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Abstract

With a large amount of complex network data available from multiple data sources, how to effec-
tively combine these available data with existing auxiliary information such as item content into
the same recommendation framework for more accurately modeling user preference is an inter-
esting and significant research topic for various recommender systems. In this paper, we propose
a novel hierarchical Bayesian model to integrate multiple social network structures and content
information for item recommendation. The key idea is to formulate a joint optimization frame-
work to learn latent user and item representations, with simultaneously learned social factors
and latent topic variables. The main challenge is how to exploit the shared information among
multiple social graphs in a probabilistic framework. To tackle this challenge, we incorporate
multiple graphs probabilistic factorization with two alternatively designed combination strate-
gies into collaborative topic regression (CTR). Experimental results on real dataset demonstrate
the effectiveness of our approach.

1 Introduction

Many real-life data have representations in the form of multiple views (Liu et al., 2013). For example,
web pages usually consist of both text content and hyperlink information; images on the web have
relevant tags associated with their content. In addition, it is also common that in real networks comprising
multiple types of nodes are connected by multiple types of links, forming heterogeneous information
networks (HIN) (Huang et al., 2012). For example, in scientific community, various types of links are
formed for different types of objects, i.e., author writes paper, venue publishes paper, reader labels tag,
and so on. Therefore, with a large amount of complex network data available from multiple data sources,
how to effectively combine this kind of rich structure with other auxiliary information such as content
information into the same recommendation framework is an interesting and significant research topic
for various recommender systems. This paper aims to model multiple social graphs into a principled
hierarchy Bayesian framework to improve recommending performance.

The basic idea in this paper is inspired by multi-view learning approach (Liu et al., 2013), i.e., leverag-
ing the redundancy and consistency among distinct views (Kumar et al., 2011) to strengthen the overall
performance. We extend this idea (Liu et al., 2013) originally for clustering problem to deal with rat-
ing scarcity problem when modeling user preference for recommendation. Just as in general multi-view
learning, each view of objective function is assumed to be capable of correctly classifying labeled exam-
ples separately. Then, they are smoothed with respect to similarity structures in all views. Similarly, in
this paper, we assume that our individual views of multiple user social relations are similar and comple-
mentary with a shared latent structure.

However, different from multi-view clustering problem, our goal is to recover a sparse rating matrix
with a large number of missing user-item pairs rather than merely exploiting cluster structure with full
task information. Thus, the straightforward multi-view representation of the objective (rating matrix) is
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not available. Instead, we use side information (user social graphs) to exploit multi-view learning for
improving collaborative filtering (CF). As a result, collaborative topic regression (CTR) (Wang and Blei,
2011) is employed as our basic learning framework with side information. Recently, CTR has gained
considerable attention due to its well-defined mathematical framework and strong performance on user
behavior prediction for various real-world applications, such as document recommendation (Li et al.,
2013), tag recommendation (Wang et al., 2013), music recommendation (Purushotham et al., 2012),
celebrity recommendation (Ding et al., 2013) and vote prediction (Kang and Lerman, 2013). However,
all the extensions above merely focus on a single view of user or item relation. In reality, a large amount
of diverse social graphs data are widely existed and particularly valuable for mutually reinforcing each
other. Therefore, it should be well considered. Taking this into consideration, we extend CTR with
multiple social graphs factorization for recommender systems.

The main challenge of incorporating multiple relations into CTR is how to exploit the shared infor-
mation among multiple social networks and how to further deal with it to recover sparse rating matrix in
a probabilistic framework. Previous efforts, purely to address the first issue for clustering problem, are
usually to seek a weak consensus (Liu et al., 2013) learnd from data jointly with clustering process. Intu-
itively, consensus can be seen as a latent cluster structure shared by different views. Thus, it means that
learning from different views should be softly regularized towards a common latent structure. However,
it is not easy to directly formulate it in a probabilistic framework, because weak consensus modeling can
not be separated from a joint higher task, i.e., recovering spare rating matrix, in our case.

