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Abstract

In recent years, the problem of finite-state constraint grammar (CG) parsing has received renewed
attention. Several compilers have been proposed to convert CG rules to finite-state transducers.
While these formalisms serve their purpose as proofs of the concept, the performance of the
generated transducers lags behind other CG implementations and taggers.

In this paper, we argue that the fault lies with using generic finite-state libraries, and not with
the formalisms themselves. We present an open-source implementation that capitalises on the
characteristics of CG rule application to improve execution time. On smaller grammars our
implementation achieves performance comparable to the current open-source state of the art.

1 Introduction

Constraint grammar (CG), described originally by Karlsson (1990), is a rule-based formalism for vari-
ous linguistics tasks, including morphological analysis, clause boundary detection and surface syntactic
parsing. It has been used in a wide range of application areas, such as morphological disambiguation,
grammar checking and machine translation (Bick, 2011). CG owns its popularity to two reasons: first, it
achieves high accuracy on free text. Second, it works for languages where the annotated corpora required
by statistical parsing methods are not available, but a linguist willing to work on the rules is. The orig-
inal CG has since been superseded by CG-2 (Tapanainen, 1996) and lately, the free/open-source VISL
CG-3 (Bick, 2000; Didriksen, 2011).

Constraint grammar, however, has its drawbacks, one of which is speed. The Apertium machine
translation project (Forcada et al., 2011) uses both CG (via VISL CG-3) and n-gram based models for
morphological disambiguation, and while CG achieves higher accuracy, the n-gram model runs about
ten times faster.

In this paper, we investigate how using finite-state transducers (FST) for CG application can help to
bridge the performance gap. In recent years, several methods have been proposed for compiling a CG to
FST and applying it on text: Hulden (2011) compiles CG rules to transducers and runs them on the input
sentences; Peltonen (2011) converts the sentences into ambiguous automata and attempts to eliminate
branches by intersecting them with the rule FSTs; finally, Yli-Jyrä (2011) creates a single FST from the
grammar and applies it on featurised input. Unfortunately, none of the authors report exact performance
measurements of their systems. Yli-Jyrä published promising numbers for the preprocessing step, but
nothing on the overall performance. Peltonen, on the other hand, observed that “VISL CG-3 was 1,500
times faster” than his implementation (Peltonen, 2011).
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We do not attempt here to add a new method to this list; instead, we concentrate on three practical
aspects of FST-based CG. First, we report accurate measurements of the real-world performance of one
of the methods above. Second, we endeavour to optimise the implementation of the selected method.
All three works used foma, an open source FST library (Hulden, 2009b; Hulden, 2009a). We show
that while foma is fast, relying on specialised FST application code instead of a generic library clearly
benefits performance. We also demonstrate what further improvements can be achieved by exploiting the
peculiarities of CG. Lastly, our research also aims to fill the niche left by the lack of openly accessible
finite-state CG implementations.

Section 2 briefly introduces the method we chose to evaluate. In the rest of the paper, we present our
optimisations in a way that mirrors the actual development process. We start out with a simple rule engine
based on foma, and improve it step-by-step, benchmarking its performance after each modification,
instead of a single evaluation chapter. We start in Section 3 by describing our evaluation methodology.
Section 4 follows the evolution of the rule engine, as it improves in terms of speed. Section 5 contains
a complexity analysis and introduces an idea that theoretically allows us to improve the average- and
best-case asymptotic bound. Section 6 demonstrates how memory savings can be derived from the steps
taken in section 4. Finally, Section 7 contains our conclusions and lists the problems that remain for
future work.

2 The fomacg compiler and fomacg-proc

We have chosen Hulden’s fomacg compiler for our study. Our reasons for this are twofold. The transduc-
ers generated by fomacg were meant to be run on the input directly, but they could also be applied to a
finite-state automaton (FSA) representation of the input sentence via FST composition, thereby giving us
more space to experiment. Peltonen’s method, on the other hand, works only through FST intersection.
More importantly, fomacg was the only compiler that is openly available.1

