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Abstract

Word Sense Induction (WSI) aims to automatically induce meanings of a polysemous word from
unlabeled corpora. In this paper, we first propose a novel Bayesian parametric model to WSI.
Unlike previous work, our research introduces a layer of hidden concepts and view senses as
mixtures of concepts. We believe that concepts generalize the contexts, allowing the model to
measure the sense similarity at a more general level. The Zipf’s law of meaning is used as a
way of pre-setting the sense number for the parametric model. We further extend the parametric
model to non-parametric model which not only simplifies the problem of model selection but
also brings improved performance. We test our model on the benchmark datasets released by
Semeval-2010 and Semeval-2007. The test results show that our model outperforms state-of-the-
art systems.

1 Introduction

Word Sense Induction (WSI) aims to automatically induce meanings of a polysemous word from unla-
beled corpora. It discriminates among meanings of a word by identifying clusters of similar contexts.
Unlike the task of Word Sense Disambiguation (WSD), which classifies polysemous words according
to a pre-existing and usually hand-crafted inventory of senses, WSI makes it attractive to researchers by
eliminating dependence on a particular sense inventory and learning word meaning distinction directly
based on the contexts as observed in corpora.

Almost all WSI work relies on the distributional hypothesis, which states that words occurring in
similar contexts will have similar meanings. To effectively discriminate among contexts, proper repre-
sentation of contexts would be a key issue. Basically, context can be represented as a vector of words
co-occurring with the target word within a fixed context window. The similarity between two contexts
of the target word can then be measured by the geometrical distance between the corresponding vectors.
To ease the sparse problem and capture more semantic content, some kinds of generalizations or abstrac-
tions are needed. For example, a context of bank including money may not share similarity with that
including cash measured at word level. However, given the conceptual relationship between money and
cash, the two contexts actually share high similarity.

One straightforward way of introducing conceptualization is to assign semantic code to context words,
where semantic codes could be derived from WordNet or other resources like thesauruses. However, two
problems remain to be tackled. The first one concerns ambiguities of context words. Context words may
have multiple semantic codes and thus word sense disambiguation to context words or other extra cost
is needed. The second one concerns the nature of WSI task. WSI actually is target-word-specific, which
means the conceptualization should be done specifically to different target words. A general purpose
conceptualization defined by a thesaurus may not well meet this requirement and may not be equally
successful in discriminating contexts of different target words.

To address these problems, we first propose a parametric Bayesian model which jointly finds concep-
tual representations of context words and the sense of the target word. We do this by introducing a layer
of target-specific conceptual representation between the target sense layer and the context words layer
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Figure 1: Architecture of our model Figure 2: Graphical notation of the Basic Model

through a Bayesian framework as illustrated in Figure 1. From the generative perspective, the sense of
the target word is first sampled. Then the sense generates different conceptual configurations which in
turn generate different contexts. With a deeper architecture, our model makes it possible to induce word
senses at a more abstract level, i.e. the concept level, which is not only less sparse but also more seman-
tically oriented. Both the senses of the target word and the latent concepts are inferred automatically and
unsupervisedly with inference procedure given enough contexts involving a target word. The latent con-
cepts inferred with the model share similarities with those defined in thesauruses, as both of them cluster
semantically related words. However, since the latent concepts are inferred with regard to individual
target words, they are target-word-specific and thus fit the WSI task better than general purpose concepts
defined in thesauruses. Context words may still correspond to multiple latent concepts. However, the
disambiguation is implicitly done in the process of the word sense induction.

Setting the number of senses that the algorithm should arrive at is another problem frequently exer-
cising the minds of WSI people. Instead of trying different sense numbers on a word-by-word basis,
we propose to use Zipf’s law of meaning (Zipf, 1945) to guide the selection of the sense numbers in
this paper. With the law of meaning, sense numbers could be set on an all-word basis, rather than on a
word-by-word basis. This is not only simple but also efficient, especially in the case where there are a
large number of target words to be concerned.