To tackle this challenge, we propose a novel hierarchical Bayesian model with multiple social graphs
factorization. We exploit two ways of modeling shared information for multi-view based recommen-
dation. One is for heterogeneous network by directly modeling different view specific latent structures
with consensus for user representation. The other is for homogeneous case, which can be used as a trans-
formed version of heterogeneous relations. In contrast with the first strategy, we model the latter using
a shared latent social structure for all views but with different user representations. Thus, we can relax
strong consensus assumption in our heterogeneous case, through linear combination of each sub-latent
user with maintained sharing mechanism. The multiple graphs factorization process in the proposed
model can be seen as a regularization approach on each latent user for better uncovering user-item latent
structures. Although, regularization technique for modeling multiple heterogeneous networks is a hot
research topic, in clustering study from an algebra view (Liu et al., 2013; Kumar et al., 2011), not much
is known on using it for collaborative recommendation problems in a more complex probabilistic setting.

The following sections will discuss those in details and we use the terms network and graph inter-
changeably throughout this paper.

2 Preliminaries

In this section, we briefly review collaborative topic regression (CTR) (Wang and Blei, 2011), as the
foundation of our proposed model. Figure 1 (left) shows the graphical representation of CTR, which
combines the merits of traditional collaborative filtering and probabilistic topic modeling. Specifically,
the key mechanism of CTR is that using topic vectors learned from LDA (Blei et al., 2003) jointly
controls the prior distribution of latent items in original matrix factorization process of CF. The generative
process is described as follows:

• For each user i,
– draw user latent vector ui ∼ N(0, λ−1

u I), multivariate Gauss distribution with zero mean.
• For each item j,

– draw topic proportions θj ∼ Dirichlet(α), Dirichlet distribution.
– draw item latent offset vector εj ∼ N(0, λ−1

v I), and set the item latent vector as vj = εj + θj .
– For each word wjn

∗ draw topic assignment zjn ∼Mult(θ), Multinomial distribution.
∗ draw word wjn ∼Mult(βzjn), Multinomial distribution.

• For each user-item pair (i, j),
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Figure 1: CTR (left), heterogeneous CTR-MGF (middle), homogeneous CTR-MGF (right).

– draw the response rij ∼ N(uT
i vj , c

−1
ij ), univariate Gauss distribution, where cij is a confidence

parameter for rating rij , a > b. cij = a (higher confidence), if rij = 1, and cij = b, if rij = 0.

However, CTR does not take the complex social network information, which is available and crucial
in many real-world applications, into consideration.

3 CTR-MGF: Collaborative Topic Regression with Multiple Graphs Factorization

In this section, we discuss our proposed method, called CTR with multiple graphs factorization (CTR-
MGF). Our model is a generalized hierarchical Bayesian model which jointly learns latent user, item and
multiple latent social factor spaces. Different from previous approaches, our method extends CTR to
multiple complex networks setting instead of one particular type of relation for user or item. Moreover,
we consider two real general contexts in various practical applications. One is the context of hetero-
geneous networks. The other is the context of homogeneous networks. It is noted that, for relative
simplicity, in this paper we only consider user oriented complex network. The graphical representation
of our models in Figure 1 (middle and right) takesK = 3 networks as illustration, which can be arbitrary
in our derivation. It is also easy to see that Purushotham et al. (2012) is a special case of our proposed
model, which is not equipped with graph sharing mechanism.

3.1 Model Notations
Each social matrixQ corresponds to a social network structureG = {V,E}, where users and their social
relations are represented as vertex set V and edge setE in network structureG, respectively. The element
qim in Q denotes the binary relation between user ’i’ and graph specific feature ’m’ in heterogeneous
network or the relation between two users ’i’ and ’m’ in homogeneous network.