Here we briefly describe how fomacg works; for further details refer to (Hulden, 2011). A CG used for
morphological disambiguation takes as input a morphologically analysed text, which consists of cohorts:
a word with its possible readings. A reading is represented by a lemma and a set of morphosyntactic
tags. For example, the cohort of the ambiguous Hungarian word szı́v with two readings “heart” and
“to suck” would be ˆszı́v/szı́v<n><sg><nom>/szı́v<vblex><pres><s3p>$.2 The text is
tokenised into sentences based on a set of delimiters. CG rules operate on a sentence, removing readings
from cohorts based on their context. The rules can be divided into priority levels called section. Most
implementations apply the rules one-by-one in a loop, until no rules can further modify the sentence.

fomacg expects cohorts to be encoded in a different format; the cohort in the example above would be
represented as

$0$ "<szı́v>" #BOC# |
#0# "szı́v" n sg nom |
#0# "szı́v" vblex pres s3p | #EOC#

The rule transducers mark readings for removal by replacing the #0# in front of the reading by #X#;
they act as identity for sentences they cannot be applied to.

fomacg is only a compiler, which reads a CG rule file and emits a foma FST for each rule. The
actual disambiguator program that applies the transducers to text we implemented ourselves. It reads the
morphologically analysed input in the Apertium stream format, converts it into the format expected by
fomacg, applies the transducers to it, and then converts the result back to the stream format. To emphasise
its similarity to cg-proc, VISL CG’s rule applier, we named our program fomacg-proc.

3 Methodology

Apertium includes constraint grammars for several languages.3 While most of these are wide-coverage
grammars, and are being actually used for morphological disambiguation in Apertium, they are also

1In the Apertium software repository: https://svn.code.sf.net/p/apertium/svn/branches/fomacg
2The example is in the Apertium stream format, not in CG-2 style.
3http://wiki.apertium.org/wiki/Constraint_grammar
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too big and complex to be easily used for the early stages of parser development. Therefore, we have
written a small Hungarian CG, aimed to fully disambiguate a short Hungarian story, which was used
as the development corpus. Since Hungarian is not properly supported by Apertium yet, morphological
analysis was carried out by Hunmorph (Trón et al., 2005), and the tags were translated to the Apertium
tagset with a transducer in foma.

The performance of fomacg-proc has been measured against that of VISL CG. The programs were
benchmarked with three Apertium CG grammars: the toy Hungarian grammar mentioned earlier, the
Breton grammar from the br-fr language pair (Tyers, 2010), and the version of the Finnish grammar
originally written by Karlsson in the North Sámi–Finnish (sme-fin) pair. Seeing that in the early
phases, only the Hungarian grammar was used for development, results for the other two languages are
reported only for the later steps.

Each grammar was run on a test corpus. For Breton, we used the corpus in the br-fr language
pair, which consists of 1,161 sentences. There are no Finnish and Hungarian corpora in Apertium; for
the former, we used a 1,620-sentence excerpt from the 2013-Nov-14 snapshot of the Finnish Wikipedia,
while for the latter, the short test corpus used for grammar development. Since the latter contains a mere
11 sentences, it was repeated 32 times to produce a corpus similar in size to the other two.4 The Breton
and Finnish corpora were tagged by Apertium’s morphological analyser tools.

Since VISL CG implements CG-3, and fomacg only supports CG-2, a one-to-one comparison with the
grammars above was not feasible. Therefore, we extracted the subset of rules from each that compiled
under fomacg, and carried out the tests on these subsets. Table 1 shows the number of rules in the original
and the CG-2 grammars.

Table 1: Grammar sizes with the running time and binary size of the respective VISL-CG grammars

Language Rules CG-2 rules Binary Time
Hungarian 33 33 8kB 0.284s
Breton 251 226 36kB 0.77s
Finnish 1207 1172 184kB 1.78s

We recorded both initialisation and rule application time for the two programs, via instrumentation in
case of fomacg-proc and by running the grammar first on an empty file and then on the test corpus in
case of cg-proc. However, as initialisation is a one-time cost, in the following we are mainly concerned
with the time required for applying rules. The tests were conducted on a consumer-grade laptop with a
2.2GHz Core2Duo CPU and 4GB RAM, running Linux.

4 Performance optimisations

Our implementation, much like that of fomacg (and indeed, all recent work on finite state CG) is based on
the foma library. We started out with a naı̈ve implementation that used solely stock foma functions. Most
of the improvements below stem from the fact that we have replaced these functions with custom versions
that run much faster. The final implementation abandons foma entirely, but for the data structures. In the
future, we plan to discard those as well, making our code self-contained.