We further extend the parametric model into a non-parametric model, as it allows adaptation of model
complexity to data. By extending our model to non-parametric model, the need to preset the numbers of
senses and latent concepts are totally removed and, moreover, the model performance is also improved.

We evaluate our model on the commonly used benchmark datasets released by both Semeval-2010
(Manandhar et al., 2010) and Semeval-2007 (Agirre and Soroa, 2007). The test results show that our
models perform much better than the state-of-the-art systems.

2 The parametric model

2.1 Basic Model
The main point of our work is that different senses are signaled by contexts with different concept con-
figurations, where different concepts are formally defined as different distributions over context words.
Formally, we denote by P (s) the global multinomial distribution over senses of an ambiguous word
and by P (w|z) the multinomial distributions over context words w given concept z. Context words are
generated by a mixture of different concepts whose mixture proportion is defined by P (z|s), such that:

P (wi) =
∑
j

P (s = j)
∑
k

P (zi = k|s = j)P (wi|zi = k)

Following the model, each context word wi surrounding the target word is generated as follows: First, a
sense s is sampled from P (s) for the target word. Then for each context word position i, a concept zi is
sampled according to mixture proportion P (z|s) and wi is finally sampled from P (w|z).

Figure 2 shows the model with the graphical notation, where M is the number of instances of contexts
regarding to a concerned target word and Nm is the number of word tokens in context m. sm is the
sense label for target word in context m. wm,n is the n-th context word in context m. zm,n is the
concept label associated with wm,n. I is the total number of senses to be induced. J is the total number
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Figure 3: Graphical notation of the non-parametric WSI model

of concepts. ~θ is the notational shorthand for the sense distribution P (s), ~ρi is the shorthand for the
i-th sense-concept distribution P (z|s = i), and ~ϕj is the j-th concept-word distribution P (w|z = j).
Following conventional Bayesian practice, ~θ, ~ρi and ~ϕj are assumed to be drawn from Dirichlet priors
with symmetric parameter α, γ, β respectively. The observed variable is represented with shaded node
and hidden variable with unshaded node.

2.2 Zipf’s law of meaning
Most of the WSI work requires that the number of senses to be induced be specified ahead of time.
One straightforward way to deal with this problem is to repeatedly try different numbers of senses on
a development set and select the best performed number. However, this should be done in principle on
a word-by-word basis, and thus could be time-consuming and prohibitive when there are lots of target
words to be concerned. A more systematic way of setting sense numbers in Bayesian models is extending
the parametric model into a non-parametric model, which will be described in detail in section 3.

To work with our parametric model, we propose in this paper that an empirical law, Zipf’s law of
meaning (Zipf, 1945), could be used to guide the sense number selection. Zipf’s law of meaning states
that the number of sense of a word is proportional to its frequency as shown in the following equation:

I = K ∗ f b (1)

where I is the number of word senses and f is the frequency of the word. K is the coefficient of
proportionality which is unknown and b is about 0.404 according to an experimental study done by
Edmonds (2006).

Certainly, Zipf’s law of meaning is not as strict as a rigorous mathematical law. However, it sketches
the distribution of the sense numbers with word frequencies of all words and allows us to estimate the
sense numbers on an all-word basis by selecting appropriate coefficient K. This is not only simple but
also efficient, especially in the case that there are a large number of target words to be concerned.

3 Non-parametric Model

A limitation of the parametric model is that the sense number I of the target word and the number J
of latent concepts need to be fixed beforehand. Bayesian non-parametric (BNP) models offer elegant
approach to the problem of model selection and adaption. Rather than comparing models that vary in
complexity, the BNP approach is to fit a single model that can adapt its complexity to the data. Unlike
the parametric approach, BNP approach assumes an infinite number of clusters, among which only a few
are active given the training data. Our basic model can be naturally extended into a BNP model as shown
in Figure 3. Instead of assuming a finite number of senses, we place a nonparametric, Dirichlet process
(DP) prior on the sense distribution as follows:

