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Abstract

Compositional Distributional Semantics Models (CDSMs) are traditionally seen as an entire dif-
ferent world with respect to Tree Kernels (TKs). In this paper, we show that under a suitable
regime these two approaches can be regarded as the same and, thus, structural information and
distributional semantics can successfully cooperate in CSDMs for NLP tasks. Leveraging on
distributed trees, we present a novel class of CDSMs that encode both structure and distribu-
tional meaning: the distributed smoothed trees (DSTs). By using DSTs to compute the similarity
among sentences, we implicitly define the distributed smoothed tree kernels (DSTKs). Exper-
iment with our DSTs show that DSTKs approximate the corresponding smoothed tree kernels
(STKs). Thus, DSTs encode both structural and distributional semantics of text fragments as
STKs do. Experiments on RTE and STS show that distributional semantics encoded in DSTKs
increase performance over structure-only kernels.

1 Introduction

Compositional distributional semantics is a flourishing research area that leverages distributional seman-
tics (see Turney and Pantel (2010), Baroni and Lenci (2010)) to produce meaning of simple phrases
and full sentences (hereafter called text fragments). The aim is to scale up the success of word-level
relatedness detection to longer fragments of text. Determining similarity or relatedness among sentences
is useful for many applications, such as multi-document summarization, recognizing textual entailment
(Dagan et al., 2013), and semantic textual similarity detection (Agirre et al., 2013).

Compositional distributional semantics models (CDSMs) are functions mapping text fragments to
vectors (or higher-order tensors). Functions for simple phrases directly map distributional vectors of
words to distributional vectors for the phrases (Mitchell and Lapata, 2008; Baroni and Zamparelli, 2010;
Clark et al., 2008; Grefenstette and Sadrzadeh, 2011; Zanzotto et al., 2010). Functions for full sentences
are generally defined as recursive functions over the ones for phrases (Socher et al., 2011; Socher et al.,
2012; Kalchbrenner and Blunsom, 2013). Distributional vectors for text fragments are then used as inner
layers in neural networks, or to compute similarity among text fragments via dot product.

CDSMs generally exploit structured representations tx of text fragments x to derive their meaning
f(tx), but the structural information, although extremely important, is obfuscated in the final vectors.
Structure and meaning can interact in unexpected ways when computing cosine similarity (or dot prod-
uct) between vectors of two text fragments, as shown for full additive models in (Ferrone and Zanzotto,
2013). Smoothed tree kernels (STK) (Mehdad et al., 2010; Croce et al., 2011) instead realize a clearer
interaction between structural information and distributional meaning. STKs are specific realizations of
convolution kernels (Haussler, 1999) where the similarity function is recursively (and, thus, composition-
ally) computed. Distributional vectors are used to represent word meaning in computing the similarity
among nodes. STKs, however, are not considered part of the CDSMs family. As usual in kernel machines
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(Cristianini and Shawe-Taylor, 2000), STKs directly compute the similarity between two text fragments
x and y over their tree representations tx and ty, that is, STK(tx, ty). The function f that maps trees
into vectors is only implicitly used, and, thus, STK(tx, ty) is not explicitly expressed as the dot product
or the cosine between f(tx) and f(ty). Such a function f , which is the underlying reproducing function
of the kernel (Aronszajn, 1950), is a CDSM since it maps trees to vectors by using distributional mean-
ing. However, the huge dimensionality of Rn (since it has to represent the set of all possible subtrees)
prevents to actually compute the function f(t), which thus can only remain implicit.

Distributed tree kernels (DTK) (Zanzotto and Dell’Arciprete, 2012) partially solve the last problem.
DTKs approximate standard tree kernels (such as (Collins and Duffy, 2002)) by defining an explicit
function DT that maps trees to vectors in Rm where m � n and Rn is the explicit space for tree
kernels. DTKs approximate standard tree kernels (TK), that is, 〈DT (tx), DT (ty)〉 ≈ TK(tx, ty), by
approximating the corresponding reproducing function (Aronszajn, 1950). Thus, these distributed trees
are small vectors that encode structural information. In DTKs tree nodes u and v (and then also words)
are represented by nearly orthonormal vectors, that is, vectors

→
u and

→
v such that 〈→u,→v 〉 ≈ δ(

→
u,
→
v )

where δ is the Kroneker’s delta. This is in contrast with distributional semantics vectors where 〈→u,→v 〉
is allowed to be any value in [0, 1] according to the similarity between the words v and u. Thus, early
attempts to include distributional vectors in the DTs failed (Zanzotto and Dell’Arciprete, 2011).

