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Abstract

Most web search results clustering (SRC) strategies have predominantly studied the definition of
adapted representation spaces to the detriment of new clustering techniques to improve perfor-
mance. In this paper, we define SRC as a multi-objective optimization (MOO) problem to take
advantage of most recent works in clustering. In particular, we define two objective functions
(compactness and separability), which are simultaneously optimized using a MOO-based simu-
lated annealing technique called AMOSA. The proposed algorithm is able to automatically detect
the number of clusters for any query and outperforms all state-of-the-art text-based solutions in
terms of Fβ-measure and Fb3-measure over two gold standard data sets.

1 Introduction

Web search results clustering (SRC), also known as post-retrieval clustering or ephemeral clustering has
received much attention for the past twenty years for easing up user’s effort in web browsing. The key
idea behind SRC systems is to return some meaningful labeled clusters from a set of web documents (or
web snippets) retrieved from a search engine for a given query.

Recently, SRC strategies have been focusing on the introduction of external (exogenous) knowledge to
better capture semantics between documents (Scaiella et al., 2012; Marco and Navigli, 2013). Although
this research direction has evidenced competitive results, the proposed clustering techniques are based
on a single cluster quality measure, which must reflect alone the goodness of a given partitioning. These
techniques are usually referred to as single objective optimizations (SOO).

In this paper, we hypothesize that improved clustering can be achieved by defining different objective
functions over well-known data representations. As such, our study aims to focus on new clustering
issues for SRC instead of defining new representation spaces.

Recent studies (Maulik et al., 2011) have shown that clustering can be defined as a multi-objective
optimization (MOO) problem. Within the context of SRC, we propose to define two objective functions
(compactness and separability), which are simultaneously optimized using a MOO-based simulated an-
nealing technique called AMOSA (Bandyopadhyay et al., 2008).

In order to draw conclusive remarks, we present an exhaustive evaluation where our MOO algorithm
(MOO-clus) is compared to the most competitive text-based (endogenous) SRC algorithms: STC (Zamir
and Etzioni, 1998), LINGO (Osinski and Weiss, 2005), OPTIMSRC (Carpineto and Romano, 2010) and
GK-means (Moreno et al., 2013). Experiments are run over two different gold standard data sets (ODP-
239 and MORESQUE) for two clustering evaluation metrics (Fβ-measure and Fb3-measure). Results
show that MOO-clus outperforms all text-based solutions and approaches performances of knowledge
driven strategies (Scaiella et al., 2012). In this paper, our main contributions are:

• The first1 attempt to solve SRC by defining multiple objective functions,

• A new MOO clustering algorithm for SRC, which automatically determines the number of clusters,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/.

1As far as we know.
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• An exhaustive evaluation of SRC algorithms with recent data sets and evaluation metrics over the
most competitive state-of-the-art text-based SRC algorithms.

2 Related Work

2.1 SRC Algorithms

One of the most cited SRC solutions is the Suffix Tree Clustering (STC) algorithm proposed by (Zamir
and Etzioni, 1998). They propose a monothetic clustering technique, which merges base clusters with
high string overlap based on web snippets represented as compact tries. Their evaluation shows improve-
ments over agglomerative hierarchical clustering, K-Means, Buckshot, Fractionation and Single-Pass
algorithms, and is still a hard baseline to beat (Moreno and Dias, 2014).

Later, (Osinski and Weiss, 2005) proposed a polythetic solution called LINGO based on the same
string representation as of (Zamir and Etzioni, 1998). They first extract frequent phrases based on suffix-
arrays and match group descriptions with topics obtained with latent semantic analysis. Documents are
then assigned straightforwardly to their corresponding groups. Their evaluation does not allow conclu-
sive remarks but they propose an open source implementation, which is an important contribution.

More recently, (Carpineto and Romano, 2010) showed that the characteristics of the outputs returned
by SRC algorithms suggest the adoption of a meta clustering approach. The underlying idea is that dif-
ferent SOO solutions lead to complementary results that must be combined. So, they introduce a novel
criterion to measure the concordance of two partitions of objects into different clusters based on the infor-
mation content associated to the series of decisions made by the partitions on single pairs of objects. The
results of OPTIMSRC demonstrate that meta clustering is superior over individual clustering techniques.