3.2 CTR-MGF for Heterogeneous Networks
Heterogeneous network is formed by multiple types of nodes being connected by multiple types of links.
The key characteristic of heterogeneous network is that the sizes of feature dimensions are different
among multiple social graphs. For example, in a social music sharing system such as LastFM, each user
has multiple heterogeneous relations associated with the interested music, i.e., user-artist, user-tag, and
so on. Our model can handle all these relations in the proposed framework, CTR-MGF. Specifically, the
generative process of CTR-MGF for heterogeneous networks is listed as follows:

• For each item j,
– draw topic proportions θj ∼ Dirichlet(α), Dirichlet distribution.
– draw item latent offset εj ∼ N(0, λ−1

v I), multivariate Gauss distribution and set the item latent
vector as vj = εj + θj .
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– For each word wjn

∗ draw topic assignment zjn ∼Mult(θ).
∗ draw word wjn ∼Mult(βzjn).

• For each heterogeneous social graph k,
– For each social graph specific feature m
∗ draw graph factor-specific latent feature vector sk

m ∼ N(0, λ−1
skm

I).
• For each user i,

– draw the shared latent user vector among multiple social graphs ui ∼ N(0, λ−1
ui
I).

– For each heterogeneous social graph k
∗ For each social graph specific feature m
· draw graph specific user heterogeneous relation pair qk

im ∼ N(uT
i s

k
m, c

−1
k,qim

).
• For each user-item pair (i, j),

– draw the response rij ∼ N(uT
i vj , c

−1
ij ).

In the above generative process, the joint likelihood of data, i.e., R,Qk=1,...,K ,W , and the latent
factors U, V, Sk=1,...,K under the full model is:

p(R,U, V, Sk=1,...,K , Qk=1,...,K ,W, θ|λ•)

= p(R|U, V ) · p(W, θ|β) · p(U |λU ) · p(V |λV ) ·
K∏
k

p(Qk|U, Sk, λQk
) ·

K∏
k

p(Sk|λSk
)

(1)

For learning the parameters, we develop an EM-style algorithm similar to CTR. In our model, finding
the MAP is equivalent to maximizing the following log likelihood obtained by substituting univariate
and multivariate Gaussian pdfs in Eq. 1:

L =
∑

j

∑
n

log(
∑

z

θjzβzjn)−
K∑

k=1

λSk

2

∑
m

(sk
m)Tsk

m −
K∑

k=1

∑
i

∑
m

ck,qim

2
(qk

im − uT
i s

k
m)2

− λU

2

∑
i

uT
i ui − λV

2

∑
j

(vj − θj)T(vj − θj)−
∑

i

∑
j

cij
2

(rij − uT
i vj)2

(2)

We employ coordinate ascent (CA) approach alternatively optimizing latent factor variables ui, vj ,
sk=1,2,...,K
m and the simplex variables θj as topic proportions. Specifically, the following update rules in

CA are obtained by setting the derivative of L with respect to ui, vj , and sk=1,2,...,K
m to zero.

ui = (λUI + V TDciV +
K∑
k

ST
k D

k
qi
Sk)−1 · (V TDciRi +

K∑
k

ST
k D

k
qi
Qk

i ) (3)

vj = (λV I + UTDcjU)−1 · (λV θj + UTDcjRj) (4)

sk=1,2,...,K
m = (λSk

I + UTDk
qm
U)−1 · (UTDk

qm
Qk

m) (5)

where K is the total number of graphs. I is an identity matrix of the same dimension as that of la-
tent space. U and V are matrices with rows as latent users and latent items, respectively. Sk is a
matrix with rows as social factor-specific latent feature vectors for graph k. Ri is a column vector
with values [ri1, . . . , riJ ]T. Similarly, Rj = [r1j , . . . , rIj ]T. For graph k, Qk

i = [qk
i1, . . . , q

k
iM ]T

and Qk
m = [qk

1m, . . . , q
k
Im]T respectively. Likewise, Dk

qi
, and Dk

qm
are similarly defined with diago-

nal elements ck,qi.
and ck,q.m , respectively. Dci is a diagonal matrix with values diag(ci1, . . . , ciJ).

Dcj = diag(c1j , . . . , cIj). In addition, cij and ck,qim
are also seen as the confidence parameters for rij

and qk
im, respectively. The high confidence value a is set to the observed interactive pairs and the low

confidence value b is set to the unobserved interactive pairs, where a > b > 0.