In this paper, leveraging on distributed trees, we present a novel class of CDSMs that encode both
structure and distributional meaning: the distributed smoothed trees (DST). DSTs carry structure and dis-
tributional meaning on a 2-dimensional tensor (a matrix): one dimension encodes the structure and one
dimension encodes the meaning. By using DSTs to compute the similarity among sentences with a gen-
eralized dot product (or cosine), we implicitly define the distributed smoothed tree kernels (DSTK) which
approximate the corresponding STKs. We present two DSTs along with the two smoothed tree kernels
(STKs) that they approximate. We experiment with our DSTs to show that their generalized dot products
approximate STKs by directly comparing the produced similarities and by comparing their performances
on two tasks: recognizing textual entailment (RTE) and semantic similarity detection (STS). Both exper-
iments show that the dot product on DSTs approximates STKs and, thus, DSTs encode both structural
and distributional semantics of text fragments in tractable 2-dimensional tensors. Experiments on STS
and RTE show that distributional semantics encoded in DSTs increases performance over structure-only
kernels. DSTs are the first positive way of taking into account both structure and distributional meaning
in CDSMs.

The rest of the paper is organized as follows. Section 2 introduces the basic notation used in the paper.
Section 3 describe our distributed smoothed trees as compositional distributional semantic models that
can represent both structural and semantic information. Section 4 reports on the experiments. Finally,
Section 5 draws some conclusions.

2 Notation
Before describing the distributed smoothed trees (DST) we introduce a formal way to denote
constituency-based lexicalized parse trees, as DSTs exploit this kind of data structures.

Lexicalized trees are denoted with the letter t and N(t) denotes the set of non terminal nodes of tree
t. Each non-terminal node n ∈ N(t) has a label ln composed of two parts ln = (sn, wn): sn is the
syntactic label, while wn is the semantic headword of the tree headed by n, along with its part-of-speech
tag. For example, the root node of the tree in Fig.1 has the label S:booked::v where S is the syntactic
information and booked::v is the semantic head of the whole tree. Terminal nodes of trees are treated
differently, these nodes represent only wordswn without any additional information, and their labels thus
only consist of the word itself (see Fig. 1). The structure of a tree is represented as follows: Given a tree
t, h(t) is its root node and s(t) is the tree formed from t but considering only the syntactic structure (that
is, only the sn part of the labels), ci(n) denotes i-th child of a node n. As usual for constituency-based
parse trees, pre-terminal nodes are nodes that have a single terminal node as child. Finally,

→
sn ∈ Rm

and
→
wn ∈ Rk represent respectively distributed vectors for node labels sn and distributional vectors for

words wn, whereas T represents the matrix of a tree t encoding structure and distributional meaning.
The difference between distributed and distributional vectors is described in the next section.
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Figure 1: A lexicalized trees
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Figure 2: Subtrees of the tree t in Figure 1 (a non-exhaustive list)

3 Distributed Smoothed Trees as Compositional Distributional Semantic Models
We define Distributed Smoothed Trees as recursive functions DST mapping lexicalized trees t to Rm×k

where matrices T = DST (t) encode both syntactic structures and distributional vectors. DSTs are
thus compositional distributional models, as they map lexicalized trees to matrices, and they are defined
recursively on distributed vectors for syntactic node labels and distributional vectors for words. In the
following we introduce DSTs: Section 3.1 gives a rough idea of the method, Section 3.2 describes how
to recursively encode structures in vectors by means of distributed trees (Zanzotto and Dell’Arciprete,
2012), and finally Section 3.3 merges distributed trees and distributional semantic vectors in matrices.
3.1 The method in a glance
We describe here the approach in a few sentences. In line with tree kernels over structures (Collins and
Duffy, 2002), we introduce the set S(t) of the subtrees ti of a given lexicalized tree t. A subtree ti is in
the set S(t) if s(ti) is a subtree of s(t) and, if n is a node in ti, all the siblings of n in t are in ti. For each
node of ti we only consider its syntactic label sn, except for the head h(ti) for which we also consider
its semantic component wn. Figure 2 reports a sample for the subtrees of the tree in Fig. 1 The recursive
functions DSTs we define compute the following:

