shen et al., 2004) or in a k-Nearest-Neighbor manner (Zhu et al., 

2008). Representativeness is applied by multiplying density to any arbitrary uncertainty measure to 

prevent outliers. Settles and Craven (2008) define a query strategy based on density: 

𝜙𝐼𝐷(�⃗�) = 𝜙𝐿𝐶(�⃗�) × [𝐼𝐷(�⃗�)]𝛽 , (6) 

𝐼𝐷(�⃗�) =
1

𝑈
∑ 𝑆𝑖𝑚(�⃗�  , �⃗�(𝑢))𝑈
𝑢=1  .  (7) 

Parameter 𝛽 controls the relative effect of density 𝐼𝐷(�⃗�). This density uses a similarity measure 𝑆𝑖𝑚(∙,∙
) to compute the average similarity of an instance with all other unlabeled instances. The similarity 

measure used by Settles and Craven (2008) is a cosine similarity between two instances after being 

transformed to a vector of fixed length using this relation: 

�⃗� = [∑ 𝑓1(𝑥𝑡)
𝑇
𝑡=1 , … , ∑ 𝑓𝐽(𝑥𝑡)

𝑇
𝑡=1  ],  (8) 

where 𝑓𝑗(𝑥𝑡)  is the value of feature 𝑓𝑗  for token 𝑥𝑡 , and J is the number of features in input 

representation. These features can be generated using CRF feature templates. Please refer to Settles and 

Craven (2008) for more details. 
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2.4 Fisher Information 

We also evaluate the FIR (Fisher Information Ratio) method proposed by Settles and Craven (2008). 

Two vectors based on Fisher information are defined: 

ℐ𝑥(𝜃) = ∑ 𝑃(�̂�|�⃗�; 𝜃) [(
𝜕 log𝑃(�̂�|�⃗�; 𝜃)

𝜕𝜃1
)

2

+ 𝛿,… , (
𝜕 log𝑃(�̂�|�⃗�; 𝜃)

𝜕𝜃𝐾
)

2

+ 𝛿 ]�̂�𝜖𝒩 ,  (9) 

ℐ𝒰(𝜃) =
1

|𝒰|
∑ ℐ𝑥(𝑢)(𝜃)
|𝒰|
𝑢=1 ,  (10) 

where ℐ𝑥(𝜃)  and ℐ𝒰(𝜃)  are the Fisher information matrices for sequence �⃗�  and unlabeled pool 𝒰 

respectively. These matrices are estimated using their diagonal due to performance issues. Also K is the 

total number of CRF features, 𝒩 is the set of N-best label sequences for input �⃗� and constant 𝛿<<1 is 

added to prevent division by zero. Finally, FIR measures the informativeness of instances using: 

𝜙𝐹𝐼𝑅(�⃗�) = −𝑡𝑟𝑎𝑐𝑒(ℐ𝑥(𝜃)
−1ℐ𝒰(𝜃)). (11) 

2.5 Instability Sampling 

(Zhu and Ma, 2012) suggest selecting instances which are most unstable. They propose two new methods 

to select most unstable instances based on recent active learning cycles: label-insensitive instability 

sampling (LIIS) and label-sensitive instability sampling (LSIS). Given an unlabeled instance �⃗� at ith 

learning cycle, its instability value in LIIS is estimated by: 

𝜙𝐿𝐼𝐼𝑆(�⃗�) = 𝜙𝑖
𝑆𝐸(�⃗�) + ∑ (𝜙𝑘

𝑆𝐸(�⃗�) − 𝜙𝑘−1
𝑆𝐸 (�⃗�))𝑖−𝑙<𝑘≤𝑖 ,  (12) 

where 𝜙𝑖
𝑆𝐸(�⃗�) is 𝜙𝑆𝐸(�⃗�) at ith learning cycle and 𝑙 is the number of cycles considered for instability 

estimation. Likewise, the instability value of �⃗� in LSIS is estimated by: 

𝜙𝐿𝑆𝐼𝑆(�⃗�) = 𝜙𝑖
𝑆𝐸(�⃗�) + ∑ 𝛿(�⃗�(𝑘), �⃗�(𝑘−1)) (𝜙𝑘

𝑆𝐸(�⃗�) − 𝜙𝑘−1
𝑆𝐸 (�⃗�))𝑖−𝑙<𝑘≤𝑖  ,  (13) 

where 𝛿(�⃗�(𝑘), �⃗�(𝑘−1)) is 0 if the predicted label sequences �⃗�(𝑘) and �⃗�(𝑘−1) are the same and 1 otherwise. 