236



For our brevity, the remaining update rules for θ and β, can be obtained using the same way as de-
scribed in CTR (Wang and Blei, 2011). Please see that for details.

It is worth noting that through our assumption and the derivation above, we have theoretically proved
that our modeling in this case is equivalent to first concatenating features of different views together and
then applying Purushotham et al. (2012) for recommendation.

3.3 CTR-MGF for Homogeneous Networks
In this section, we further extend the basic CTR to the context of homogeneous networks. In fact, any
user specific homogeneous networks can be obtained through transforming corresponding heterogeneous
networks. For example, in LastFM, we can construct two user-user homogeneous networks by comput-
ing the similarities of user-tag and user-artist from original heterogeneous networks. The goal of this
transformation is to further exploit weak consensus modeling scheme based on Section 3.2. Different
from the graph sharing mechanism presented in last section, we relax the restriction that all users have
the same representation. Specifically, we assume each latent user has multiple sub-graph specific repre-
sentations.

However, it is nontrivial to model the relaxed assumption directly from original perspective. To achieve
this more weaker sharing mechanism, we are towards its transformed perspective, i.e., sacrificing hetero-
geneous characteristic, because we need to exploit shared information from latent graph specific feature
perspective. Thus, we require equal dimensions of different graphs, which motivates us to investigate the
homogeneous case.

The key differences between our model in this section and that in last section are the strategies of
latent user modeling and its social factor modeling. More specifically, we model each latent user as a
linear combination of all sub-latent users associated with multiple homogeneous networks. All these
sub-latent homogeneous users are associated with a shared social factor feature space. Thus, the shared
information among multiple graphs can be exploited and it is more flexible to adjust the contribution
of each sub-latent user to the final latent user representation. The generative process of CTR-MGF for
homogeneous networks is listed as follows:

• For each item j,
– draw topic proportions θj ∼ Dirichlet(α), Dirichlet distribution.
– draw item latent offset εj ∼ N(0, λ−1

v I), multivariate Gauss distribution and set the item latent
vector as vj = εj + θj .

– For each word wjn

∗ draw topic assignment zjn ∼Mult(θ).
∗ draw word wjn ∼Mult(βzjn).

• For each social graph specific feature m, regarding to all related homogeneous social graphs
– draw a shared factor-specific latent feature vector across multiple graphs sm ∼ N(0, λ−1

sm
I).

• For each user i,
– For each homogeneous social graph k
∗ draw a social graph specific latent user uk

i ∼ N(0, (λk
ui

)−1I).
∗ For each social graph specific feature m
· draw graph specific user homogeneous relation pair qk

im ∼ N((uk
i )

Tsm, c
−1
k,qim

).

– draw a final latent user ui ∼ N(
∑K

k=1 Tku
k
i , λ
−1
ui
I).

• For each user-item pair (i, j),
– draw the response rij ∼ N(uT

i vj , c
−1
ij ).

In the above generative process, the joint likelihood of data, i.e. R, Qk=1,...,K and W , and the latent
factors U,Uk=1,...,K , V and S under the full model is:

p(R,U, V, S, Uk=1,...,K , Qk=1,...,K ,W, θ|λ•) = p(R|U, V ) · p(W, θ|β)·

(
K∏

k=1

p(Qk|Uk, S, λQk
)) · p(S|λS) · (

K∏
k=1

p(Uk|λUk
)) · p(V |λV ) · p(U |λU ) · p(U |Uk=1,...,K , λC)

(6)
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Similarly to last section, we develop an EM-style algorithm to find the MAP solutions, which is equiva-
lent to maximizing the following log likelihood by substituting univariate and multivariate Gaussian pdfs
in Eq. 6:

L =
∑

j

∑
n

log(
∑

z

θjzβzjn)−
K∑

k=1

λUk

2

∑
i

(uk
i )