The program loads the transducers produced by fomacg and applies them to the text. The input is in
the Apertium stream format5 and it is read cohort-by-cohort. A foma FST is used to convert each cohort
to the format expected by the rule transducers, and to convert the final result back.

To tokenise the text to sentences, we modified fomacg to compile the delimiters set and emit it as the
first FSA in the binary representation of the grammar. fomacg-proc reads the input until a cohort matches
this set and then sends the accumulated sentence to the rule applier engine.

4Although we used the same corpus for development and testing for Hungarian, the experimental setup was the same for
VISL-CG and fomacg. While the numbers we acquired for Hungarian are not representative of how a proper Hungarian CG
would perform on unseen data, they clearly show which of our steps benefit performance.

5http://wiki.apertium.org/wiki/Apertium_stream_format
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The rules are tested one-by-one, section-by-section, to see if any of them can be applied to the text.
Once such a rule is found, the associated FST is executed on the text. As it is possible that a rule that
was not applicable to the original text would now run on the modified one, testing is restarted from the
first section after each rule application. The process ends when no more applicable rules are found.

4.1 Naı̈ve implementation
The first version of the program used the apply down() foma function both for rule application and
format conversion. As fomacg generated a single FST for a rule, rule testing and execution was done
in the same step, by applying the FST. Whether the rule was actually applied or not was decided by
comparing the original sentence to the one returned by the function.

The first row in Table 2 shows the running time for the Hungarian grammar. At 6.4s, the naı̈ve
implementation runs more than 20 times slower than VISL-CG (see Table 1). Luckily a far cry from
the 1,500 reported by Peltonen, but clearly too slow to be of practical use.

4.2 FST composition
Another way to apply a rule is to convert the input sentence into a single-path FSA with the same alphabet
as the rules and compose the rule FST on top of it. To check if the rule has actually be applied, the input
automaton was intersected with the result. Unfortunately, this method proved to be much slower than
the application-based one; composition alone took 28.3 seconds on our corpus, while the intersection
pushed it up to 45s. Therefore we decided to abandon this path altogether.

4.3 Deletion of discarded readings
The original transducers replace the #0# in front of discarded readings with #X#. Our first optimisation
comes from the observation that deleting these readings instead would not make the transducers any
more complex, but would shorten the resulting sentence, making subsequent tests faster. Moreover, it
allows the engine to recognise actual rule application by simply testing the length of the output to the
input sentence, an operation slightly faster than byte-for-byte comparison.

Table 2 reports an approximately 8% improvement. While not self-evident, this benefit remained in
effect after our subsequent optimisations.

4.4 FSA-based rule testing
Theoretically, further speed-ups could be achieved by separating rule testing and application, using finite-
state automata for the former. Automata are faster than transducers for two reasons: first, there is no need
to assemble an output; and second, a FSA can be determinised and minimised, while foma can only make
a FST deterministic by treating it as a FSA with an alphabet of the original input:output pairs, which does
not entail determinism in the input.

As the fourth row in table 2 shows, the idea does not immediately translate well to practice. The fault
lies with the apply down() function, which, being the only method of running a finite-state machine
in foma, was designed to support all features of the library. It treats automata as identity transducers, and
fails to capitalise on the aforementioned advantages of the former. In order to benefit from FSA-based
testing then, a custom function is required.

4.5 Custom FSA/FST application
The apply down() function supports the following features (Hulden, 2009a):

• Conversion of the text to symbols (single- and multi-character)

• Regular transitions and flag diacritics

• Three types of search in the transition matrix (linear, binary and indexed)

• Deterministic and non-deterministic operation

• Iterators (multiple invocations iterate the non-deterministic outputs)
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Our use-case makes most of these features surplus to requirements. fomacg uses multi-character sym-
bols, but not flag diacritics. To maximise the performance gains, the rule testing automata must be
minimal (hence deterministic), so there was no need for non-determinism and iterators. Finally, by mod-
ifying fomacg to sort the edges of all grammar machines, we could ensure that binary transition search
alone suffices.

The custom FSA applier function that implements only the necessary features was employed for both
rule testing and finding the delimiter cohort. As a result, running time went down to 1.45 seconds (see
table 2), a 75% improvement.

A similar function was written for input-deterministic minimal transducers. While not applicable to the
non-deterministic rule FSTs, it could replace apply down() for the conversion between the Apertium
and the fomacg formats, further reducing the running time to 1.275 seconds.