T =
∑

ti∈S(t)

Ti

where Ti is the matrix associated to each subtree ti. The similarity between two text fragments a and b
represented as lexicalized trees ta and tb can be computed using the Frobenius product between the two
matrices Ta and Tb, that is:

〈Ta,Tb〉F =
∑

tai ∈S(ta)

tbj∈S(tb)

〈Ta
i ,T

b
j〉F (1)

We want to obtain that the product 〈Ta
i ,Tb

j〉F approximates the dot product between the distributional

vectors of the head words (〈Ta
i ,Tb

j〉F ≈ 〈
→

h(tai ),
→

h(tbj)〉) whenever the syntactic structure of the subtrees
is the same (that is s(tai ) = s(tbj)), and 〈Ta

i ,Tb
j〉F ≈ 0 otherwise. This property is expressed as:

〈Ta
i ,T

b
j〉F ≈ δ(s(tai ), s(tbj)) · 〈

→
h(tai ),

→
h(tbj)〉 (2)
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3.2 Representing Syntactic Structures with Distributed Trees
Distributed trees (Zanzotto and Dell’Arciprete, 2012) recursively encode syntactic trees t in small vectors
by means of a recursive function DT . These DTs preserve structural information as the dot product
between the DTs of two trees approximates the classical tree kernels TK as defined by Collins and
Duffy (2002), that is, TK(ta, tb) ≈ 〈DT (ta), DT (tb)〉. To obtain this result, distributed trees DT (t) are
defined as follows:

DT (t) =
∑

ti∈S(t)

√
λ|N(ti)|

→
s(ti) (3)

where S(t) is again the set of the subtrees of t,
→

s(ti) are vectors in Rm corresponding to tree fragment ti
and
√
λ|N(ti)| is the weight of subtree ti in the final feature space, with λ being the traditional parameter

used to penalize large subtrees and |N(ti)| being the number of nodes in ti. The approximation of tree

kernels is then given by the fact that 〈
→

s(ti),
→

s(tj)〉 ≈ δ(s(ti), s(tj)). Vectors with this property are called

distributed vectors. A key feature of the distributed vectors of subtrees
→

s(ti) is that these vectors are built
compositionally from a setN of nearly orthonormal random vectors

→
sn, that are associated to each node

label. Given a subtree s(ti), the related vector is obtained as:

→
s(ti) =

→
sn1 �

→
sn2 � . . .�

→
snk

=
⊙

(sn,wn)∈N(ti)

→
sn

where node vectors
→
sni are ordered according to a depth-first visit of subtree ti and� is a vector composi-

tion operation, specifically the shuffled circular convolution1. This function guarantees that two different
subtrees have nearly orthonormal vectors (see (Zanzotto and Dell’Arciprete, 2012) for more details). For

example, the fifth tree t5 of set S(t) in Figure 2 is
→

s(t5) =
→
S � (

→
NP � (

→
V P � (

→
V �

→
NP ))). Thus, DTs

in Equation 3 can be recursively defined as:

DT (t) =
∑

n∈N(t)

σ(n) (4)

where σ(n) is recursively defined as follows:

σ(n) =

{√
λ (
→
sn �→w) if n is a pre-terminal node√

λ
→
sn � (

⊙
i
(
→

sci(n) + σ(ci(n)))) if n is an internal node
(5)

The vector σ(n) encodes all the subtrees that have root in n along with their penalizing weight
√
λ|N(ti)|,

that is:
σ(n) =

∑
ti∈S(t)∧h(ti)=n

√
λ|N(ti)|

→
s(ti)

This is what we need in order to define our distributed smoothed trees.