Tuk
i −

λS

2

∑
m

sTmsm

−
K∑

k=1

∑
i

∑
m

ck,qim

2
(qk

im − (uk
i )

Tsm)2 − λV

2

∑
j

(vj − θj)T(vj − θj)

−
∑

i

∑
j

cij
2

(rij − uT
i vj)2 − λC

2

∑
i

(ui −
K∑

k=1

Tku
k
i )

T(ui −
K∑

k=1

Tku
k
i )−

λU

2

∑
i

uT
i ui

(7)

We employ coordinate ascent (CA) approach as previous section alternatively optimizing latent factor
variables and simplex variables as topic proportions. Then we acquire the update rules by setting the
derivative of L with respect to the following variables to zero.

uk=1,2,...,K
i = (λUk

I + λCT
2
k I + STDk

qi
S)−1 · (λCuiTk − (

K∑
p6=k

Tpu
p
i )λCTk + STDk

qi
Qk

i ) (8)

ui = (λUI + λCI + V TDciV )−1 · (V TDciRi + λC

K∑
k

Tku
k
i ) (9)

vj = (λV I + UTDcjU)−1 · (UTDcjRj + λV θj) (10)

sm = (λSI +
K∑

k=1

UT
k D

k
qm
Uk)−1 · (

K∑
k=1

UT
k D

k
qm
Qk

m) (11)

where K is the total number of graphs. I is an identity matrix of the same dimension as that of latent
space. U and V are matrices with rows as latent users and latent items, respectively. S is a matrix with
rows as the shared social factor-specific latent feature vectors for all graphs. T is the graph selection
weight,

∑K
k=1 Tk = 1, Tk >= 0. Ri = [ri1, . . . , riJ ]T and Rj = [r1j , . . . , rIj ]T. For graph k, Qk

i =
[qk

i1, . . . , q
k
iM ]T, Qk

m = [qk
1m, . . . , q

k
Im]T and Uk is a matrix with rows as the social graph k specific latent

user vectors. Likewise, Dk
qi

, and Dk
qm

are similarly defined with diagonal elements ck,qi.
and ck,q.m ,

respectively. Dci = diag(ci1, . . . , ciJ) and Dcj = diag(c1j , . . . , cIj). In addition, cij and ck,qim
are also

seen as the confidence parameters for rij and qk
im, respectively. The high confidence value a is set to the

observed interactive pairs and the low confidence value b is set to the unobserved interactive pairs, where
a > b > 0.

For our brevity, the remaining update rules for θ and β, can be obtained using the same way as de-
scribed in CTR (Wang and Blei, 2011). Please see that for details.

3.4 Prediction
Using the learned parameters above, we can make in-matrix and out-of-matrix predictions defined in
Wang and Blei (2011). For in-matrix prediction, it refers to the case where those items have been rated
by at least one user in the system. To compute predicted rating, we use

r∗ij ≈ (u∗i )
T v∗j . (12)

For out-of-matrix prediction, it refers to the case where those items have never been rated by any user in
the system. To compute predicted rating, we use

r∗ij ≈ (u∗i )
T θ∗j , (13)

where the corresponding θ∗j is defined as topic proportion in Section 3.2 and 3.3.
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3.5 Computational Issue
To reduce computational costs when updating ui, vj and other variables with similar structure in update
rule, we adopt the same strategy of matrix operation shown in Hu et al. (2008). Specifically, directly
computing V TDciV and UTDcjU requires time O(L2J) and O(L2I) for each user and item, where J
and I are the total number of items and users respectively, L is the dimension of latent representation
space. Instead, we rewrite UTDcjU = UT(Dcj − bI)U + bUTU . Then, bUTU can be pre-computed
and Dcj − bI has only Ir non-zeros elements, where Ir refers to the number of users who rated item j
and empirically Ir � I . For other similar structures, i.e., V TDciV , STDk

qi
S, and so on, they are similar.

Therefore, we can significantly speed up computation by this sparsity property.