G ∼ DP (α,H)
sm ∼ G,m = 1, 2, . . . ,M

where α is the concentration parameter and H is the base measure of the Dirichlet process.
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For each sense si of the target words, we place a Hierarchical Dirichlet process (HDP) prior on the
mixture proportion to latent concepts shown as follows:

G0 ∼ DP (µ,H0)
Gi ∼ DP (γ,G0), i = 1, 2, . . .

zm,n ∼ Gi, n = 1, 2, . . . , Nm

wm,n ∼ ~ϕzm,n

where µ and γ are concentration parameters to G0 and Gi, H0 is the base measure of G0.
By using HDP priors, we make sure that the same set of concept-word distributions is shared across

all senses and all contexts of a target word, since each random measure Gi inherits its set of concepts
from the same G0.

As in parametric model, ~ϕj is the j-th concept-word distribution P (w|z = j), however, there are now
an infinite number of such distributions. So is the number of senses. However, with a fixed number of
contexts of the target word, only a finite number of senses and concepts are active and they could be
inferred automatically by the inference procedure.

4 Model Inference

We use Gibbs sampling (Casella and George, 1992) for inference to both the parametric and nonpara-
metric model. As a particular Markov Chain Monte Carlo (MCMC) method, Gibbs sampling is widely
used for inference in various Bayesian models (Teh et al., 2006; Li and Li, 2013; Li and Cardie, 2014).

4.1 The Parametric Model

For the parametric model, we use collapsed Gibbs sampling, in which the sense distribution ~θ, sense-
concept distribution ~ρi and concept-word distribution ~ϕj are integrated out. At each iteration, the sense
label sm of the target word in context m is sampled from conditional distribution p(sm|~s¬m, ~z, ~w),
and the concept label zm,n for the context word wm,n is sampled from conditional distribution
p(zm,n|~s, ~z¬(m,n), ~w). Here ~s¬m refers to all current sense assignments other than sm and ~z¬(m,n) refers
to all current concept assignment other than zm,n.

The conditional distribution p(sm|~s¬m, ~z, ~w) and p(zm,n|~s, ~z¬(m,n), ~w) can be derived as shown in
equation (2) and (3) respectively:

p(sm = i|~s¬m, ~z, ~w;α, β, γ) ∝ (c¬mi + α) ·
∏J
j=1

∏fm,j

x=1 (c¬mi,j + γ + x− 1)∏fm,∗
x=1 (

∑J
j=1 c

¬m
i,j + J ∗ γ + x− 1)

(2)

p(zm,n = j|~s, ~z¬(m,n), ~w;α, β, γ) ∝ (c¬(m,n)
sm,j

+ γ) ·
(c¬(m,n)
j,wm,n

+ β)∑V
t=1 c

¬(m,n)
j,t + V ∗ β

(3)

Here, c¬mi is the number of instances with sense i. c¬mi,j is the number of concept j in instances with sense

i. Both of them are counted without the m-th instance of the target word. c¬(m,n)
sm,j

is defined in a similar

way with c¬mi,j but without counting the word position (m,n). c¬(m,n)
j,wm,n

is the number of times word wm,n
is assigned to concept j without counting word position (m,n). fm,j is the number of concept j assigned
to context words in instance m and fm,∗ is the total number of words in contexts of instance m. V stands
for the size of the word dictionary, i.e. the number of different words in the data. x is an index which
iterates from 1 to fm,∗.
~θ, ~ρi and ~ϕj can be estimated in a similar way, we now only show as example the estimation of ~ρi,

parameters for sense-concept distributions. According to their definitions as multinomial distributions
with Dirichlet prior, applying Bayes’ rule yields:

p(~ρi|~z;~γ) =
p(~ρi;~γ) ∗ p(~z|~ρi;~γ)

Z~ρi

= Dir(~ρi|~ci + ~γ)
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where ~ci is the vector of concept counts for sense i. Using the expectation of the Dirichlet distribution,
values of ρi,j can be worked out as follows:

ρi,j =
ci,j + γ∑J

k=1 ci,k + J ∗ γ
Different read-outs of ρi,j are then averaged to produce the final estimation.