It’s worthwhile to point that none of the instability sampling methods have been evaluated in the context 

of sequence labeling and they have only been evaluated in the context of classification.  

3 The First Proposed Method: Weighted Gradient Uncertainty (WGU) 

The new method to be introduced in this article is an improvement over the FIR method (subsection 

2.4). According to evaluations by Settles and Craven (2008), the FIR method didn’t perform well in 

practice despite its sound theory. In this section, first we investigate the essence of each component of 

ℐ𝑥(𝜃): 

ℐ𝑥(𝜃)𝑘 = ∑ 𝑃(�̂�|�⃗�; 𝜃) (
𝜕 𝑙𝑜𝑔 𝑃(�̂�|�⃗�; 𝜃)

𝜕𝜃𝑘
)

2

�̂�𝜖𝒩

. (14) 

According to this relation, the kth component of Fisher vector ℐ𝑥(𝜃) is the weighted sum of squared 

gradients of log-probabilities for the N best labelings for instance �⃗� in kth dimension of CRF features. It 

can be seen intuitively that each component of the Fisher vector increases when there is a kind of entropy 

between the N-best probabilities. That’s because when for example the best label sequence has 

probability 1 then its gradient will be zero in all dimensions (complete fit) and hence all the components 

will be zero. On the other hand, if N best label sequences have equal probabilities, none of them will 

have a zero gradient since none is a complete fit and  ℐ𝑥(𝜃) will be maximized. 

To show this fact more rigidly, assume the N best label sequences as 𝒩 = { �⃗�(1) , �⃗�(2) , … , �⃗�(𝑁) }, and 

also for simplicity, define: 𝑃𝑛 = 𝑃(�⃗�
(𝑛)|�⃗�; 𝜃) . Then we will have: 

𝑙𝑜𝑔𝑃𝑛 =∑∑𝜃𝑖𝑓𝑖 (𝑦𝑗−1
(𝑛)

 
, 𝑦𝑗
(𝑛)
, �⃗�, 𝑗)

𝐾

𝑖=1

𝑇

𝑗=1

− 𝑙𝑜𝑔𝑍
�⃗⃗⃗�
(�⃗�), (15) 

and so, its partial derivative in kth dimension will be (assuming 𝒩 contains all possible label sequences): 
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𝜕𝑙𝑜𝑔𝑃𝑛
𝜕𝜃𝑘

=∑𝑓𝑘 (𝑦𝑗−1
(𝑛)

 
, 𝑦𝑗
(𝑛)
, �⃗�, 𝑗)

𝑇

𝑗=1

⏞              

𝐹𝑛
(𝑘)

−
1

𝑍
�⃗⃗⃗�
(�⃗�)

 
𝜕𝑍

�⃗⃗⃗�
(�⃗�)

𝜕𝜃𝑘
= 𝐹𝑛

(𝑘)
− ∑ 𝑃𝑚𝐹𝑚

(𝑘)

𝑁

𝑚=1

 , 
(16) 

where 𝐹𝑛
(𝑘)

 is the result of applying feature function 𝑓𝑘 (from CRF model) on nth best label sequence. 

Now using (16) we can rewrite (14) as:  

ℐ𝑥(𝜃)𝑘 = ∑𝑃𝑛 (𝐹𝑛
(𝑘) − ∑ 𝑃𝑚𝐹𝑚

(𝑘)

𝑁

𝑚=1

)

2𝑁

𝑛=1

. (17) 

To fully understand each component, we further factorized the above relation and proved it to be equal 

to (the proof is omitted here for brevity): 

ℐ𝑥(𝜃)𝑘 =∑ ∑ 𝑃𝑖𝑃𝑗 (𝐹𝑖
(𝑘)
− 𝐹𝑗

(𝑘)
)
2

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

. (18) 

This relation explains the meaning of components of the Fisher vector completely. Each component is a 

summation over N best label sequences. The expression under summation consists of two parts: 𝑃𝑖𝑃𝑗 

and (𝐹𝑖
(𝑘)
− 𝐹𝑗

(𝑘)
)
2

. It can be shown using Lagrange multipliers that the first part is maximized 

(independently) when 𝑃𝑖 =
1

𝑁
 , ∀𝑖 ; which means this part is maximized when maximum entropy 

between N best probabilities occurs. The second part is the squared difference of kth feature function 

applied to two label sequences. So this part is maximized when the dissimilarities between every two 

label sequences in N-best list are maximum, which in turn means the model has maximum uncertainty 

in choosing the N-best label sequences for the input. Notice that in this interpretation we have assumed 

the two parts to be independent while they are not actually. However since the number of features of 

CRF (i.e. K) is too large, the dependency is negligible and can be ignored. So we conclude that each 

component of the Fisher vector ℐ𝑥(𝜃) is a measure of uncertainty of the model about the sequence �⃗� in 

the corresponding dimension. Accordingly, each component of the total Fisher information vector ℐ𝒰(𝜃) 
is the average uncertainty of the model in the corresponding dimension. 