4 Experiments

4.1 Data
We evaluate our proposed method on real life dataset 1 from LastFm. LastFm2 is an online music
catalogue, powered by social music discovery service for personalized recommendation. This dataset
(Cantador et al., 2011) is challenging. Though it contains 92,834 pairs of observed ratings with 1892
users and 17,632 items, the sparseness is quite low, i.e., merely 0.2783% , which is much lower than
that of the well-known Movielens dataset with the sparseness 4.25%. On average, each user has 44.21
items in the play list, ranging from 0 to 50, and each item appears in 4.95 users libraries, ranging from 0
to 611. For each item, the tag information is used as bag-of-word representation. After text processing,
11,946 distinct words are remained in the corpus. In addition, we further remove noisy users which
have no items. We also construct two additional social graphs for our experiments. One is user-tag
network extracted from user-tag-item relations in original dataset. The other is user-user network through
transforming the constructed user-tag network. The relation in all graphs is binary, i.e., the available
denoted as 1 and the unavailable denoted as 0.

Table 1: Original dataset description
Dataset users items tags user-user relations user-tags-items user-items relations
LastFm 1892 17632 11946 25434 186479 92834

4.2 Metrics
Two metrics for evaluating the recommendation performance are employed, i.e., Recall and NDCG.
Measure for plain relevance:

Recall@k =
]relevance

k
, (14)

where ]relevance denotes the total relevant papers in returned top-k result. Measure for ranking-based
relevance:

NDCG@k =

∑k
i=1

2reli−1
log2(1+i)

IDCG
, (15)

where reli denotes the relevant degree which is binary in our task and IDCG is the optimal score
computed using the same form in numerator but with optimal ranking known in advance.

4.3 Experimental Design
In this paper, we expect the proposed model ’Our-Homo’ in Section 3.2 and ’Our-Heter’ in Section 3.3
can jointly provide a general and systematic solution to handling the following cases of using multiple
graphs for recommendation:

• Case 1:(Heterogeneous networks with noise) Network data or the extraction process is usually
imprecise or noisy in practice. Transform it into homogeneous case and then use ’Our-Homo’.

1Data available at http://grouplens.org/datasets/hetrec-2011/
2http://www.last.fm/
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• Case 2:(Homogeneous networks) ’Our-Homo’ can be directly employed as the tool for case 1.

• Case 3:(Heterogeneous networks with high quality) ’Our-Heter’ might be directly employed. It is
not needed to be further transformed into Homogeneous case.

The detail experiments in the following sections are presented to justify the effectiveness of our methods
for the three cases above.

4.4 Experiments for Case 1 and Case 2

In this section, we mainly focus on the most complex and common case 1 with case 2 in practice.

4.4.1 Baselines
We compare our proposed two models, the model in Section 3.2 denoted as Our-Heter and the model in
Section 3.3 denoted as Our-Homo, with some state-of-the-art algorithms.

• CTR: This method, described in Wang and Blei (2011), combines both item content information
and user-item ratings for CF.
• PMF: This method, described in Salakhutdinov and Mnih (2007), is a well-known matrix factor-

ization method for CF, only using interactive rating information.
• SMF-1: This method, described in Purushotham et al. (2012), exploits single user’s social network

structure combined with item’s content information for CF. SMF-1 denotes using our extracted
user-tag relation.
• SMF-2: The same SMF method, described in (Purushotham et al., 2012). SMF-2 denotes using

original user-user relation.
• Our-Heter: Our model for heterogeneous networks, proposed in Section 3.2, uses our extracted

user-tag network and original user-user network.
• Our-Homo: Our model for homogeneous networks, proposed in Section 3.3, uses two homoge-

neous networks, i.e., 1) the transformed user-user network through our extracted user-tag relation,
and 2) original user-user network.

