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Abstract

Community question answering (CQA) has become an important service due to the popularity of
CQA archives on the web. A distinctive feature is that CQA services usually organize questions
into a hierarchy of natural categories. In this paper, we focus on the problem of question re-
trieval and propose a novel approach, called group non-negative matrix factorization with natural
categories (GNMFNC). This is achieved by learning the category-specific topics for each cate-
gory as well as shared topics across all categories via a group non-negative matrix factorization
framework. We derive an efficient algorithm for learning the factorization, analyze its complex-
ity, and provide proof of convergence. Experiments are carried out on a real world CQA data set
from Yahoo! Answers. The results show that our proposed approach significantly outperforms
various baseline methods and achieves the state-of-the-art performance for question retrieval.

1 Introduction

Community question answering (CQA) such as Yahoo! Answers1 and Quora2, has become an important
service due to the popularity of CQA archives on the web. To make use of the large-scale questions and
their answers, it is critical to have functionality of helping users to retrieve previous answers (Duan et
al., 2008). Typically, such functionality is achieved by first retrieving the historical questions that best
match a user’s queried question, and then using answers of these returned questions to answer the queried
question. This is what we called question retrieval in this paper.

The major challenge for question retrieval, as for most information retrieval tasks, is the lexical gap
between the queried questions and the historical questions in the archives. For example, if a queried ques-
tion contains the word “company” but a relevant historical question instead contains the word “firm”, then
there is a mismatch and the historical question may not be easily distinguished from an irrelevant one.
To solve the lexical gap problem, most researchers focused on translation-based approaches since the
relationships between words (or phrases) can be explicitly modeled through word-to-word (or phrases)
translation probabilities (Jeon et al., 2005; Riezler et al., 2007; Xue et al., 2008; Lee et al., 2008; Bern-
hard and Gurevych, 2009; Zhou et al., 2011; Singh, 2012). However, these existing methods model the
relevance ranking without considering the category-specific and shared topics with natural categories, it
is not clear whether this information is useful for question retrieval.

A distinctive feature of question-answer pairs in CQA is that CQA services usually organize questions
into a hierarchy of natural categories. For example, Yahoo! Answers contains a hierarchy of 26 categories
at the first level and more than 1262 subcategories at the leaf level. When a user asks a question, the user
is typically required to choose a category label for the question from a predefined hierarchy. Questions in
the predefined hierarchy usually share certain generic topics while questions in different categories have
their specific topics. For example, questions in categories “Arts & Humanities” and “Beauty & Style”
may share the generic topic of “dance” but they also have the category-specific topics of “poem” and
“wearing”, respectively.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http:// creativecommons.org/licenses/by/4.0/

1http://answers.yahoo.com/
2http://www.quora.com/
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Inspired by the above observation, we propose a novel approach, called group non-negative matrix
factorization with natural categories (GNMFNC). GNMFNC assumes that there exists a set of category-
specific topics for each of the category, and there also exists a set of shared topics for all of the categories.
Each question in CQA is specified by its category label, category-specific topics, as well as shared topics.
In this way, the large-scale question retrieval problem can be decomposed into small-scale subproblems.

In GNMFNC, questions in each category are represented as a term-question matrix. The term-question
matrix is then approximated as the product of two matrices: one matrix represents the category-specific
topics as well as the shared topics, and the other matrix denotes the question representation based on
topics. An objective function is defined to measure the goodness of prediction of the data with the
model. Optimization of the objective function leads to the automatic discovery of topics as well as
the topic representation of questions. Finally, we calculate the relevance ranking between the queried
questions and the historical questions in the latent topic space.

Past studies by (Cao et al., 2009; Cao et al., 2010; Ming et al., 2010; Cai et al., 2011; Ji et al., 2012;
Zhou et al., 2013) confirmed a significant retrieval improvement by adding the natural categories into
various existing retrieval models. However, all these previous work regarded natural categories indi-
vidually without considering the relationships among them. On the contrary, this paper can effectively
capture the relationships between the shared aspects and the category-specific individual aspects with
natural categories via a group non-negative matrix factorization framework. Also, our work models the
relevance ranking in the latent topic space rather than using the existing retrieval models. To date, no at-
tempts have been made regarding group non-negative matrix factorization in studies of question retrieval,
which remains an under-explored area.