What we can take home from the last two sections is that when speed is paramount, relying blindly
on generic libraries may not only lead to suboptimal performance, but may also produce counterintuitive
results.

Conversely, libraries may benefit from including specialised implementations for different use-cases.
For example, foma has all the information at hand to decide if a FST is deterministic, whether it supports
binary search or not, etc. and so, providing specialised functions (even private ones hidden behind
apply down()) would improve its performance substantially in certain situations.

4.6 Exploiting CG structure

In this chapter, we review the improvements made available by the characteristics of our CG representa-
tion. The first of these is functionality: even though the rule FSTs are non-deterministic, the input-output
mapping is one-to-one (Hulden, 2011). It was thus possible to implement the non-deterministic version
of the FST runner function described in the last section without the need for an iterator feature, and to
use it for rule application. The last usage of the generic apply down() function thus eradicated, the
running time dropped to 1.05 seconds (see table 2).

Internally foma, similarly to other FST toolkits, represents elements of the Σ alphabet as integers. The
conversion of text into tokens in Σ is a step usually taken for granted in the literature, but it contributes
to the execution time of an FST to a significant extent. In foma, token matching is performed by a trie
built from the symbols in the automaton’s alphabet. Our custom DFSA runner function (see section 4.5)
spends about 60% of its time applying this trie.

The two enhancements below have helped to all but negate the cost of token conversion. The first of
these exploits the fact that in the fomacg format, symbols are separated by space characters. Instead of
passing the input string to each FSM, we split it along the spaces, and pass the resulting string vector to
the machines. This is a rather small change, and while the Hungarian grammar benefited almost nothing,
the running time of the Breton grammar improved by 40%.

The second enhancement came from the observation that all rule testing automata and rule transducers
accept the same CG tags. It is thus possible to generate an automaton whose alphabet is the union of
those of the other machines. This automaton could be used to convert the input sentence into a vector
of Σ ids, and then this vector could be sent to the other machines, relinquishing the need of repeated
conversions.

Both fomacg and fomacg-proc had to be modified to account for the changes. The former now creates
the converter FSA and saves it as the second machine in the binary grammar file. Also, since the ids
that correspond to a symbol are unique to each machine, we added a post-processing phase that replaces
the ids with the “canonical” ones in the converter FSA. fomacg-proc then converts the input to ids using
the converter automaton’s trie, and sends the vector to the rule machines. The rule machines treat the
vector as their input, with a caveat: ids not in the alphabet of the machine in question are replaced by
@IDENTITY SYMBOL@, so that they are handled in the same way as before.

Table 2 shows that factoring the symbol conversion out from the individual machines resulted in huge
savings: the running time of the Hungarian setup improved by 70% to 0.32 second; the Breton one by
40% to 1.55 seconds.
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Table 2: Effects of the optimisations on running time

Version Hungarian Breton
Naı̈ve (4.1) 6.4s –
Composition (4.2) 45s –
Delete readings (4.3) 5.9s –
FSA rule testing (4.4) 10s –
Custom FSA runner (4.5) 1.45s –
Custom format-FST (4.5) 1.275s 6.8s
Input partitioning (4.6) 1.15s 4s
Custom rule applier (4.6) 1.05s 2.6s
One-time conversion (4.6) 0.32s 1.55s

5 Complexity analysis

Tapanainen (1999) proves that the worst-case time complexity for disambiguating a sentence in his CG-2
parser is O(n3k2G), where n is the length of the sentence, k is the maximum number of readings per
word, and the grammar consists of G rules. The explanation is as follows: testing a cohort with a single
rule can be done in O(nk); the whole sentence in O(n2k). This process must be repeated for each rule,
yielding O(n2kG). Finally, in the worst case, a rule only removes a single reading, so it takes n(k − 1)
rounds to disambiguate the sentence, resulting in the aforementioned bound.

Hulden (2011) showed that if the rules are compiled to transducers, they can be applied to the whole
sentence in O(nk) time, thus decreasing the complexity to O(n2k2G), instead of the O(n2k) suggested
by Tapanainen. To be more precise, applying a rule transducer takes O(nkT ) time, where the constant
T is the size of the FST. While T may be rather large, rule transducers may be factored into bimachines,
which removes the constant. Hence, a disambiguating bimachine for one CG rule can be applied to a
sentence of nk tokens in O(nk) (linear) time. However, fomacg only includes CG rule-to-transducer
compilation and does not include bimachine factorization as of yet.