3.3 Representing distributional meaning and distributed structure with matrices
We now move from distributed trees (encoded as small vectors) to distributed smoothed trees (DST)
represented as matrices. DST is a function that maps trees t to matrices T. In analogy with Equation 4,
DST is defined as:

DST (t) =
∑

n∈N(t)

S(n)

where S(n) is now defined as:

S(n) = σ(n)
→
wn
>

1The shuffled circular convolution � is defined as
→
a �

→
b = s1(

→
a ) ∗ s2(

→
b ) where ∗ is the circular convolution and s1 and

s2 are two different (but fixed) random permutations of vector elements.
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where σ(n) is the one defined in Equation 5 and (·)> is vector transposition. By combining the two
equations, DST (t) is the sum of the matrices described in Equation 1:

DST (t) =
∑

n∈N(t)

∑
ti∈S(t)∧h(ti)=n

√
λ|N(ti)|

→
s(ti)

→
wn
>

=
∑

ti∈S(t)

→
s(ti)

→
wn
>

where n is h(ti) and Ti =
→

s(ti)
→

wh(ti)

>
is the outer product between the distributed vector

→
s(ti) and

the distributional vector
→

wh(ti). There is an important property of the outer product that applies to the

Frobenius product: 〈→a→w>,
→
b
→
v
>〉F = 〈→a ,

→
b 〉 · 〈→w,→v 〉. Using this property, we have that Equation 2 is

satisfied as:

〈Ti,Tj〉F = 〈
→

s(ti),
→

s(tj)〉 · 〈 →wh(ti),
→

wh(tj)〉 ≈ δ(s(ti), s(tj)) · 〈
→

wh(ti),
→

wh(tj)〉
We refer to the Frobenius product of two distributed smoothed trees as distributed smoothed tree kernel
(DSTK). These DSTKs are approximating the smoothed tree kernels described in the next section. We
propose two versions of our DSTKs according to how we produce distributional vectors for words. We
have a plain version DSTK0 when we use distributional vectors

→
wn as they are, and a slightly modified

version DSTK+1 when we use as distributional vectors
→
wn
′
=
(
1

→
wn

)
.

3.4 The Approximated Smoothed Tree Kernels
The two CDSMs we proposed, that is, the two distributed smoothed tree kernelsDSTK0 andDSTK+1,
are approximating two specific tree kernels belonging to the smoothed tree kernels class (e.g., (Mehdad
et al., 2010; Croce et al., 2011)). These two specific smoothed tree kernels recursively compute (but, the
recursive formulation is not given here) the following general equation:

STK(ta, tb) =
∑

ti∈S(ta)

tj∈S(tb)

ω(ti, tj)

where ω(ti, tj) is the similarity weight between two subtrees ti and tj . DTSK0 and DSTK+1 approx-
imate respectively STK0 and STK+1 where the weights are defined as follows:

ω0(ti, tj) = 〈 →wh(ti),
→

wh(tj)〉 · δ(s(ti), s(tj)) ·
√
λ|N(ti)|+|N(tj)|

ω+1(ti, tj) = (〈 →wh(ti),
→

wh(tj)〉+ 1) · δ(s(ti), s(tj)) ·
√
λ|N(ti)|+|N(tj)|

STK+1 is actually computing a sum between STK0 and the tree kernel (Collins and Duffy, 2002).

4 Experimental investigation

4.1 Experimental set-up
Generic settings We experimented with two datasets: the Recognizing Textual Entailment datasets
(RTE) (Dagan et al., 2006) and the the Semantic Textual Similarity 2013 datasets (STS) (Agirre et al.,
2013). The STS task consists of determining the degree of similarity (ranging from 0 to 5) between
two sentences. We used the data for core task of the 2013 challenge data. The STS datasets contains
5 datasets: headlines, OnWN, FNWN, SMT and MSRpar, which contains respectively 750, 561, 189,
750 and 1500 pairs. The first four datasets were used for testing, while all the training has been done
on the fifth. RTE is instead the task of deciding whether a long text T entails a shorter text, typically
a single sentence, called hypothesis H . It has been often seen as a classification task (see (Dagan et
al., 2013)). We used four datasets: RTE1, RTE2, RTE3, and RTE5, with the standard split between
training and testing. The dev/test distribution for RTE1-3, and RTE5 is respectively 567/800, 800/800,
800/800, and 600/600 T-H pairs. Distributional vectors are derived with DISSECT (Dinu et al., 2013)
from a corpus obtained by the concatenation of ukWaC (wacky.sslmit.unibo.it), a mid-2009 dump of
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RTE1 RTE2 RTE3 RTE5 headl FNWN OnWN SMT