The remainder of this paper is organized as follows. Section 2 describes our proposed group non-
negative matrix factorization with natural categories for question retrieval. Section 3 presents the exper-
imental results. In Section 4, we conclude with ideas for future research.

2 Group Non-negative Matrix Factorization with Natural Categories

2.1 Problem Formulation

In CQA, all questions are usually organized into a hierarchy of categories. When a user asks a question,
the user is typically required to choose a category label for the question from a predefined hierarchy of
categories. Hence, each question in CQA has a category label. Suppose that we are given a question col-
lection D in CQA archive with size N , containing terms from a vocabulary V with size M . A question
d is represented as a vector d ∈ RM where each entry denotes the weight of the corresponding term,
for example tf-idf is used in this paper. Let C = {c1, c2, · · · , cP } denote the set of categories (subcat-
egories) of question collection D, where P is the number of categories (subcategories). The question
collection D is organized into P groups according to their category labels and can be represented as
D = {D1,D2, · · · ,DP }. Dp = {d(p)

1 , · · · ,d(p)
Np
} ∈ RM×Np is the term-question matrix corresponding

to category cp, in which each row stands for a term and each column stands for a question. Np is the
number of questions in category cp such that

∑P
p=1 Np = N .

Let U
′
p = [Us,Up] ∈ RM×(Ks+Kp) be the term-topic matrix corresponding to category cp, where Ks

is the number of shared topics, Kp is the number of category-specific topics corresponding to category
cp, and p ∈ [1, P ]. Term-topic matrix Us can be represented as Us = [u(s)

1 , · · · ,u(s)
Ks

] ∈ RM×Ks , in
which each column corresponds to a shared topic. While the term-topic matrix Up can be represented
as Up = [u(p)

1 , · · · ,u(p)
Kp

] ∈ RM×Kp . The total number of topics in the question collection D is K =

Ks + PKp. Let Vp = [v(p)
1 , · · · ,v(p)

Np
] ∈ R(Ks+Kp)×Np be the topic-question matrix corresponding to

category cp, in which each column denotes the question representation in the topic space. We also denote
VT

p = [HT
p ,WT

p ], where Hp ∈ RKs×Np and Wp ∈ RKp×Np correspond to the coefficients of shared
topics Us and category-specific topics Up, respectively.

Thus, given a question collection D = {D1,D2, · · · ,DP } together with the category labels C =
{c1, c2, · · · , cP }, our proposed GNMFNC amounts to modeling the question collection D with P group
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simultaneously, arriving at the following objective function:

O =

P∑
p=1

{
λp

∥∥Dp − [Us,Up]Vp

∥∥2

F
+ R(Us,Up)

}
(1)

where λp , ∥Dp∥−2
F . R(Us,Up) is a regularization term used to penalize the “similarity” between the

shared topics and category-specific topics through Us and Up.
In this paper, we aim to ensure that matrix Us captures only shared topics and matrix Up captures

only the category-specific topics. For example, if matrices Us and Up are mutually orthogonal, we have
UT

s Up = 0. To impose this constraint, we attempt to minimize the sum-of-squares of entries of the
matrix UT

s Up (e.g., ∥UT
s Up∥2

F which uniformly optimizes each entry of UT
s Up). With this choice, the

regularization term of R(Us,Up) is given by

R(Us,Up) =

P∑
p=1

αp

∥∥UT
s Up

∥∥2

F
+

P∑
l=1,l̸=p

βl

∥∥UT
p Ul

∥∥2

F
(2)

where αp and βl are the regularization parameters, ∀p ∈ [1, P ], ∀l ∈ [1, P ].
Learning the objective function in equation (1) involves the following optimization problem:

min
Us,Up,Vp≥0

L = O + σ1

∥∥UT
s 1M − 1Ks

∥∥2

F
+ σ2

∥∥UT
p 1M − 1Kp

∥∥2

F
+ σ3

∥∥Vp1Np − 1Ks+Kp

∥∥2

F (3)

where σ1, σ2 and σ3 are the shrinkage regularization parameters. Based on the shrinkage methodology,
we can approximately satisfy the normalization constraints for each column of [Us,Up] and VT

p by
guaranteeing the optimization converges to a stationary point.