While this work has left the theoretical limit untouched thus far, it improved on three aspects of the
complexity. First, unlike foma, our specialised FST application functions can take advantage of the
properties of automata and bimachines, and actually run them in O(nk) time. Second, the constant in
the O has been decreased as a result of extensive optimisation. Third, rule testing automata have been
introduced which, being minimal, can also be applied in O(nk) time. Assume that in a round Ga rules
can be applied to the sentence and Gu cannot, Ga +Gu = G. With minimal automata for rule testing the
round finishes with 2Ga +Gu machine applications, instead of the 2G required by bimachines. The facts
that usually Ga << G and that automata can be applied faster than transducers result in a performance
improvement over the pure bimachine setup.

5.1 Beyond the O(n2k2G) bound
This section presents an idea that allows the system to theoretically overcome the O(n2k2G) average
complexity bound. This section describes the method, and investigates its feasibility; the next section
contains the evaluation.

The idea is based on the fact that regular languages are closed under the union operator. If there are
two automata, FSAGa and FSAGb

that test the rules Ga and Gb, respectively, then it follows that their
union, FSAGab

, accepts a sentence iff either Ga or Gb is applicable to it. If FSAGab
is minimised, it runs

in O(nk) time, the same as FSAGa and FSAGb
.

The union FSA allows us to implement hierarchical rule checking. In this example, testing if any of
the two rules match a sentence with only the original automata requires a check with both. Instead, we
can apply FSAGab

first. If neither rule is applicable, the automaton will not accept the sentence, and no
further testing is required. If one of the rules is, FSAGa (or equivalently, FSAGb

) must be run against
the sentence to see which. In practice, if we pick two rules from a CG in random, we shall find that the
majority of the sentences will not match either, hence the number of tests may be reduced substantially.
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There is no need to stop here: we can take two union automata, and merge them again. It is easy to
see that if we represent the rule testing automata in a graph, where a node is a FSA, and two nodes are
connected iff one was created from the other via union, then we get a binary tree. For a grammar of G
rules, a binary tree of log G levels can be built. Such a tree can confirm with a single test if a sentence
does not match any of the rules, or find the matching rule in log G + 1 tests, if one does. Accordingly, in
theory this method allows us to improve the average- and best-case complexity bounds of the system to
O(n2k2 log G) andO(nk), respectively. (Clearly, for grammars with several sections, instead of a single
tree that contains all rules, one tree must be built for each section to preserve rule priorities. However,
this does not affect the reasoning above).

The bottleneck in this method is memory consumption. The size of the FSA resulting from a non-
deterministic union operation is simply the sum of the sizes of the original automata. To achieve the
speed-up described above, however, the rule checking automata must be determinised, which may cause
them to blow up in size exponentially. Therefore, building a single tree from all rules is not feasible.
A compromise solution is to construct a forest of 2–4 level trees, which still fits into the memory and
provides similar benefits to a single tree, though to a smaller extent.

5.2 Evaluation

The forest can be assembled in several ways; we experimented with two simple algorithms. Both take as
input a list of rule testing automata, which are encapsulated into single-node trees. Before each step, the
trees are sorted by the size of the automata in their roots.

The first algorithm, SmallestFirst, unifies the two smallest trees in each step, until the root FSA in each
tree is above a size limit (1,000 states in our case). The second, FixedLevel, aims to create full, balanced
binary trees: in a single step, it unifies the smallest tree with the largest, the second smallest with the
second largest, etc, and repeats the process until the trees reach a predefined height.

Table 3 lists the running times and memory requirements of the resulting forests. It can be seen that
hierarchical rule testing indeed improves performance: even a single level of merging results in 30-
42% speedup. However, it is also immediately evident that aside from special cases, the disadvantages
overweight the benefits: memory usage and binary size grow exponentially, affecting compilation and
grammar loading time as well, and very soon we run into the limits of physical memory. Unless a method
is found that reduces memory usage substantially, we have to give up on hierarchical rule testing.