STK0 vs DSTK0

1024 0.86 0.84 0.90 0.84 0.87 0.65 0.95 0.77

2048 0.87 0.84 0.91 0.84 0.90 0.65 0.96 0.77

STK+1 vs DSTK+1

1024 0.81 0.77 0.83 0.72 0.88 0.53 0.93 0.66

2048 0.82 0.78 0.84 0.74 0.91 0.56 0.94 0.67

Table 1: Spearman’s correlation between Distributed Smoothed Tree Kernels and Smoothed Tree Kernels

the English Wikipedia (en.wikipedia.org) and the British National Corpus (www.natcorp.ox.ac.uk), for
a total of about 2.8 billion words. We collected a 35K-by-35K matrix by counting co-occurrence of the
30K most frequent content lemmas in the corpus (nouns, adjectives and verbs) and all the content lemmas
occurring in the datasets within a 3 word window. The raw count vectors were transformed into positive
Pointwise Mutual Information scores and reduced to 300 dimensions by Singular Value Decomposition.
This setup was picked without tuning, as we found it effective in previous, unrelated experiments. To
build our DTSKs and for the two baseline kernels TK and DTK, we used the implementation of the
distributed tree kernels2. We used: 1024 and 2048 as the dimension of the distributed vectors, the weight
λ is set to 0.4 as it is a value generally considered optimal for many applications (see also (Zanzotto and
Dell’Arciprete, 2012)). The statistical significance, where reported, is computed according to the sign
test.

Direct correlation settings For the direct correlation experiments, we used the RTE data sets and the
testing sets of the STS dataset (that is, headlines, OnWN, FNWN, SMT). We computed the Spearman’s
correlation between values produced by our DSTK0 and DSTK+1 and produced by the standard ver-
sions of the smoothed tree kernel, that is, respectively, STK0 and STK+1. We obtained text fragment
pairs by randomly sampling two text fragments in the selected set. For each set, we produced exactly the
number of examples in the set, e.g., we produced 567 pairs for RTE1 dev, etc..

Task-based settings For the task-based experiments, we compared systems using the standard evalua-
tion measure and the standard split in the respective challenges. As usual in RTE challenges the measure
used is the accuracy, as testing sets have the same number of entailment and non-entailment pairs. For
STS, we used MSRpar as training, and we used the 4 test sets as testing. We compared systems using
the Pearson’s correlation as the standard evaluation measure for the challenge3. Thus, results can be
compared with the results of the challenge.

As classifier and regression learner, we used the java version of LIBSVM (Chang and Lin, 2011). In
the two tasks we used in a different way our DSTs (and the related STKs) within the learners. In the
following, we refer to instances in RTE or STS as pairs p = (ta, tb) where ta and tb are the two parse
trees for the two sentences a and b for STS and for the text a and the hypothesis b in RTE.

We will indicate with K(p1, p2) the final kernel used in the learning algorithm, which takes as in-
put two training instances, while we will use κ to denote either any of our DSTK (that is, κ(x, y) =
〈DST (x), DST (y)〉) or any of the standard smoothed tree kernels (that is, κ(x, y) = STK(x, y)).

In STS, we encoded only similarity feature between the two sentences. Thus, we used two classes of
kernels: (1) the syntactic/semantic class (SS) with the final kernel defined as K(p1, p2) = (κ(ta1, t

b
1) ·

κ(ta2, t
b
2) + 1)2; and, (2) the SS class along with token-based similarity (SSTS) where the final kernel is

K(p1, p2) = (κ(ta1, t
b
1) · κ(ta2, tb2) + TS(a1, b1) · TS(a2, b2) + 1)2 where TS(a, b) counts the percent of

the common content tokens in a and b.
In RTE, we followed standard approaches (Dagan et al., 2013; Zanzotto et al., 2009), that is, we

exploited two models: a model with only a rewrite rule feature space (RR) and a model with the previous
space along with a token-level similarity feature (RRTWS). The two models use our DSTs and the
standard STKs in the following way as kernel functions: (1) RR(p1, p2) = κ(ta1, t

a
2) + κ(tb1, t

b
2); (2)