2.2 Learning Algorithm

We present the solution to the GNMFNC optimization problem in equation (3) as the following theorem.
The theoretical aspects of the optimization are presented in the next subsection.

Theorem 2.1. Updating Us, Up and Vp using equations (4)∼(6) corresponds to category cp will mono-
tonically decrease the objective function in equation (3) until convergence.

Us ← Us ◦
[∑P

p=1 λpDpH
T
p

][∑P
p=1 λp[Us,Up]VpHT

p + αpUpUT
p Us

] (4)

Up ← Up ◦
[
λpDpW

T
p

][
λp[Us,Up]VpWT

p + αpUsUT
s Up +

∑P
l=1,l̸=p βlUlUT

l Up

] (5)

Vp ← Vp ◦
[
λpD

T
p [Us,Up]

][
λpVT

p [Us,Up]T [Us,Up]
] (6)

where operator ◦ is element-wise product and [·]
[·] is element-wise division.

Based on Theorem 2.1, we note that multiplicative update rules given by equations (4)∼(6) are ob-
tained by extending the updates of standard NMF (Lee and Seung, 2001). A number of techniques can
be used here to optimize the objective function in equation (3), such as alternating least squares (Kim
and Park, 2008), the active set method (Kim and Park, 2008), and the projected gradients approach (Lin,
2007). Nonetheless, the multiplicative updates derived in this paper have reasonably fast convergence
behavior as shown empirically in the experiments.

2.3 Theoretical Analysis

In this subsection, we give the theoretical analysis of the optimization, convergence and computational
complexity.
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Without loss of generality, we only show the optimization of Us and formulate the Lagrange function
with constraints as follows:

L(Us) = O + σ1

∥∥UT
s 1M − 1Ks

∥∥2

F
+ Tr(ΨsUT

s ) (7)

where Tr(·) denotes the trace of a matrix, Ψs ∈ RKs×Ks is the Lagrange multiplier for the nonnegative
constraint Us ≥ 0.

The partial derivative of L(Us) w.r.t. Us is

▽UsL(Us) = −2
P∑

p=1

λpDpHT
p + 2

P∑
p=1

λp[Us,Up]VpHT
p

+ 2
P∑

p=1

αpUpUT
p Us + 2σ1Us − 2σ1 + Ψs

(8)

Using the Karush-Kuhn-Tucker (KKT) (Boyd and Vandenberghe, 2004) condition Ψs ◦Us = 0, we
obtain

▽UsL(Us) ◦Us =

{
−∑P

p=1 λpDpHT
p +

∑P
p=1 λp[Us,Up]VpHT

p

+
∑P

p=1 αpUpUT
p Us + σ1Us − σ1

}
◦Us = 0 (9)

After normalization of Us, the terms σ1Us and σ1 are in fact equal. They can be safely ignored from
the above formula without influencing convergence. This leads to the updating rule for Us in equation
(4). Following the similar derivations as shown above, we can obtain the updating rules for the rest
variables Up and Vp in GNMFNC optimization, as shown in equations (5) and (6).

2.3.1 Convergence Analysis
In this subsection, we prove the convergence of multiplicative updates given by equations (4)∼(6). We
first introduce the definition of auxiliary function as follows.

Definition 2.1. F(X,X′) is an auxiliary function for L(X) if L(X) ≤ F(X,X′) and equality holds if
and only if L(X) = F(X,X).