Knowing the precise identity of Fisher vector ℐ𝑥(𝜃), we propose a natural measure which we call 

Weighted Gradient Uncertainty (WGU) based on the facts explained in the previous paragraph: 

𝜙𝑊𝐺𝑈(�⃗�) = √∑ℐ𝒰(𝜃)𝑗
 (ℐ𝑥(𝜃)𝑗 )

2

𝑗

. (19) 

This measure is the weighted norm of ℐ𝑥(𝜃) with the total Fisher information vector ℐ𝒰(𝜃) as the 

weight vector. This query strategy favors instances with high uncertainty in each dimension of CRF 

feature space, especially the dimensions where the average uncertainty is higher. In other terms, the 

WGU measure maximizes the components of the Fisher vector, while the FIR method minimizes the 

inversed components of the Fisher vector; and since many components of the Fisher vector are zero or 

near-zero, their inversed values are very large and block out the other larger components (with very 

small inverse values) leading to a measure which effectively just counts the number of zero components 

and chooses the instance with the maximum number of zero components. 

4 Using Local Density for Noisy Conditions 

As described in Introduction, a great issue in SLU systems is the presence of noise in utterances. To 

address this problem, all the ATIS1 instances were converted to vectors according to (8) and were 

reduced to 2 dimensions using Principle Component Analysis (PCA). Then the global density 𝐼𝐷(�⃗�) for 

                                                           
1 ATIS is the dataset used in this article for evaluation; please read subsection 5.1. 
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each instance was computed using (7). Figure 2 shows the plot of all instances with darker points 

indicating instances with higher densities and lighter points showing the ones with lower densities. 

As seen in Figure 2(a), the center of the distribution in terms of density is the darkest part. Also, the 

distribution of instances is not uniform at all, and excluding any part of the distribution especially parts 

further from the density center can lead to great decrease in performance of the model. The query strategy 

𝜙𝐼𝐷 (6) uses this density to reduce the chance of querying outliers. However, outliers as well as many 

other instances which are far from the density center are almost deprived of the chance of being selected. 

To address this problem and yet avoid outliers we choose to compute information density for each 

instance locally, i.e. using k nearest instances and not all instances. Thus, we define the local information 

density measure as follows: 

𝐿𝐷(�⃗�  , 𝑘) =
1

𝑘
∑ Sim(�⃗�  , �⃗�′).

 

𝑥′∈Γ𝑘(�⃗�
 )

 (20) 

In which, Γ𝑘(�⃗�
 ) is the set of k most similar instances to �⃗�  , and k is the degree of locality.  

 

    

(a)                                                                                  (b) 

Figure 2. Plot of all ATIS instances. Darker points show higher densities and lighter ones show lower 

densities. (a) Using global density measure (b) Using local density measure (k=5). 

The same procedure to plot Figure 2(a) is repeated again but with 𝐿𝐷(�⃗�  , 𝑘) computed as the density 

of each instance and the result is shown in Figure 2(b). The degree of locality is set to k=5. As seen in 

this plot, outliers are still completely grey which means they are avoided. Also, any small neighborhood 

with sufficient density is biased to black, which means the instances in the center of that neighborhood 

have almost the same chance of being queried as the instances in the center of global density (𝐼𝐷) in 

Figure 2(a). 

Another advantage of local density is that it avoids noisy instances. Noisy instances in the SLU 

context are the utterances in which one or more words are erroneous due to ASR or user errors. Because 

of such errors, noisy instances take a small distance from their similar instances and reside alone in small 

neighborhoods. 

Based on the LD measure (20), two active learning methods are considered: the first method applies 

local density measure to query strategy by multiplication (same as 𝜙𝐼𝐷): 

𝜙𝐿𝐷(�⃗�) = 𝜙𝐿𝐶(�⃗�) × [𝐿𝐷(�⃗�, 𝑘)]𝛽 . (21) 

The second method which is proposed in this paper, strictly applies the local density measure by first 

filtering out instances with local densities lower than a threshold T, and then queries the most informative 

instance according to a certain query strategy (here we use 𝜙𝐿𝐶). This method is called Strict LD (SLD). 