Table 3: Performance and storage requirements of rule testing trees
∗ State count limit was 500 † Reached limit of physical memory

Language Algorithm Initialisation Disambiguation Memory File size
Hungarian (flat) 0.028s 0.32s 0.5% 60kB
Hungarian FixedLevel(3) 0.77s 0.235s 2.1% 7.1MB
Hungarian Smallest First 0.62s 0.234s 1.9% 5.9MB
Breton (flat) 0.5s 1.55s 5.1% 1.5MB
Breton FixedLevel(2) 1.8s 1.09s 9.6% 7.4MB
Breton Smallest First 11.14s 1.05s 28.7% 60MB
Finnish (flat) 1.5s 22.87s 21.8% 7.2MB
Finnish FixedLevel(2) 3.64s 13.28s 32.3% 28MB
Finnish SmallestFirst∗ 20.75s 9.95s –† 198MB

6 Memory savings

The use of a single converter automaton has not only resulted in improved performance, but it has also
opened a way to decrease the storage space requirements of the grammar as well. The trie that converts
the machine’s alphabet to integer ids in foma takes up space; depending on the number and length of the
symbols in bytes, this trie may be responsible for a considerable portion of the memory footprint of an
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automaton. Given the number of rules in an average CG grammar, it is easy to see how this trivial sub-
task may affect the memory consumption of the application, as well as the size of the grammar binary.
As the job of token matching has been delegated to the symbol automaton (see section 4.6), we no longer
maintain separate tries for all individual FSAs.

Table 4 presents the resulting memory savings. We report numbers for the raw grammars (L1), as
well as for two- and three-level condition trees (L2-3). It is not surprising that the raw grammars see the
largest improvements; here the tries accounted for 70-80% of the memory usage. As the trees get higher,
the number of states and edges grows more rapidly than does the number of tries and the savings become
more modest.

Table 4: Improvements in memory usage due to removing the sigma trie. Memory consumption is
measured as a percentage of the 4GB system memory

Language Method Before After Reduction
Hungarian L1 0.5% 0.1% 80%
Hungarian L3 2.1% 1.5% 28.57%
Breton L1 5.1% 1.3% 74.5%
Breton L2 9.6% 4.4% 54.16%
Finnish L1 21% 4.1% 80.47%
Finnish L2 32.3% 8.9% 72.44%

We explored other options as well to reduce the size of rule condition trees. Unfortunately, most
methods aimed at FSA compression in the literature are either already implemented in foma (e.g. as
row-indexed transition matrix, see Kiraz (2001)), or are aimed at automata with a regular structure, such
as morphological analysers (Huet, 2003; Huet, 2005; Drobac et al., 2014). Without further support, the
approximately 30% saving achieved by our method for a three-level condition tree alone is not enough
to redeem hierarchical rule checking.

A task-specific framework, one based on inward deterministic automata has been proposed for CG
parsing (Yli-Jyrä, 2011). The paper reports a binary size similar to the original grammar size. However,
as the framework breaks away from the practice of direct rule application followed in this paper and in
related literature (Hulden, 2011; Peltonen, 2011), closer inspection remains as future work.

7 Conclusions

We set out with the goal of creating a fast constraint grammar parser based on finite-state technology.
Our aim was to achieve better performance on the task of morphological disambiguation than the cur-
rent state-of-the-art parser VISL CG-3. We used the CG grammars available in the Apertium machine
translation project.

Our goals were partially fulfilled: while the speed of our parser falls short of that of VISL CG-3 —
with the exception of the execution of very small grammars — we have made advances on the state-
of-the-art free/open-source FST implementations of CG. We based our system on the fomacg compiler,
and extended it in several ways. Our parser uses optimised FST application methods instead of the
generic foma variant used by previous implementations, thereby achieving better performance. Further
optimisations, both memory and runtime, were made by exploiting the properties of FSTs generated
from a CG. We report real-world performance measurements with and without these optimisations, so
their efficacy can be accurately evaluated. A new method for rule testing has also been proposed, which
in theory is capable of reducing the worst-case complexity bound of CG application to O(n2k2 log G).
Unfortunately, the method has yet to be proven feasible in practice.

Our main finding is that implementation matters: an FST library which is too generic hinders perfor-
mance and can even make a theoretically faster algorithm slower in practice. Using bimachines and rule
testing automata should have sped up rule application, but only did so after we implemented our own,
specialised FST functions. Since foma has all necessary information about an FST in place to decide
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the right application method, incorporating our functions into it, or other FST libraries, could benefit
applications beyond the scope of CG.
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