4.4.2 Settings
For a fair comparison, we use the similar settings as prior work in Purushotham et al. (2012). Specifically,
to well judge the influence of multiple social network structures, we fix the effects of content information
to the same level that is optimal in SMF, λv = 0.1. We randomly split the dataset into two parts,
training (90%) and test datasets (10%), with constraint that users in test dataset have more than half
of the average number of rated items, i.e., 20. This expands the range of performance analysis for
our evaluation compared with Purushotham et al. (2012). The optimal parameters are obtained on a
small held-out dataset. For PMF, we set λv = 100, λu = 0.01. For all CTR-based methods, we set
a = 1, b = 0.01, λv = 0.1. Specifically, for CTR, we set λu = 0.01. For SMF-1 and SMF-2, we set
λu = 0.01. For Our-Homo, we set λu = 0.01, λu1 = λu2 = λs = 100, λc = 0.01. For Our-Heter, we
set λu = 0.01, λs1 = λs2 = 100. The remaining paramters are varied for experiment analysis.

It is noted that the task of out-of-matrix prediction is originally designed for evaluating item content
modeling in CTR rather than user social graphs as in CTR-smf. Thus, we followed the same setting in
baseline CTR-smf (Purushotham et al., 2012), not considering this task.

4.4.3 Performance Comparison with State-of-the-Art Methods
Figure 2 shows the recall and NDCG results of all the methods when the number of latent factor is fixed to
200 (optimal for the baselines). The proposed model ’Our-Homo’ consistently outperforms the baselines
and ’Our-Heter’ model under both recall and NDCG measures. This finding demonstrates that (1) using
multiple graphs for CTR is a necessary for improving recommendation performance from both ranking
and plain accuracy perspectives. (2) strong consensus for modeling shared information undermines the
performance for multiple graphs factorization as designed in Our-Heter. (3) For heterogeneous case, we
address that through simply transforming the heterogeneous network to homogeneous one and then use
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Figure 2: Our model comparison with the state-of-the-art methods, for Recall and NDCG.

Figure 3: Performance comparison for different latent factors (K=200,300,400) @ top (50,100,200).

’Our-Homo’. This is natural but the opposite is hard. Thus, our solution ’Our-Homo’ for modeling weak
consensus is effective for both homogeneous and heterogeneous cases.

In addition, we can see that CTR-smf (Purushotham et al., 2012) is sensitive to the quality of graph
(SMF-1 with low quality and SMF-2 with high quality as shown in Figure 2). In contrast, we can use the
low quality noisy graph (SMF-1) to improve the overall performance by this transformation process. In
fact, why Our-Heter does not perform well is mainly due to the noisy graph-1. ’Transformation’ can be
seen as a ’denoising’ process.

4.4.4 Performance Analysis with Different Latent Factors

Figure 3 shows the results of the compared algorithms, with different number of latent factors for varied
top recommended item. It shows that K = 200 factors is optimal for all baselines compared with other
choices of the number of latent factors. This justifies our fire choice of 200 latent factors reported in
Figure 3 (Other factor choices are omitted here due to page constraint, which is not optimal for our
baselines) and suggests that the choice of latent factor number is crucial for all algorithms especially
for PMF. In contrast, the proposed ’Our-Homo’ is more stable compared with PMF and outperforms the
other baselines in an overall performance as reported in Figure 2.
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Figure 4: Parameter analysis of graph selection for our weak consensus modeling, i.e., Our-Homo.

4.4.5 Impact of the Parameter for Graph Selection
Next, we examine how our algorithm ’Our-Homo’ is influenced by the graph-selection weights. In Figure
4, the horizontal axis shows the graph proportion weight T1 for graph-1 (user-tag network). In our case,
two social graphs are considered. The weight for second graph is T2 = 1 − T1, which is not shown
in Figure 4. Figure 4 clearly proves the effectiveness of our weak consensus modeling. Specifically,
we can see that 0.0 seemingly means that the first graph is not selected due to the weight of the first
graph T1 = 0.0 and that of second graph T2 = 1 (fully selected). However, due to our weak consensus
modeling scheme, though the graph-1 weight is 0.0, it does not mean that the first graph is removed. In
fact, the effect of graph-1 is also active through the shared variable ’s’ in Figure 1 (right). This further
can be investigated from the Equation 9. Apparently, the case of 0.0 weight for graph-1, u is only relevant
to u1, but from Equation 8, we can see that u1 is also influenced by u2 via the shared social graph factors
s. Thus, this also explains why 0.0 weight for graph-1 is not equal to the result of SMF-2 as shown in
Figure 2, which only uses graph-2, original user-user graph in SMF-2.