The latest work, exclusively based on endogenous information (i.e. web snippets returned by the
search engine), is proposed by (Moreno et al., 2013). They adapt the K-means algorithm to a third-order
similarity measure and propose a stopping criterion to automatically determine the “optimal” number of
clusters. Experiments are run over two gold standard data sets, ODP-239 (Carpineto and Romano, 2010)
and MORESQUE (Navigli and Crisafulli, 2010), and show improved results over all state-of-the-art
text-based SRC techniques so far.

A great deal of works have also proposed to include exogenous information to solve the SRC problem.
One important work is proposed by (Scaiella et al., 2012) who use Wikipedia articles to build a bipartite
graph and apply spectral clustering over it to discover relevant clusters. More recently, (Marco and
Navigli, 2013) proposed to include word sense induction based on the Web1T corpus (Brants and Franz,
2006) to improve SRC. In this paper, we exclusively focus on endogenous solutions.

2.2 MOO-based Clustering

Many works have been proposed where the problem of clustering is posed as one of multi-objective op-
timization (Deb, 2009; Maulik et al., 2011). One important work is proposed by (Handl and Knowles,
2007) who define a multi-objective clustering technique with automatic K-determination called MOCK.
Their algorithm outperforms several standard single-objective clustering algorithms (K-means, agglom-
erative hierarchical clustering and ensemble clustering) on artificial data sets.

In parallel, a multi-objective evolutionary algorithm for fuzzy clustering is proposed by (Bandyopad-
hyay et al., 2007) for clustering gene expressions. Here, two objectives are simultaneously optimized.
The first one is the objective function optimized in the fuzzy C-means algorithm (Bezdek, 1981) and the
other one is the Xie-Beni index (Xie and Beni, 1991).

Later, (Mukhopadhyay and Maulik, 2009) proposed a novel approach that combines the multi-
objective fuzzy clustering method of (Bandyopadhyay et al., 2007) with a Support Vector Machines
(SVM) classifier. Performance results are provided for remote sensing data.

As far as we know, within text applications, (Morik et al., 2012) is the first work, which formulates
text clustering a multi-objective optimization problem. In particular, they express desired properties
of frequent termset clustering in terms of multiple conflicting objective functions. The optimization is
solved by a genetic algorithm and the result is a set of Pareto-optimal solutions. Note that this effort is
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defined for large text colllections with high dimensional data, which is contradictory to the specific task
of SRC (Carpineto et al., 2009)2.

2.3 Our Motivation

Recent works have focused on the introduction of external (exogenous) knowledge to solve the SRC
task. However, this research direction higly depends on existing resources, which are not available for a
great deal of languages. Moreover, (Carpineto and Romano, 2010) has suggested an interesting research
direction, which has still remained unexplored. Indeed, (Carpineto and Romano, 2010) showed that meta
clustering leads to improved results in the context of text-based (endogenous) SRC. This suggests that
better clustering can be obtained by combining different SOO solutions. However, their algorithm is
casted to a SOO problem of the concordance between the clustering combination and a meta partition.

As a consequence, we hypothesize that improved performances can be obtained by defining the SRC
task as a MOO clustering problem. For that purpose, we (1) take advantage of the recent advances in the
field of multi-objective clustering (Saha and Bandyopadhyay, 2010), (2) define new objective functions
in a non euclidean space and (3) adapt a MOO-based simulated annealing technique called AMOSA
(Bandyopadhyay et al., 2008) to take into account third-order similarity metrics (Moreno et al., 2013).

3 Clustering as a MOO Problem

3.1 Formal Definition of MOO Clustering

Multi-objective optimization can be formally stated as finding the vector x∗ = [x∗1, x∗2, . . . , x∗n]T of
decision variables that simultaneously optimize M objective function values {f1(x), f2(x), . . . , fM (x)}
while satisfying user-defined constraints, if any.