Lemma 2.1. (Lee and Seung, 2001) If F is an auxiliary function for L, L is non-increasing under the
update

X(t+1) = arg min
X

F(X,X(t))

Proof. By Definition 2.1, L(X(t+1)) ≤ F(X(t+1),X(t)) ≤ F(X(t),X(t)) = L(X(t))

Theorem 2.2. Let L(U(t+1)
s ) denote the sum of all terms in L that contain U(t+1)

s , the following function
is an auxiliary function for L(U(t+1)

s )

F(U(t+1)
s ,U(t)

s ) = L(U(t)
s ) + (U(t+1)

s −U(t)
s )▽

U
(t)
s
L(U(t)

s ) +
1

2
(U(t+1)

s −U(t)
s )2P(U(t)

s ) (10)

P(U(t)
s ) =

∑
ij

[∑P
p=1 λp[U

(t)
s ,Up]VpW

T
p + αpUpU

T
p U

(t)
s + σ1U

(t)
s

]
ij∑

ij [U
(t)
s ]ij

where ▽
U

(t)
s
L(U(t)

s ) is the first-order derivative of L(U(t)
s ) with respect to U(t)

s . Theorem 2.2 can be

proved similarly to (Lee and Seung, 2001) by validating L(U(t+1)
s ) ≤ F(U(t+1)

s ,U(t)
s ), L(U(t+1)

s ) =
F(U(t+1)

s ,U(t+1)
s ), and the Hessian matrix ▽▽

U
(t+1)
s

F(U(t+1)
s ,U(t)

s ) ≽ 0. Due to limited space, we
omit the details of the validation.
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addition multiplication division overall

GNMFNC: Us P (3MNpKs + MNpKp + MK2
s ) P (3MNpKs + MNpKp + MK2

s ) MKs O(PMNpKmax)
GNMFNC: Up 3MNpKp + MNpKs + PM2K′ 3MNpKp + MNpKs + PM2K′ MKp O(PMRK′)
GNMFNC: Vp 3MNpK′ 3MNpK′ NpK′ O(MNpK′)

Table 1: Computational operation counts for each iteration in GNMFNC.

Based on Theorem 2.2, we can fix U(t)
s and minimize F(U(t+1)

s ,U(t)
s ) with respect to U(t+1)

s . When
setting ▽

U
(t+1)
s

F(U(t+1)
s ,U(t)

s ) = 0, we get the following updating rule

U(t+1)
s ← U(t)

s ◦
[∑P

p=1 λpDpH
T
p + σ1

][∑P
p=1 λp[U

(t)
s ,Up]VpWT

p + αpUpUT
p U

(t)
s + σ1U

(t)
s

] (11)

which is consistent with the updating rule derived from the KKT conditions aforementioned.
By Lemma 2.1 and Theorem 2.2, we have L(U(0)

s ) = F(U(0)
s ,U(0)

s ) ≥ F(U(1)
s ,U(0)

s ) ≥
F(U(1)

s ,U(1)
s ) = L(U(1)

s ) ≥ · · · ≥ L(U(Iter)
s ), where Iter is the number of iterations. Therefore,

Us is monotonically decreasing. Since the objective function L is lower bounded by 0, the correctness
and convergence of Theorem 2.1 is validated.

2.3.2 Computational Complexity
In this subsection, we discuss the time computational complexity of the proposed algorithm GNMFNC.
Besides expressing the complexity of the algorithm using big O notation, we also count the number of
arithmetic operations to provide more details about running time. We show the results in Table 1, where
Kmax = max{Ks,Kp}, K ′ = Ks + Kp and R = max{M,Np}.

Suppose the multiplicative updates stop after Iter iterations, the time cost of multiplicative updates
then becomes O(Iter × PMRK ′). We set Iter = 100 empirically in rest of the paper. Therefore, the
overall running time of GNMFNC is linear with respect to the size of word vocabulary, the number of
questions and categories.

2.4 Relevance Ranking

The motivation of incorporating matrix factorization into relevance ranking is to learn the word rela-
tionships and reduce the “lexical gap” (Zhou et al., 2013a). To do so, given a queried question q with
category label cp from Yahoo! Answers, we first represent it in the latent topic space as vq,

vq = arg min
v≥0

∥q− [Us,Up]v∥2
2 (12)

where vector q is the tf-idf representation of queried question q in the term space.
For each historical question d (indexed by r) in question collection D, with representation vd = r-th

column of V, we compute its similarity with queried question vq as following

stopic(q, d) =
< vq,vd >

∥vq∥2 · ∥vd∥2
(13)