We believe that this method of utilizing density measures is more effective than the traditional method 

(i.e. multiplying density measure by uncertainty measure (6)), since it does not affect all instances but 
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only very low-density ones. The threshold T is assumed to be in the form of 𝛼 ∗ 𝐿𝐷̅̅̅̅ , where 𝐿𝐷̅̅̅̅  is the 

average of local density over all unlabeled instances, and parameter α sets the intensity of filtering. 

It is necessary to note that the k-Nearest-Neighbor density measure (Zhu et al., 2008) is identical to 

local density in definition but the motivation is different and in this article we look at the k-nearest-

neighbor density from a completely different perspective: to avoid a shortcoming in the global density 

which is ignoring great parts of the input distribution and also to detect noisy instances. 

5 Experiments 

Experiments are all performed on the ATIS1 data set (Hemphil et. al, 1990), both in noise-free and noisy 

conditions. In this section, the noise model used to generate noise is briefly described and then the 

evaluations are presented. 

5.1 ATIS and Noise Model 

ATIS is a relatively simple corpus which contains air travel information data. This corpus is the most 

commonly used data set for SLU research (Tur et. al, 2010). The data set contains questions (utterances) 

about flight, airport, and airline information. We specifically use the class-A (context independent) 

utterances from ATIS-3 corpus (Dahl et. al, 2004). These utterances are not semantically labelled, 

instead for each utterance there is an SQL command which queries the answer to the utterance from 

database. Thus a flat sematic representation was designed and semantic label sequences were generated 

semi-automatically from the SQL queries (as explained by He and Young (2006)). The flat semantic 

representation is listed in Table 1(a). A flat semantic representation is in fact a set of attributes (semantic 

labels) which are used to label an input utterance. Table 1(c) shows a typical utterance with sematic 

labels; note that IOB labeling scheme is used. Totally there are 1630 class-A instances (test + train) in 

ATIS-3 which are used in the experiments. 

(a) 

Attribute Description Attribute Description 

DCity depart. city ACity arrival city 

SCity stop city DAir depart. airport 

DDate depart. date ADate arrival date 

RDate return date AAir arrival airport 

Origin Pair 

ASR via → fly at 

Human to Chicago →  chica to 

Chicago 

ASR phoenix →  t x 
(b) 

Show flights from Denver to Washington on Sunday arriving before noon 

O O O DCity O ACity O DDate O ADate-

I 

ADate-I 

(c) 
Table 1: (a) The flat semantic representation used to label utterances in the data set. (b) Some example 

pairs in noise model. Each pair is extracted from actual errors in ATIS-3 utterances. (c) A typical 

example from ATIS utterances. 

Utterances in ATIS are de-noised by wizards2. There are two origins of noise: human (end-user) errors 

and ASR recognition errors. We design a simple noise-model based on actual errors and regenerate 

human and ASR errors. In ATIS-3, human errors are marked in SRO files and ASR errors are in N-best 

lists in log files. The noise model is a list of pairs of the form [correct-expression] → [erroneous-

expression] which are applied to ATIS instances to add arbitrary percentage of noise. A few example 

pairs in the noise model are listed in Table 1(b). Each pair is extracted from an actual error; for example 

[phoenix] → [t x] is a result of an ASR error in ATIS-3 logs where “phoenix” in “Show me flights from 

phoenix …” was recognized as “t x” mistakenly. Obviously this pair is only applicable to an utterance 

which contains the word “phoenix”. 

                                                           
1 Air Travel Information System 
2 A wizard is a human expert who transcribes utterances or answers them (Hemphil et. al, 1990). 
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5.2 Parameter Settings 

Using the noise model described, 3 levels of noise were generated: 7% of instances in level 1, 15% in 

level 2, and 25% in level 3 are noisy. In noisy conditions, when a noisy instance is selected by an active 

learning method, we assume that the instance is correctly detected as noisy by the annotator and is 

rejected (i.e. not added to ℒ); but the determination of an instance as noisy incurs a cost which we assume 

to be a quarter of cost of labeling one instance1. In all experiments, ℒ is initialized with 5 random training 

instances. Batch size in all experiments is set to B=2 and new instances are added to ℒ until the total 

labeling cost reaches 100. For query-by-committee method, we set C=4 and N=20 to balance between 

speed and accuracy. For LD and SLD, we set k=1 because it achieved best performance. For LIIS and 

LSIS, we set 𝑙=2 which achieved better results. Each method is evaluated as the average of 5 trials and 

each trial is performed using 5-fold cross validation. The reported performance for each method is the 

area under F1 learning curve (F1 score in SLU is computed as described by Tur and De Mori (2011)).  