An important concept in MOO is that of domination. Within the context of a maximization prob-
lem, a solution xi is said to dominate xj if ∀k ∈ 1, 2, . . . ,M, fk(xi) ≥ fk(xj) and ∃k ∈
1, 2, . . . , M, such that fk(xi) > fk(xj).

Among a set of solutions R, the non-dominated set of solutions R
′

are those that are not dominated by
any member of the set R and is called the globally Pareto-optimal set or Pareto front. In general, a MOO
algorithm outputs a set of solutions not dominated by any solution encountered by it. These notions can
be illustrated by considering an optimization problem with two objective functions (f1 and f2) with six
different solutions, as shown in Figure 1. Here target is to maximize both objective functions f1 and f2.

1

3

4

5

Pareto Front

2

6

f1(maximize)

f2(maximize)

Figure 1: Example of dominance and Pareto optimal front.

In this example, solutions 3, 4 and 5 dominate all the other three solutions 1, 2 and 6. Solutions 3, 4
and 5 are nondominating to each other. Because 3 is better than 4 w.r.t. function f1, but 4 is better than
3 w.r.t. f2. Similarly 4 is better than 5 w.r.t. f1 but 5 is better than 4 w.r.t. f2. The same happens for
solutions 3 and 5. So, the Pareto front is made of solutions 3, 4 and 5.

Within the specific context of clustering, two objective functions are usually defined, which must be
optimized simultaneously. These functions are based on two intrinsic properties of the data space and
are defined as follows.

2SRC is usually referred to as text clustering in the “small”: i.e. small list of short text documents.
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Compactness: This objective function measures the proximity among the various elements of a given
cluster and must be maximized.

Separability: This objective function measures the similarity between two cluster centroids and must
be minimized.

3.2 AMOSA Optimization Strategy

Clustering is viewed as a search problem, where optimal partitions satisfying the given set of objective
functions must be discovered. As such, an optimization strategy must be defined. Here, we propose to
use archived multi-objective simulated annealing (AMOSA) proposed by (Bandyopadhyay et al., 2008).
AMOSA incorporates the concept of an archive where the non-dominated solutions seen so far are stored.

Two limits are kept on the size of the archive: a hard limit denoted by HL and a soft limit denoted by
SL. Given γ > 1, the algorithm begins with the initialization of a number (γ × SL) of solutions each of
which representing a state in the search space. Thereafter, the non-dominated solutions are determined
and stored in the archive.

Then, one point is randomly selected from the archive. This is taken as the current point, or the initial
solution, at temperature T = Tmax. The current point is perturbed/mutated to generate a new solution
named new-pt and its objective functions are computed. The domination status of the new-pt is checked
w.r.t. the current point and the solutions in the archive. Based on domination status, different cases may
arise: (i) accept the new-pt, (ii) accept the current-pt or (iii) accept a solution from the archive. In case
of overflow of the archive, its size is reduced to HL.

The process is repeated iter times for each temperature that is annealed with a cooling rate of α (<1)
till the minimum temperature Tmin is attained. The process thereafter stops and the archive contains the
final non-dominated solutions i.e. the Pareto front.

4 SRC as MOO Problem: MOO-clus

4.1 Archive Initialization

As we follow an endogenous approach, only the information returned by a search engine is used. In
particular, we only deal with web snippets and each one is represented as a word feature vector. So, our
solution called MOO-clus starts its execution after initializing the archive with some random solutions
as archive members. Here, a particular solution refers to a complete assignment of web snippets (or data
points) in several clusters. So, the first step is to represent a solution compatible with AMOSA, which
represents each individual solution as a string. In order to encode the clustering problem in the form of
a string, a center-based representation is used. Note that the use of a string representation facilitates the
definition of individuals and mutation functions (Bandyopadhyay et al., 2008).

Let us assume that the archive member i represents the centroids of Ki clusters and the number of
tokens in a centroid is p3, then the archive member (or string) has length li where li = p×Ki. To initialize
the number of centroids Ki encoded in the string i, a random value between 2 and Kmax is chosen and
each Ki cluster centroid is initialized by randomly generated tokens from the global vocabulary.