In addition, the ’valley’ in Figure 4 might be explained that in the extreme cases (0.0 and 1.0), the
denoising effect of weak consensus is slightly strengthened because only one specific graph (higher
quality smf-2 or lower quality smf-1 shown in Fig.2) is directly associated with final latent user combined
with shared variable. Therefore, the extreme case (1.0) is towards a relative higher performance.

4.5 Experiments for Case 3

Though the proposed ’Our-Homo’ is more effective than CTR and CTR-smf, it does not mean that the
proposed another method ’Our-Heter’ is useless. In this section, we show how the case 3 will be justified.

4.5.1 Baselines
• Our-Heter(N): Our model for heterogeneous networks, proposed in Section 3.2, uses our modified

high quality user-tag network as described in Section 4.5.2 and original user-user social network as
SMF-2 in Section 4.4.1.
• SMF-1(N): The same SMF method with single social network, described in Purushotham et al.

(2012). SMF-1 (N) denotes using our modified high quality user-tag network as described in Section
4.5.2.
• Our-Homo(O): The result of this method is the same as that reported in Section 4.4.3.
• CTR(O): The result of this method (Wang and Blei, 2011) is the same as that reported in Section

4.4.3.

4.5.2 Settings
We want to investigate whether Our-Heter will outperform Our-Homo in the case where the heteroge-
neous networks with less noise are available, compared with previous results in Figure 2. The settings
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Figure 5: Our model comparison with the state-of-the-art methods (case 3), for Recall and NDCG.

in case 3 are the same as that in Section 4.4.2 except for the refined user-tag graph. In this case, we con-
struct a less noisy user-tag network by selecting top-10% tags according to tf ∗ idf value. The optimal
latent factor number is set to 100 for Our-Heter (N) through a small held-out dataset. The remaining
parameters are kept as the same values in Section 4.4.2. For notations in baselines Section, ’O’ denotes
old setting and ’N’ denotes new setting with updated user-tag network presented in this section.

4.5.3 Performance Comparison with State-of-the-Art Methods
Figure 5 shows Our-Heter (N) can achieve improved performance compared with baselines without trans-
formation, for the case where high quality graphs are available. Specifically, for recall measure, Our-
Heter (N) produces the best result with the increasing number of top recommended items. In addition,
we observe that modeling multiple graphs is necessary to further improve recommending performance,
while multiple high quality heterogeneous graphs are available.

For NDCG measure, Our-Heter (N) is comparable to our baselines. Since recall measure is only
considered for several reasons in previous work (Wang and Blei, 2011; Purushotham et al., 2012), ND-
CG is introduced as a plus compared with primarily focused recall. Therefore, Our-Heter (N) is also
competitive in overall performance in case 3.

In fact, as discussed in Kang and Lerman (2013), CTR-smf (Purushotham et al., 2012) is not always
superior to CTR (Wang and Blei, 2011) and vice versa due to different contexts. Likewise, our model is
under the multi-view assumption as discussed in Section 1 that should be checked in practice.

5 Conclusions

In this paper, we propose a general recommendation framework with multiple data sources based on
CTR. It is a principled hierarchy Bayesian framework with multiple social graphs factorization for rec-
ommender systems. In this framework, two ways of consensus modeling are exploited. Specifically,
the proposed models Our-Homo and Our-Heter can jointly provide a general and systematic solution to
handling three real cases of using multiple graphs with item content information for recommendation:
case 1) Heterogeneous networks with noise; case 2) Homogeneous networks; case 3) Heterogeneous
networks with high quality. Experimental results on real dataset demonstrate the effectiveness of our ap-
proach. While this framework is used for modeling multiple user social graphs, it can be easily extended
to exploiting other side information such as multiple complex relations for items in various applications.
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