RRTS(p1, p2) = κ(ta1, t
a
2) + κ(tb1, t

b
2) + (TWS(a1, b1) · TS(a2, b2) + 1)2 where TWS is a weighted

token similarity as in Corley and Mihalcea (2005).
2http://code.google.com/p/distributed-tree-kernels/
3Correlations are obtained with the organizers’ script
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SS SSTS
headl FNWN OnWN SMT Average headl FNWN OnWN SMT Average

TS — — — — — 0.701 0.311 0.515 0.323 0.462

Add — — — — — 0.691 0.268 0.511 0.317 0.446

Mult — — — — — 0.291 −0.03 0.228 0.291 0.201

DTK 0.448 0.118 0.162 0.301 0.257 0.698 0.311 0.510 0.329 0.462

TK 0.456 0.145 0.158 0.303 0.265∗ 0.699 0.316 0.511 0.329 0.463∗

DSTK0 0.491 0.155 0.358 0.305 0.327† 0.700 0.314 0.519 0.327 0.465

STK0 0.490 0.159 0.349 0.305 0.325∗ 0.700 0.314 0.519 0.327 0.465∗

DSTK+1 0.475 0.138 0.266 0.304 0.295 0.700 0.314 0.519 0.327 0.465

STK+1 0.478 0.156 0.259 0.305 0.299∗ 0.700 0.314 0.519 0.327 0.465∗

Table 2: Task-based analysis: Correlation on Semantic Textual Similarity ( † is different from DTK, TK,
DSTK+1, and STK+1 with a stat.sig. of p > 0.1; ∗ the difference between the kernel and its distributed
version is not stat.sig.)

We also used two standard and simple CDSMs to compare with: the Additive model (Add) and the
Multiplicative model (Mult) as firstly discussed in Mitchell and Lapata (2008). The Additive Model
performs a sum of all the distributional vectors of the content words in the text fragment and the Multi-
plicative model performs an element-wise product among all the content vectors. These are used in the
above models as κ(a, b).

Finally, to investigate whether our DSTKs behave better than purely structural models, we experi-
mented with the classical tree kernel (TK) (Collins and Duffy, 2002) and the distributed tree kernel (DTK)
(Zanzotto and Dell’Arciprete, 2012). Again, these kernels are used in the above models as κ(ta, tb).

4.2 Results
Table 1 reports the results for the correlation experiments. We report the Spearman’s correlations over
the different sets (and different dimensions of distributed vectors) between our DSTK0 and the STK0

(first two rows) and between our DSTK+1 and the corresponding STK+1 (second two rows) . The
correlation is above 0.80 in average for both RTE and STS datasets in the case of DSTK0 and the
STK0. The correlation between DSTK+1 and the corresponding STK+1 is instead a little bit lower.
This depends on the fact that DSTK+1 is approximating the sum of two kernels the TK and the STK0

(as STK+1 is the sum of the two kernels). Then, the underlying feature space is bigger with respect to the
one of STK0 and, thus, approximating it is more difficult. The approximation also depends on the size of
the distributed vectors. Higher dimensions yield to better approximation: if we increase the distributed
vectors dimension from 1024 to 2048 the correlation between DSTK+1 and STK+1 increases up to
0.80 on RTE and up to 0.77 on STS. This direct analysis of the correlation shows that our CDSM are
approximating the corresponding kernel function and there is room of improvement by increasing the size
of distributed vectors. Task-based experiments confirm the above trend. Table 2 and Table 3, respectively,
report the correlation of different systems on STS and the accuracies of the different systems on RTE.
Our CDSMs are compared against baseline systems (Add,Mult, TK, andDTK) in order to understand
whether in the specific tasks our more complex model is interesting, and against, again, the systems with
the corresponding smoothed tree kernels in order to explore whether our DSTKs approximate systems
based on STKs. For all this set of experiment we fixed the dimension of the distributed vectors to
1024. Table 2 is organized as follows: columns 2-6 report the correlation of the STS systems based
on syntactic/semantic similarity (SS) and columns 7-11 report the accuracies of SS systems along with
token-based similarity (SSTS). The first observation for this task is that baseline systems based only on
the token similarity (first row) behave extremely well. These results are above many models presented
in the 2013 Shared Task (see (Agirre et al., 2013)). This can be disappointing as we cannot appreciate
differences among methods in the columns SSTS. But, focusing on the results without this important
token-based similarity, we can better understand if our model is capturing both structural and semantic
information, that is, if DSTKs behave similarly to STKs. It is also useless to compare results of DSTKs
and STKs to the Add baseline model as Add is basically doing a weighted count of the common words
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RR RRTWS
RTE1 RTE2 RTE3 RTE5 Average RTE1 RTE2 RTE3 RTE5 Average