4.2 Assignment of Web Snippets

As for any classical clustering algorithms, web snippets (or data points) must be assigned to their respec-
tive clusters. In MOO-clus, this assignment is computed as in (Moreno et al., 2013), to take advantage
of recent advances in similarity measures. For two word feature vectors di and dj , their similarity is
evaluated by the similarity of their constituents as defined in Equation 1.

S(di, dj) =
1

‖di‖‖dj‖
‖di‖∑
r=1

‖dj‖∑
b=1

SCP (wr
i , w

b
j), with SCP (w1, w2) =

P (w1, w2)2

P (w1)× P (w2)
(1)

3A centroid is represented by a p word feature vector (w1
k, w2

k, w3
k, . . . , wp

k).
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Here, wr
i (resp. wb

j) corresponds to the token at the rth (resp. bth) position of the word feature vector di

(resp. dj). ‖di‖ and ‖dj‖ respectively denote the total number of tokens in word feature vectors di and
dj . SCP (wr

i , w
b
j) is the Symmetric Conditional Probability (da Silva et al., 1999) where P (., .) is the

joint probability of two tokens (w1 and w2) appearing in the same word feature vector and P (.) is the
marginal probability of any token appearing in a word feature vector.

Note that each cluster centroid is a word feature vector of varying number of tokens. Thus, Equation 2
is used to assign any data point (web snippet) dj to a cluster t whose centroid has the maximum similarity
value to dj .

t = argmaxk=1,...KS(dj ,mπk
) (2)

K denotes the total number of clusters, dj is the jth web snippet, mπk
is the centroid of the kth

cluster πk and S(dj ,mπk
) denotes similarity measurement between the point dj and cluster centroid

mπk
defined in Equation 1.

4.3 Definition of Objective Functions

A string i represents a set of centroids to which web snippets can be assigned as seen in Section 4.2. As a
consequence, each string i corresponds to a candidate partition of the data space. Now, in order to verify
the domination of different solutions over other ones, objective functions must be defined. Compactness
and separability are usually used in MOO clustering solutions. Here, compactness can be defined as the
informational density of each cluster. This can be straightforwardly formulated as in Equation 3.

Compactness =
K∑

k=1

∑
di∈πk

S(di,mπk
) (3)

Note that if tokens in a particular cluster are very similar to the cluster centroid then the corresponding
Compactness value would be maximized. Here our target is to form good clusters whose compactness
in terms of similarity should be maximum.

The second objective function is cluster separability, which measures the dissimilarity between two
cluster centroids. Indeed, the purpose of any clustering algorithm is to obtain compact similar typed
clusters, which are dissimilar to each other. Here, we define separability as the minimization of the
summation of similarities between each pair of cluster centroids. This is defined in Equation 4, where
mπk

and mπo are the centroids of clusters πk and πo, respectively.

Separability =
K∑

k=1

K∑
o=k+1

S(mπk
,mπo) (4)

Finally, for a particular string, the following objectives {Compactness, 1
Separability} are maximized

using the search capability of AMOSA.

4.4 Search Operators

In MOO-clus, AMOSA is used as the optimization strategy. For that purpose, three different types of
mutation operations have been defined to suit the framework.
Mutation 1: This mutation operation is used to update the cluster center representation. Each token of
cluster centroid is replaced by one token from the global vocabulary according to highest SCP similarity.
This is applied individually to all tokens of a particular centroid if it is selected for mutation.
Mutation 2: This mutation operation is used to reduce the size of the string by 1. We randomly select a
cluster centroid and thereafter all the tokens of this centroid are deleted from the string.
Mutation 3: This mutation is for increasing the size of string by 1 i.e. one new centroid is inserted in
the string. For that purpose, we randomly choose p number of tokens from the global vocabulary and
add it to the string.
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Let be a string < w1 w2 w3 w4 w5 w6 > representing three cluster centroids (w1, w2), (w3, w4) and
(w5, w6)4. For mutation 1, let position 2 be selected randomly. Each token of the word vector (w3, w4)
will be changed by some token from the global vocabulary using SCP. Then, after change, the string
will look like < w1 w2 wnew