The latent topic space score stopic(q, d) is combined with the conventional term matching score
sterm(q, d) for final relevance ranking. There are several ways to conduct the combination. Linear
combination is a simple and effective way. The final relevance ranking score s(q, d) is:

s(q, d) = γstopic(q, d) + (1− γ)sterm(q, d) (14)

where γ ∈ [0, 1] is the parameter which controls the relative importance of the latent topic space score
and term matching score. sterm(q, d) can be calculated with any of the conventional relevance models
such as BM25 (Robertson et al., 1994) and LM (Zhai and Lafferty, 2001).
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3 Experiments

3.1 Data Set and Evaluation Metrics
We collect the data set from Yahoo! Answers and use the getByCategory function provided in Yahoo!
Answers API3 to obtain CQA threads from the Yahoo! site. More specifically, we utilize the resolved
questions and the resulting question repository that we use for question retrieval contains 2,288,607 ques-
tions. Each resolved question consists of four parts: “question title”, “question description”, “question
answers” and “question category”. We only use the “question title” and “question category” parts, which
have been widely used in the literature for question retrieval (Cao et al., 2009; Cao et al., 2010). There
are 26 first-level categories in the predefined natural hierarchy, i.e., each historical question is categorized
into one of the 26 categories. The categories include “Arts & Humanities”, “Beauty & Style”, “Business
& Finance”, etc.

In order to evaluate our approach, we randomly select 2,000 questions as queried questions from the
above data collection to construct the validation/test sets, and the remaining data collection as training
set. Note that we select the queried questions in proportion to the number of questions and categories
against the whole distribution to have a better control over a possible imbalance. To obtain the ground-
truth, we employ the Vector Space Model (VSM) (Salton et al., 1975) to retrieve the top 10 results and
obtain manual judgements. The top 10 results don’t include the queried question itself. Given a returned
result by VSM, an annotator is asked to label it with “relevant” or “irrelevant”. If a returned result
is considered semantically equivalent to the queried question, the annotator will label it as “relevant”;
otherwise, the annotator will label it as “irrelevant”. Two annotators are involved in the annotation
process. If a conflict happens, a third person will make judgement for the final result. In the process
of manually judging questions, the annotators are presented only the questions. As a result, there are in
total 20,000 judged question pairs. We randomly split the 2,000 queried questions into validation/test
sets, each has 1,000/1,000 queried questions. We use the validation set for parameter tuning and the test
set for evaluation.

Evaluation Metrics: We evaluate the performance of question retrieval using the following metrics:
Mean Average Precision (MAP) and Precision@N (P@N). MAP rewards methods that return relevant
questions early and also rewards correct ranking of the results. P@N reports the fraction of the top-N
questions retrieved that are relevant. We perform a significant test, i.e., a t-test with a default significant
level of 0.05.

There are several parameters used in the paper, we tune these parameters on the validation set.
Specifically, we set the number of category-specific topics per category and the number of shared
topics in GNMFNC as (Ks,Kp) = {(5, 2), (10, 4), (20, 8), (40, 16), (80, 32)}, resulting in K =
{57, 114, 228, 456, 912} total number of topics. (Note that the total number of topics in GNMFNC
is Ks + 26 ×Kp, where 26 is the number of categories in the first-level predefined natural hierarchy4).
Finally, we set (Ks,Kp) = (20, 8) and K = 228 empirically as this setting yields the best performance.

For regularization parameters αp and βl, it is difficult to directly tune on the validation set, we present
an alternative way by adding a common factor a to look at the objective function of optimization problem
in equation (3) on the training data. In other words, we set αp = a

Ks×Kp
and βl = a

Kp×Kl
. Therefore, we

tune the parameters αp and βl by alternatively adjusting the common factor a via grid search. As a result,
we set a = 100, resulting in αp = βl = 0.625 in the following experiments. The trade-off parameter γ
in the linear combination is set from 0 to 1 in steps of 0.1 for all methods. We set γ = 0.6 empirically.
For shrinkage regularization parameters, we empirically set σ1 = σ2 = σ3 = 1.