4.2 The Non-parametric Model
Chinese restaurant process (CRP) and Chinese restaurant franchise (CRF) process (Teh et al., 2006)
have been widely used as sampling scheme for DP and HDP respectively. As our non-parametric model
involves both DP and HDP, we use both CRP and CRF based sampling for model inference.

In the CRP metaphor to DP, there is one Chinese restaurant with an infinite number of tables, each of
which can seat an infinite number of customers. The first customer enters the restaurant and sits at the
first table. The second customer enters and decides either to sit with the first customer or by herself at
a new table. In general, the n + 1st customer either joins an already occupied table k with probability
proportional to the number nk of customers already sitting there, or sits at a new table with probability
proportional to α. As in our model, when we sample the sense sm for each context, we assume that
tables correspond to senses of target words and customers correspond to whole contexts in which the
target word occurs.

In the CRF metaphor to HDP, there are multiple Chinese restaurants, and each one has infinitely many
tables. On each table the restaurant serves one of infinitely many dishes that other restaurants may serve
as well. At each table of each restaurant one dish is ordered from the menu by the first customer who
sits there, and it is shared among all customers who sit at that table. The menu is shared by all the
restaurants. To be specific to our model, when we sample the concept zm,n for each context word, we
assume each sense sm of the target word corresponds to a restaurant and each word wm,n corresponds
to a customer while concept zm,n corresponds to the dishes served to the customer by the restaurant.
Neither the number of restaurant nor the number of dishes is finite in our model.

For model inference, we first sample sm using CRP-based sampling and then we sample zm,n for each
sm using CRF-based sampling. The sampling of sm and zm,n are done alternately, but not independently.
The sampling of sm is conditional on the current value of zm,n and vice versa, conforming to the scheme
of Gibbs Sampling.

The equation for sampling sm is derived as in equation (4):

p(sm = i|~s¬m, ~z, ~w) ∝
{
c¬mi · p(~zm|~z¬m, sm = i) if i = old
α · p(~zm|~z¬m, sm = inew) else

where

p(~zm|~z¬m, sm = i) =

∏J
j=1

∏fm,j

x=1 (c¬mi,j + γ ∗ c¬m
t,j

c¬m
t,∗ +µ + x− 1)∏fm,∗

x=1 (
∑J

j=1 c
¬m
i,j + γ + x− 1)

(4)

Here p(~zm|~z¬m, sm = i) is estimated block-wise for context m according to the CRF metaphor. c¬mi
and c¬mi,j are defined in the same way as that in equation (2). c¬mt,j is the number of tables with dish j in
all restaurants but m and c¬mt,∗ means the number of tables in all restaurants but m. x is an index which
iterates from 1 to fm,∗.

Sampling zm,n needs more steps than sampling sm as we need to record the table assignment for each
dish (concept). For each dish zm,n of a customer wm,n, we first sample the table at which the customer
sits according to the following equations:

p(tm,n = t|~t¬(m,n), ~z¬(m,n), wm,n, sm = i) ∝
{
c
¬(m,n)
i,t · p¬(m,n)

j (wm,n) if t = old

γ · p(wm,n|~t¬(m,n), tm,n = t, ~z¬(m,n), wm,n) else
where

p
¬(m,n)
j (wm,n) = p(wm,n|zm,n = j, ~w¬(m,n)) =

c
¬(m,n)
j,wm,n

+ β∑V
t=1 c

¬(m,n)
j,t + V β
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Basic Model BNP
α 1.0 0.2
β 0.05 0.01
γ 0.05 0.2
µ N/A 0.001
K 0.27 N/A

Concept number 20 N/A
Context window ± 5 words ± 9 words

Table 1: Hyperparamters of our models

Here c¬(m,n)
i,t is the number of customers on table t in restaurant i and c¬(m,n)

j,wm,n
has the same meaning as

in equation (3). If the sampled table t is previously occupied, then zm,n is set to the dish j assigned to
t according to the CRF metaphor. If the sampled table t is new, the probability p(wm,n|~t¬(m,n), tm,n =
t, ~z¬(m,n), wm,n) is calculated using equation (5), which is the sum of the probability of all previously
ordered dishes and the newly ordered dish.