3 wnew
4 w5 w6 >. If mutation 2 is selected, a centroid will be removed from

the string. Let centroid 3 be selected for deletion. The new string will look like < w1 w2 w3 w4 >.
In case of mutation 3, a new centroid will be added to the string. A new cluster centroid is generated
choosing p=2 number of tokens from the global vocabulary. Let the randomly generated new clus-
ter centroid to be added to the string be (w7, w8). After inclusion of this centroid, the string will be
< w1 w2 w3 w4 w5 w6 w7 w8 >. In our experiments, we have associated equal probability to each of
these mutation operations. Thus, each mutation is applied in 33% cases of the cases.

5 Experimental Setup

5.1 Datasets

The main gold standards used for the evaluation of SRC algorithms are ODP-239 and MORESQUE5.
In ODP-239 (Carpineto and Romano, 2010), each document is represented by a title and a web snip-
pet and the subtopics are chosen from the top levels of DMOZ6. On the other hand, the subtopics in
MORESQUE (Navigli and Crisafulli, 2010) follow a more natural distribution as they are defined based
on the disambiguation pages of Wikipedia. As such, the subtopics cover most of the query-related senses.
However, not all queries are Wikipedia related or ambiguous (e.g. “Olympic Games”, which Wikipedia
entry is not ambiguous, although there are many events related to this topic). As a consequence, it is
clear that different results can be obtained from one data set to another. A quick summary of both data
sets is presented in Table 1.

# of # of Subtopics # of
Dataset queries Avg / Min / Max Snippets

ODP-239 239 10 / 10 / 10 25580
MORESQUE 114 6.7 / 2 / 38 11402

Table 1: SRC gold standard data sets.

5.2 Evaluation Metrics

A successful SRC system must evidence high quality level clustering. Each query subtopic should ideally
be represented by a unique cluster containing all the relevant web pages inside. However, determining a
unique and complete metric to evaluate the performance of a clustering algorithm is still an open problem
(Amigó et al., 2013).

In this paper, we propose to use the Fb3-measure (Amigó et al., 2009) to explore the Pareto front.
In particular, Fb3 has been defined to evaluate cluster homogeneity, completeness, rag-bag and size-vs-
quantity constraints. Fb3 is a function of Precisionb3 (Pb3) and Recallb3 (Rb3). All metrics are defined
in Equation 5

Fb3 =
2 ∗ Pb3 ∗Rb3

Pb3 + Rb3
, Pb3 =

1

N

K∑
i=1

∑
dj∈πi

1

|πi|
∑

dl∈πi

g∗(dj , dl), Rb3 =
1

N

K∑
i=1

∑
dj∈π∗i

1

|π∗
i |

∑
dl∈π∗i

g(dj , dl) (5)

where πi is ith cluster, π∗i is the gold standard of the category i, and g∗(., .) and g(., .) are defined as
follows:

g∗(di, dj) =

{
1 ⇔ ∃l : di ∈ π∗

l ∧ dj ∈ π∗
l

0 otherwise and g(di, dj) =

{
1 ⇔ ∃l : di ∈ πl ∧ dj ∈ πl

0 otherwise .

4with p=2.
5AMBIENT has received less attention since the creation of ODP-239.
6http://www.dmoz.org [Last access: 14/03/2014].
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Most SRC studies have also used the Fβ-measure (Fβ), which is defined in Equation 6.

Fβ =
(β2 + 1) ∗ P ∗R

β2 ∗ P + R
, P =

TP

TP + FP
, R =

TP

TP + FN
(6)

where

TP =

K∑
i=1

∑
dj∈π∗i

∑
dl ∈ π∗i

l 6= j

g(di, dj), FP =

K∑
i=1

∑
dj∈πi

∑
dl ∈ πi
l 6= j

(1− g∗(di, dj)), FN =

K∑
i=1

∑
dj∈π∗i

∑
dl ∈ π∗i

l 6= j

(1− g(di, dj)).