3.2 Question Retrieval Results
In this experiment, we present the experimental results for question retrieval on the test data set. Specif-
ically, for our proposed GNMFNC, we combine the latent topic matching scores with the term matching
scores given by BM25 and LM, denoted as “BM25+GNMFNC” and “LM+GNMFNC”. Table 2 shows

3http://developer.yahoo.com/answers
4Here we do not use the leaf categories because we find that it is not possible to run GNMFNC with such large number of

topics on the current machines, and we will leave it for future work.
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Table 2: Comparison with different methods
for question retrieval.

# Methods MAP P@10
1 BM25 0.243 0.225
2 LM 0.286 0.232
3 (Jeon et al., 2005) 0.327 0.235
4 (Xue et al., 2008) 0.341 0.238
5 (Zhou et al., 2011) 0.365 0.243
6 (Singh, 2012) 0.354 0.240
7 (Cao et al., 2010) 0.358 0.242
8 (Cai et al., 2011) 0.331 0.236
9 BM25+GNMFNC 0.369 0.248
10 LM+GNMFNC 0.374 0.251

Table 3: Comparison of matrix factoriza-
tions for question retrieval.

# Methods MAP P@10
1 BM25 0.243 0.225
2 BM25+NMF 0.325 0.235
3 BM25+CNMF 0.344 0.239
4 BM25+GNMF 0.361 0.242
5 BM25+GNMFNC 0.369 0.248
6 LM 0.286 0.232
7 LM+NMF 0.337 0.237
8 LM+CNMF 0.352 0.240
9 LM+GNMF 0.365 0.243
10 LM+GNMFNC 0.374 0.251

the main retrieval performances under the evaluation metrics MAP, P@1 and P@10. Row 1 and row
2 are the baseline systems, which model the relevance ranking using BM25 (Robertson et al., 1994)
and language model (LM) (Zhai and Lafferty, 2001) in the term space. Row 3 is word-based transla-
tion model (Jeon et al., 2005), and row 4 is word-based translation language model (TRLM) (Xue et
al., 2008). Row 5 is phrase-based translation model (Zhou et al., 2011), and row 6 is the entity-based
translation model (Singh, 2012). Row 7 to row 11 explore the natural categories for question retrieval.
In row 7, Cao et al. (2010) employed the natural categories to compute the local and global relevance
with different model combination, here we use the combination VSM + TRLM for comparison because
this combination obtains the superior performance than others. In row 8, Cai et al. (2011) proposed a
category-enhanced TRLM for question retrieval. There are some clear trends in the results of Table 2:

(1) BM25+GNMFNC and LM+GNMFNC perform significantly better than BM25 and LM respec-
tively (t-test, p-value < 0.05, row 1 vs. row 9; row 2 vs. row 10), indicating the effective of GNMFNC.

(2) BM25+GNMFNC and LM+GNMFNC perform better than translation methods, some improve-
ments are statistical significant (t-test, p-value < 0.05, row 3 and row 4 vs. row 9 and row 10). The
reason may be that GNMFNC models the relevance ranking in the latent topic space, which can also
effectively solve the the lexical gap problem.

(3) Capturing the shared aspects and the category-specific individual aspects with natural categories
in the group modeling framework can significantly improve the performance of question retrieval (t-test,
p-value < 0.05, row 7 and row 8 vs. row 9 and row 10).

(4) Natural categories are useful and effectiveness for question retrieval, no matter in the group mod-
eling framework or existing retrieval models (row 3∼ row 6 vs. row 7∼row 10).

3.3 Comparison of Matrix Factorizations
We note that our proposed GNMFNC is related to non-negative matrix factorization (NMF) (Lee and
Seung, 2001) and its variants, we introduce three baselines. The first baseline is NMF, which is trained
on the whole training data. The second baseline is CNMF, which is trained on each category without
considering the shared topics. The third baseline is GNMF (Lee and Choi, 2009; Wang et al., 2012),
which is similar to our GNMFNC but there are no constraints on the category-specific topics to prevent
them from capturing the information from the shared topics.