p(wm,n|~t¬(m,n), tm,n = t, ~z¬(m,n), wm,n) =
J∑
j=1

c
¬(m,n)
t,j

c
¬(m,n)
t,∗ + µ

· p¬(m,n)
j (wm,n) +

µ

c
¬(m,n)
t,∗ + µ

· p¬(m,n)
jnew

(5)
Because a new table is added, we then sample a new dish for this table according to equation (6).

p(zm,n = j|~t, ~z¬(m,n)) ∝
{
c
¬(m,n)
t,j · p¬(m,n)

j (wm,n) if j = old

µ · p¬(m,n)
jnew (wm,n) if j = new

(6)

After the dish j is sampled, it is assigned to the new table and the number of table serving dish j is added.
Parameters ~θ, ~ρi and ~ϕj can be estimated in the same way as described in section 4.1.

5 Experiment

5.1 Experiment Setup
Data Our primary WSI evaluation is based on the standard dataset in Semeval-2010 Word sense induc-
tion & Disambiguation task (Manandhar et al., 2010). The target word dataset consists of 100 words, 50
nouns and 50 verbs. There are a total number of 879,807 sentences in training set and 8,915 sentences in
testing set. The average number of word senses in the data is 3.79.
Model Selection The trail data of Semeval-2010 WSI task is used as development set for parameter
tuning, which consists of training and test portions of 4 verbs. The 4 verbs are different words than the
100 target words in the training data. There are only about 138 instances on average for each target word
in the training part of the trial data. To make a development set of more reasonable size, the trial data
are supplemented with 6K instances of the 4 verbs extracted from the British National Corpus (BNC)1

corpus. As we use the Zipf’s law of meaning to guide the selection of number of senses, BNC was also
used to count word frequencies.

The final hyper-parameters are set as in Table 1. In all the following experiments, Gibbs sampler is
run for 2000 iterations with burn-in period of 500 iterations. Every 10th sample is read out for parameter
estimating after the burn-in period to avoid autocorrelation. Due to the randomized property of Gibbs
sampler, all results in the next sections are averaged over 5 runs. The average running time for each target
word is about 7 minutes on a computer equipped with an Intel Core i5 processor working at 3.1GHz and
8GB RAM.
Pre-Processing For each instance of the target word in training data and testing data, all words are
lemmatized and stop words like ‘of ’, ‘the’, ‘a’ which are irrelevant to word sense distinction are filtered.
Words occurring less than twice are removed.
Evaluation method Semeval-2010 WSI task presents two evaluation schemes which are supervised
evaluation and unsupervised evaluation. In supervised evaluation, the gold standard dataset is split into

1www.natcorp.ox.ac.uk/
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Model
Supervised Evaluation Unsupervised Evaluation

Averaged #s
80-20 split 60-40 split V-Measure Paired-Fscore

Basic Model 64.12 63.68 11.52 44.42 5
Basic Model + Zipf 66.4 65.25 15.2 35.12 7.66

BNP 69.3 68.9 21.4 23.1 15.62

Table 2: Test results with different configurations.

Figure 4: Examples of concepts induced with the BNP model specific to the target word address.n (with
ci denoting concept)

a mapping and an evaluation parts. The first part is used to map the automatically induced senses to
gold standard senses. The mapping is then used to calculate the system’s F-Score on the second part.
According to the size of mapping data and evaluation data, the evaluation results are measured on two
different splits which are 80-20 splits and 60-40 splits. 80-20 splits means that 80% of the test data are
used for mapping and 20% are used for evaluation. In unsupervised evaluation, the system outputs are
compared by using metrics V-Measure (Rosenberg and Hirschberg, 2007) and Paired F-Score (Artiles et
al., 2009).