5.3 Effect of Locality 

By initial evaluations, β=1 and α=0.6 were chosen for the LD and SLD method respectively. In Figure 

3, the performances of LD and SLD for different degrees of locality (for k=1 to 1000) are shown. The 

performance of the LC method is also shown for comparison.  

As seen in Figure 3, local density improves uncertainty measure (i.e. 𝜙𝐿𝐶, which is the base method 

in LD and SLD) and performs better than global density (i.e. local density with k=1000+). Note that LD 

has led to better performances than LC only for very local densities (i.e. k<5) while SLD has improved 

the performance of LC almost for all degrees of locality. It can also be seen that applying density strictly 

is more effective than the traditional way for all degrees of locality especially in noisy conditions.  

 

         
                        (a) Noise-free condition                                    (b) Noisy condition (average of all levels) 

Figure 3. Effect of locality degree (in computation of information density) on performance of active 

learning methods. Plots (a) and (b) show the area under F1 learning curve for different values of k in 

LD and SLD methods, for noise-free and noisy conditions respectively. The area under F1 learning 

curve for LC is also shown for comparison. 

5.4 Evaluations 

The detailed results of the discussed active learning methods on different levels of noise are presented 

in Table 2. In each row, best performance is bolded and underlined, and second best performance is just 

bolded. Random refers to the random sampling of instances (passive learning). In noise-free condition, 

LD and SLD have improved a little over LC, but in average, SLD has performed remarkably better than 

LC, which shows the effectiveness of using local density to avoid noisy instances (note that LC is the 

base method used in LD and SLD). The instability sampling methods have improved over uncertainty 

                                                           
1 The cost of labelling one instance is equal to 1 for any instance. In this paper, learning curves are depicted in terms of 

annotation cost which is equivalent to annotation time (please refer to Tomanek and Hahn (2010)). 
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sampling (i.e. SE) but not significantly.  In the last row of Table 2 the running time of one cycle of active 

learning for each method is presented in seconds. QBC is the slowest method and LC is the fastest one. 

WGU is the second best in average performance but is rather slow in comparison to LC and this is a 

disadvantage of WGU. In fact all methods that iterate over best labelings are considerably slower that 

LC. 

Learning curves cannot be shown for all active learning methods due to lack of space. Instead, learning 

curves are shown for selected methods. In Figure 4, learning curves for five methods of SLD, WGU, 

LIIS, FIR, and random are shown. It can be seen that the new WGU method has the best performance 

in early stages of active learning but soon declines and stays above the curve of LIIS. Also, the difference 

of SLD with other methods is more remarkable in the noisy conditions.  

 

 Random LC SE QBC ID FIR LIIS LSIS WGU LD SLD 

Noise-free 84.5 91.8 91.9 90.5 90.2 89.5 91.7 91.8 92.1 92.1 92.4 

Noise level 1 84.1 91.5 90.7 90 89.6 89.1 91.1 90.8 91.7 91.2 91.7 

Noise level 2 83.2 88.9 89 88.2 88.1 89.2 89.4 88.9 90.4 89.4 91.1 

Noise level 3 83 88.4 88.4 87.5 87.7 88.9 88.7 87.8 90 89.3 91 

Average 83.7 90.1 90 89 88.9 89.2 90.2 89.8 91.1 90.5 91.6 

Runtime 5 5 8 20 5.5 8 8 8 8 5.5 5.5 

Table 2. Area under F1 learning curves (max possible score is 100) and runtimes of  

various active learning methods on different levels of noise.

 

  
Figure 4. Learning curves for five selected methods: SLD, WGU, LIIS, FIR, and random for noise-free 

and noisy conditions (averaged across noise levels 1-3). Each learning curve shows the F1 measures 

achieved by the corresponding method for different labelling costs up to 100.  

6 Conclusion 

In this paper, best known active learning methods applicable to sequence labeling tasks were evaluated 

in the field of SLU (Spoken Language Understanding) in real conditions of noise. The new method of 

WGU (Weighted Gradient Uncertainty) with theoretical justification was proposed and performed well 

in the evaluations. Also, to deal directly with noisy instances, two methods of LD (Local Density) and 

SLD (Strict LD) were proposed based on the local density concept. It is possible to apply local density 

to WGU or other methods to achieve even better results but this could be the subject of future work.  
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