NMF and GNMF are trained on the training data with the same parameter settings in section 4.1 for
fair comparison. For CNMF, we also train the model on the training data with the same parameter settings
in section 4.1, except parameter Ks, as there exists no shared topics in CNMF.

Table 3 shows the question retrieval performance of NMF families on the test set, obtained with the
best parameter settings determined by the validation set. From the results, we draw the following obser-
vations:

(1) All of these methods can significantly improve the performance in comparison to the baseline
BM25 and LM (t-test, p-value < 0.05).

(2) GNMF and GNMFNC perform significantly better than NMF and CNMF respectively (t-test, p-
value < 0.05), indicating the effectiveness of group matrix factorization framework, especially the use
of shared topics.
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Figure 1: Convergence curve of GNMFNC.
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Figure 2: Objective function value vs. factor a.

(3) GNMFNC performs significantly better than GNMF (t-test, p-value < 0.05, row 4 vs. row 5; row
9 vs. row 10), indicating the effectiveness of the regularization term on the category-specific topics to
prevent them from capturing the information from the shared topics.

From the experimental results reported above, we can conclude that our proposed GNMFNC is useful
for question retrieval with high accuracies. To the best of our knowledge, it is the first time to investigate
the group matrix factorization for question retrieval.

3.4 Convergence Behavior

In subsection 2.3.1, we have shown that the multiplicative updates given by equations (4)∼(6) are con-
vergent. Here, we empirically show the convergence behavior of GNMFNC.

Figure 1 shows the convergence curve of GNMFNC on the training data set. From the figure, y-axis is
the value of objective function and x-axis denotes the iteration number. We can see that the multiplicative
updates for GNMFNC converge very fast, usually within 80 iterations.

3.5 Regularization Parameters Selection

One success of this paper is to use regularized constrains on the category-specific topics to prevent them
from capturing the information from the shared topics. It is necessary to give an in-depth analysis of
the regularization parameters used in the paper. Consider the regularization term used in equation (2),
each element in UT

s Up and UT
p Ul has a value between 0 and 1 as each column of Us, Up and Ul is

normalized. Therefore, it is appropriate to normalize the term having ∥UT
s Up∥2

F by KsKp since there
are Ks ×Kp elements in UT

s Up. Similarly, ∥UT
p Ul∥2

F is normalized by KlKp. Note that Kl = Kp and
l ̸= p. As discussed in subsection 4.1, we present an alternative way by adding a common factor a and
set αp = a

Ks×Kp
and βl = a

Kp×Kl
. The common factor a is used to adjust a trade-off between the matrix

factorization errors and the mutual orthogonality, which cannot directly tune on the validation set. Thus,
we look at the objective function of optimization problem in equation (3) on the training data and find
the optimum value for a.

Figure 2 shows the objective function value vs. common factor a, where y-axis denotes the converged
objective function value, and x-axis denotes Log10a . We can see that the optimum value of a is 100.
Therefore, the common factor a can be fixed at 100 for our data set used in the paper, resulting in
αp = βl = 0.625. Note that the optimum value of (Ks,Kp) are set as (20, 8) in subsection 4.1. Due to
limited space, we do not give an in-depth analysis for other parameters.

4 Conclusion and Future Work

In this paper, we propose a novel approach, called group non-negative matrix factorization with natural
categories (GNMFNC). The proposed method is achieved by learning the category-specific topics for
each category as well as shared topics across all categories via a group non-negative matrix factorization
framework. We derive an efficient algorithm for learning the factorization, analyze its complexity, and
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provide proof of convergence. Experiments show that our proposed approach significantly outperforms
various baseline methods and achieves state-of-the-art performance for question retrieval.

There are some ways in which this research could be continued. First, the optimization of GNMFNC
can be decomposed into many sub-optimization problems, a natural avenue for future research is to
reduce the running time by executing the optimization in a distributed computing environment (e.g.,
MapReduce (Dean et al., 2004)). Second, another combination approach will be used to incorporate the
latent topic match score as a feature in a learning to rank model, e.g., LambdaRank (Burges et al., 2007).
Third, we will try to investigate the use of the proposed approach for other kinds of data sets with larger
categories, such as categorized documents from ODP project.5
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