5.2 Experiment Results

Table 2 lists all experiment results. The Basic Model stands for the parametric model with fixed number
of senses for all target words. The number of senses is set to 5 which gives the best performance on
development set. Basic Model + Zipf is the model with the number of sense estimated by Zipf’s law of
meaning. BNP stands for our non-parametric model. As we can see, compared with the Basic Model with
fixed sense number, the model using Zipf’s law of meaning achieves improved performance. This means
Zipf’s law of meaning has positive effect in setting the sense number of the WSI task. BNP achieves the
best performance on both supervised evaluation and V-measure evaluation. In terms of Paired F-score,
however, the Basic Model gets the best results while BNP performs worst. This is consistent with what
claimed by Manandhar et al. (2010), that Paired F-score tends to penalize the model with higher number
of clusters.

As stated before, our models not only perform word sense induction but also group the context words
into concepts. Figure 4 shows 4 of the concepts induced by BNP with regard to the target word address.n.
Senses of address.n are defined as the mixture of concepts and concepts are defined as distributions over
context words. We only list the top five words with the highest probabilities under each concept. As
shown in Table 2, the non-parametric model induces much finer granularity of senses than the gold
standard, it makes distinction among email address, web address, and even ip address. A possible
solution is to further measure the closeness of senses based on the sense representations induced and
merge similar senses to produce coarser granularity of senses.
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Model F-score(%)
BNP+position 69.7
BNP 69.3
Basic Model + Zipf 66.4
Basic Model 64.1
HDP 65.8
HDP+position (Lau et al., 2012) 68
distNB (Choe and Charniak, 2013) 65.4
UoY (Korkontzelos and Manandhar, 2010) 62.4

Model F-score(%)
BNP+position 88.0
BNP 86.1
HDP (Yao and Van Durme, 2011) 85.7
HDP+position (Lau et al., 2012) 86.9
Feature-LDA (Brody and Lapata, 2009) 85.5
1-layer-LDA (Brody and Lapata, 2009) 84.6
HRG (Klapaftis and Manandhar, 2010) 87.6
I2R (Niu et al., 2007) 86.8

Table 3: Comparison with state-of-the-arts on Semeval-2010 data (left) and Semeval-2007 data (right)

5.3 Comparison with previous work

Much previous work (Brody and Lapata, 2009; Klapaftis and Manandhar, 2010; Yao and Van Durme,
2011) tested their models only on Semeval-2007 dataset (Agirre and Soroa, 2007) which consists of
roughly 27K instances of 65 target verbs and 35 target nouns, coming from the Wall Street Journal
corpus (WSJ) (Agirre and Soroa, 2007). For a complete comparison, we also test our model on the
Semeval-2007 dataset. Since training data was not provided as part of the original Semeval-2007 dataset,
we follow the approach of previous work (Brody and Lapata, 2009; Yao and Van Durme, 2011; Lau et
al., 2012) to construct training data for each target word by extracting instances from the BNC corpus.
Following paractices as much previous work (Brody and Lapata, 2009; Yao and Van Durme, 2011; Lau
et al., 2012) did, we compare with previous work with supervised F-score on 80-20 data split in Semeval-
2010 and noun data in Semeval-2007.

Table 3 (left) compares our models against the state-of-the-art systems tested on 80-20 data split in
Semeval-2010. HDP+position (Lau et al., 2012) improved the HDP model (Yao and Van Durme, 2011)
by including a position feature. distNB (Choe and Charniak, 2013) extends the naive Bayes model
by reweighting the conditional probability of a context word given the sense by its distance to the tar-
get word. UoY (Korkontzelos and Manandhar, 2010) is the best performing system in Semeval-2010
competition which used a graph-based model. We re-implemented and tested the HDP model on the
Semeval-2010 dataset since Yao and Van Durme (2011) and Lau et al. (2012) did not report their HDP
results on this dataset.