Add 0.541 0.496 0.507 0.520 0.516 0.560 0.538 0.643 0.578 0.579

Mult 0.495 0.481 0.497 0.528 0.500 0.533 0.563 0.642 0.586 0.581

DTK 0.533 0.515 0.516 0.530 0.523 0.583 0.601 0.643 0.621 0.612

TK 0.561 0.552 0.531 0.54 0.546 0.608 0.627 0.648 0.630 0.628

DSTK0 0.571 0.551 0.547 0.531 0.550† 0.628 0.616 0.650 0.625 0.629†

STK0 0.586 0.563 0.538 0.545 0.558∗ 0.638 0.618 0.648 0.636 0.635∗

DSTK+1 0.588 0.562 0.555 0.541 0.561† 0.638 0.621 0.646 0.652 0.639†

STK+1 0.586 0.562 0.542 0.546 0.559∗ 0.638 0.618 0.650 0.636 0.635∗

Table 3: Task-based analysis: Accuracy on Recognizing Textual Entailment ( † is different from DTK
and TK wiht a stat.sig. of p > 0.1; ∗ the difference between the kernel and its distributed counterpart is
not statistically significant.)

that is exactly what the token-based similarity is doing. Add slightly decreases the performance of
the token-based similarity. The Mult model instead behaves very poorly. Comparing rows in the SS
columns, we can discover that DSTK0 and DSTK+1 behave significantly better than DTK and that
DSTK0 behave better than the standard TK. Thus, our DSTKs are positively exploitng distributional
semantic information along with structural information. Moreover, both DSTK0 and DSTK+1 behave
similarly to the corresponding models with standard kernels STKs. Results in this task confirm that
structural and semantic information are both captured by CDSMs based on DSTs.

Table 3 is organized as follows: columns 2-6 report the accuracy of the RTE systems based on rewrite
rules (RR) and columns 7-11 report the accuracies of RR systems along with token similarity (RRTS).
Results on RTE are extremely promising as all the models including structural information and distribu-
tional semantics have better results than the two baseline models with a statistical significance of 93.7%.
For RR models DTSK0, STK0, DSTK+1, and STK+1 have an average accuracy 7.9% higher than
Add and 11.4% higher than Mult model. For RRTS, the same happens with an average accuracy 9.58%
higher than Add and 9.2% higher than the Mult. This task is more sensible to syntactic information
than STS. As expected (Mehdad et al., 2010), STKs behave also better than tree kernels exploiting only
syntactic information. But, more importantly, our CDSMs based on the DSTs are behaving similarly
to these smoothed tree kernels, in contrast to what reported in (Zanzotto and Dell’Arciprete, 2011). In
(Polajnar et al., 2013), it appears that results of the Zanzotto and Dell’Arciprete (2011)’s method are
comparable to the results of STKs for STS, but this is mainly due to the flattening of the performance
given by the lexical token similarity feature which is extremely relevant in STS. Even if distributed tree
kernels do not approximate well tree kernels with distributed vectors dimension of 1024, our smoothed
versions of the distributed tree kernels approximate correctly the corresponding smoothed tree kernels.
Their small difference is not statistically significant (less than 70%). The fact that our DSTKs behave
significantly better than baseline models in RTE and they approximate the corresponding STKs shows
that it is possible to positively exploit structural information in CDSMs.

5 Conclusions and Future Work
Distributed Smoothed Trees (DST) are a novel class of Compositional Distributional Semantics Mod-
els (CDSM) that effectively encode structural information and distributional semantics in tractable 2-
dimensional tensors, as experiments show. The paper shows that DSTs contribute to close the gap be-
tween two apparently different approaches: CDSMs and convolution kernels (Haussler, 1999). This
contribute to start a discussion on a deeper understanding of the representation power of structural infor-
mation of existing CDSMs.
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