6 Results and Discussion

In this evaluation, we used the open source framework GATE (Cunningham et al., 2013) without stop-
word removal for web snippet tokenization7. We executed MOO-clus over ODP-239 and MORESQUE.
The parameters of MOO-clus are: Tmin = 0.01, Tmax = 100, α = 0.85, HL = 10, SL = 20 and
iter = 15. Note that, they have been determined after conducting a thorough sensitivity study. A first
set of experiments have been conducted for different p values of tokens present in the centroid, namely
in the range 2 to 5 in order to understand the behavior of MOO-clus w.r.t. centroid size8. Note that the
partition with maximum Fb3 is choosen for each size of p9. Overall results are shown in Table 2.

MORESQUE ODP-239
MOO-clus MOO-clus

2 3 4 5 2 3 4 5
Fb

3 0.477 0.491 0.497 0.502 0.478 0.481 0.484 0.481
F1 0.661 0.666 0.675 0.658 0.379 0.379 0.384 0.381
F2 0.750 0.768 0.764 0.742 0.534 0.536 0.537 0.535
F5 0.831 0.862 0.846 0.820 0.717 0.720 0.716 0.715

Table 2: Evaluation results of MOO-clus over MORESQUE and ODP239 data sets.

Results show that for MORESQUE, MOO-clus obtains the highest Fb3 value for p=5. In particular,
performance increases for higher values of p. For ODP-239, best results are reported for p=4, but evi-
dence less sensitivity to the number of words in the centroids. Indeed, a marginal difference is obtained
between all runs. In terms of Fβ , the same behaviour is obtained for ODP-239. But, for MORESQUE,
best results are provided for smaller values of p, namely p=3.

Two important comments must be pointed at. In the first place, Fb3 shows a steady behaviour compared
to Fβ when the data set changes. The conclusions drawn in (Amigó et al., 2009) reporting the superiority
of Fb3 over Fβ seem to be verified for the specific case of SRC. In the second place, MOO-clus evidences
a marginal sensitivity to different p values. Indeed, for ODP-239, changing p between 2 and 5 words has
a negligible impact on Fb3 . The figures show a different behaviour for MORESQUE but this can easily
be explained. In MORESQUE, less queries are provided for test and the number of reference clusters
varies between 2 and 38, with a majority of queries containing very few clusters (the average cluster size
is 6.7). As such, small clustering errors may result in high deviations in the evaluation metrics. So, p
can be seen as a non influent parameter for clustering purposes. In fact, increasing the value of p may
exclusively allow a more descriptive power for cluster labeling.

We also compared MOO-clus to the current state-of-the-art text-based (endogenous) SRC algorithms:
STC (Zamir and Etzioni, 1998), LINGO (Osinski and Weiss, 2005), OPTIMSRC (Carpineto and Ro-
mano, 2010), Bisecting Incremental K-means (BIK), GK-means (Moreno et al., 2013) and the combi-
nation STC-LINGO (Moreno and Dias, 2014). The results are illustrated in Table 3 where we provide
values for all the metrics for open source implementations and reported values in the literature for the

7Note that keeping stop words is a challenging task as most methodologies withdraw these elements as they are hard to
handle. This decision is supported by the fact that we aim to produce as much as possible language-independent solutions.

8Note that to ease the user effort in searching for information, the cluster label must be small and expressive. Typical
configurations range between 3 to 5 to include multiword expressions.

9Fβ metrics are calculated over the partition with highest Fb3 value.
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other experiments i.e. OPTIMSRC, GK-means and STC-LINGO. In particular, the Min (resp. Max)
column refers to the worst (resp. best) performance when varying p, the size of the centroid.