Different with normal practice in WSI work, there is no feature engineering in our model. However,
our BNP model outperformed all the systems on supervised evaluation. Even the Basic Model outper-
formed the best performing Semeval-2010 system. Especially, our BNP model performs much better
than the HDP model. Both Lau et al. (2012) and Choe and Charniak (2013) show benefit of using po-
sitional information. Since our model does not exclude further feature engineering, we also introduce a
position feature2 into our non-parametric model (BNP+position) as in Lau et al. (2012). This contributes
to a further 0.4% rise in performance.

Table 3 (right) compares our models with previous work on the nouns dataset in Semeval-2007. We
divides systems being compared into two groups. The first group model the WSI task with Bayesian
framework, while the second group uses models other than Bayesian model. Feature-LDA is the LDA-
based model proposed by Brody and Lapata (2009) which incorporates a large number of features into the
model. The 1-layer-LDA is their model with only bag-of-words features. HRG is a hierarchical random
graph model. I2R is the best performing system in Semeval-2007. As shown in Table 3 (right), our
BNP model with position feature (BNP+position) outperforms all systems. If we restrict our attention
to the first group in which all models are Bayesian model, our BNP model without feature engineering
outperforms the HDP model which is also non-parametric model without feature engineering.

6 Related Work

A large body of previous work is devoted to the task of Word Sense Induction. Almost all work relies
on the distributional hypothesis, which states that words occurring in similar contexts will have similar
meanings. Different work exploits distributional information in different forms, including context clus-
tering models (Schütze, 1998; Niu et al., 2007; Pedersen, 2010; Elshamy et al., 2010; Kern et al., 2010),
graph-based models (Korkontzelos and Manandhar, 2010; Klapaftis and Manandhar, 2010) and Bayesian

2Formally, the position feature is the context words with its relative position to the target word.
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models. For Bayesian models, Brody and Lapata (2009) firstly introduced a Bayesian model to WSI task.
They used the LDA-based model in which contexts of target word were viewed as documents as in the
LDA model (Blei et al., 2003) and senses as topics. They trained a separate model for each target word
and included a variety of features such as words, part-of-speech and dependency information. Yao and
Van Durme (2011) extended LDA-based model into non-parametric HDP model but removed the feature
engineering. Lau et al. (2012) showed improved supervised F-score by including position feature to the
HDP model. Choe and Charniak (2013) proposed a reweighted naive Bayes model by incorporating the
idea that words closer to the target word are more relevant in predicting the sense.

Our model differs from the context clustering models and graph-based models, as it is a Bayesian
probabilistic model. Our work also differs from the LDA-based models. LDA topics were actually
re-interpreted as senses of target word as Brody and Lapata (2009) applied the LDA to WSI tasks, so
did Yao and Van Durme (2011) and Lau et al. (2012). They induced word senses by firstly tagging
(sampling) senses (of target words) to context words and selecting the mostly tagged sense as sense of
target words. Our model could be viewed as an extension of LDA, but fit the WSI task more naturally
and much better. We distinguish senses of target words from concepts of context words and assume that
they are separate. Therefore, our model has two hidden layers corresponding to the sense of the target
word and the concepts of the context words respectively. Basically, one decide the sense of the target
word based on the concept configuration of context words, instead of tagging senses of target word to
context words. The separation of senses of target word and concepts of context words is actually not
only required by linguistic intuition but also leads to improvement by our experiment. Our model is also
different from the naive Bayes model since our model induces senses of the target word at concept level
while naive Bayes model works at word level and does not involve conceptualization to context words at
all.

7 Conclusion

In this paper, we first proposed a parametric Bayesian generative model to the task of Word Sense Induc-
tion. It is distinct from previous work in that it introduces a layer of latent concepts that generalize the
context words and thus enable the model to measure the sense similarity at a more general level. We also
show in this paper that Zipf’s law of meaning can be used to guide the setting of sense numbers on an
all-word basis, which is not only simple but also independent of the clustering methods being used. We
further extend our parametric model to non-parametric model which not only simplifies the problem of
model selection but also bring improved performance. The test results on the benchmark datasets show
that our model outperforms the state-of-the-art systems.
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