The results of Table 3 clearly show the performance improvements of our proposed methodology over
existing text-based techniques for both data sets and most evaluation metrics. For ODP-239, MOO-clus
attains the highest values with respect to F1, F2, F5 and Fb3 metrics against all existing endogenous algo-
rithms. For MORESQUE, our algorithm reaches highest performance over all state-of-the-art algorithms
for F1 and Fb3 metrics but marginally fails for F2 and F5 against GK-means.

MOO-clus SOO SRC Combination of SOO SRC
Min Max GK-means STC LINGO BIK OPTIMSRC STC-LINGO

MORESQUE F1 0.658 0.675 0.665 0.455 0.326 0.317 N/A 0.561
F2 0.742 0.768 0.770 0.392 0.260 0.269 N/A N/A
F5 0.820 0.862 0.872 0.370 0.237 0.255 N/A N/A
Fb

3 0.477 0.502 0.482 0.460 0.399 0.315 N/A 0.498
ODP-239 F1 0.379 0.384 0.366 0.324 0.273 0.200 0.313 0.362

F2 0.534 0.537 0.416 0.319 0.167 0.173 0.341 N/A
F5 0.715 0.720 0.462 0.322 0.153 0.165 0.380 N/A
Fb

3 0.478 0.484 0.452 0.403 0.346 0.307 N/A 0.425

Table 3: Comparative results with respect to Fβ and Fb3 metrics over the ODP-239 and MORESQUE
datasets obtained by different SRC techniques.

It is important to notice that OPTIMSRC and STC-LINGO can be viewed as a combination of different
SRC SOO solutions but still casted to a SOO solution. These previous results report interesting issues
for SRC and confort the idea that the combination of different objective functions may lead to enhanced
SRC algorithms. But, MOO-clus is capable to find better partitions than OPTIMSRC and STC-LINGO
for all data sets and all evaluation metrics as reported in Table 3.

It is important to notice that the MOO-clus provides a set of partitions with automatic definition of
the number of clusters. So, defining one unique solution is an important issue for SRC. So far, we have
provided results for the best partition evaluated by Fb3 . However, deeper analysis of all the partitions
on the Pareto front must be endeavoured. Results are reported for Fb3 only as all other metrics behave
correspondingly and are reported in Table 4.

MORESQUE ODP-239
2 3 4 5 2 3 4 5

Min 0.428 0.464 0.464 0.462 0.396 0.401 0.403 0.408
Max 0.477 0.491 0.497 0.502 0.478 0.481 0.484 0.481
Avg. 0.454 0.479 0.482 0.486 0.443 0.447 0.448 0.449

Table 4: Fb3 evaluation results of the Pareto front.

Figures show the validity of each individual solution of the Pareto front. In the worst case, MOO-clus
produces similar results compared to the hard baseline STC. On average, it reaches the results of GK-
means and the highest performance values can be found on the Pareto front. The correct identification
of the best partition is still an open issue and can be compared to the automatic selection of K clusters,
which is a hard task as shown in recent studies (Scaiella et al., 2012; Marco and Navigli, 2013).

7 Conclusions

In this paper, we proposed the first attempt10 to define the SRC task as a multi-objective problem. For that
purpose, we defined two objective functions, which are simultaneously optimized through the archived
multi-objective simulated annealing framework called AMOSA. A correct definition of the task allowed
to take advantage of the most recent advances in terms of endogenous SRC algorithms as well as the most
powerful techniques for multi-objective clustering. The performance of MOO-clus has been evaluated
over two gold standard data sets, ODP-239 and MORESQUE for different evaluation metrics, F1 and Fb3 .

10As far as we know.
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Results showed that our proposal steadily outperforms all existing state-of-the-art text-based endogenous
SRC algorithms and approaches recent knowledge-driven exogenous strategies (Scaiella et al., 2012),
which reach F1=0.413 for ODP-23911.

As future works, we propose to use MOO clustering in a strict meta learning way, where any labeled-
based SOO solution is defined by specific Compactness and Separability functions. Another research
direction is the definition of the Dual representation proposed by (Moreno et al., 2014) as a MOO prob-
lem. Finally, new objective functions can be defined to measure the quality of the labels, which may
integrate meaningful multiword expressions or named entities.
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