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ABSTRACT 

This paper contains the detailed approach of automatic extraction of Keyphrases from scientific 
articles (i.e. research paper) using supervised tool like Conditional Random Fields (CRF). 
Keyphrase is a word or set of words that describe the close relationship of content and context in 
the document. Keyphrases are sometimes topics of the document that represent the key ideas of 
the document. Automatic Keyphrase extraction is a very important module for the automatic 
systems like query or topic independent summarization, question-answering (QA), information 
retrieval (IR), document classification etc. The system was developed for the Task 5 of SemEval-
2. The system is trained using 144 scientific articles and tested on 100 scientific articles. 
Different combinations of features have been used. With combined keywords i.e. both author-
assigned and reader-assigned keyword sets as answers, the system shows a precision of 32.34%, 
recall of 33.09% and F-measure of 32.71% with top 15 candidates.  

KEYWORDS : Keyphrase Extraction, Topic Extraction, Information Extraction, Summarization, 
Question Answering (QA), Document Classification.  
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1 Introduction 

Keyphrase is a word or set of words that describe the close relationship of content and context in 
the document. Keyphrases are sometimes simple nouns or noun phrases (NPs) that represent the 
key ideas of the document i.e. topic. Keyphrases can serve as a representative summary of the 
document and also serve as high quality index terms (Kim and Kan, 2009). Keyphrases can be 
used in various natural language processing (NLP) applications such as summarization (Bhaskar 
et al., 2012a, 2012b, 2010a, 2010b), information retrieval (IR) (Bhaskar et al., 2010c), question 
answering (QA) (Bhaskar et al., 2012c, 2012d; Pakray et al., 2011), document classification etc. 
Specially for the query or topic independent summarization system, it’s a must needed module. 
Keyphrase extraction also plays an important role in Search engines. 

Works on identification of keyphrase using noun phrase are reported in (Barker and Cor-
rnacchia, 2000). Noun phrases are extracted from a text using a base noun phrase skimmer and an 
off-the-shelf online dictionary. 

Keyphrase Extraction Algorithm (KEA) was proposed in order to automatically extract 
keyphrase (Witten et al., 1999). The supervised learning methodologies have also been reported 
(Frank et al, 1999). 

Some works have been done for automatic keywords extraction using CRF technique. A 
comparative study on the performance of the six keyword extraction models, i.e., CRF, SVM, 
MLR, Logit, BaseLine1 and BaseLine2 has been reported in (Chengzhi et al., 2008). The study 
shows that CRF based system outperforms SVM based system. 

The CRF based Keyphrase extraction system is presented in Section 3. The system evaluation 
and error analysis are reported in Section 4 and the conclusion is drawn in the next section. 

2 Preparing the System 

2.1 Features Identification for the System 

Selection of features is important in CRF. Features used in the system are, 

F = {Dependency, POS tag(s), Chunk, NE, TF range,  Title, Abstract, Body, Reference, Stem 
of word, Wi-m, …, Wi-1, Wi, Wi+1,… , Wi-n } 

The features are detailed as follows: 

i) Dependency parsing: Some of the keyphrases are multiword. So relationship of verb with 
subject or object is to be identified through dependency parsing and thus used as a feature. 

ii) POS feature: The Part of Speech (POS) tags of the preceding word, the current word and the 
following word are used as a feature in order to know the POS combination of a keyphrase.  

iii) Chunking: Chunking is done to mark the Noun phrases and the Verb phrases since much of 
the keyphrases are noun phrases. 

iv) Named Entity (NE): The Named Entity (NE) tag of the preceding word, the current word 
and the following word are used as a feature in order to know the named entity combination of a 
keyphrase. 
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v) Term frequency (TF) range: The maximum value of the term frequency (max_TF) is divided 
into five equal sizes (size_of_range) and each of the term frequency values is mapped to the 
appropriate range (0 to 4). The term frequency range value is used as a feature. i.e. 

size_of_range=max_TF
5

, 

Thus, Table 1 shows the range representation. This is done to have uniformed values for the term 
frequency feature instead of random and scattered values. 

Class Range 
0 to size_of_range 0 
size_of_range + 1 to 2*size_of_range 1 
2*size_of_range + 1 to 3*size_of_range 2 
3*size_of_range + 1 to 4*size_of_range 3 
4*size_of_range + 1 to 5*size_of_range 4 

TABLE 1 – Term frequency (TF) range 

vi) Word in Title: Every word is marked with T if found in the title else O to mark other. The 
title word feature is useful because the words in title have a high chance to be a keyphrase. 

vii) Word in Abstract: Every word is marked with A if found in the abstracts else O to mark 
other. The abstract word feature is useful because the words in abstracts have a high chance to be 
a keyphrase. 

viii) Word in Body: Every word is marked with B if found in the body of the text else O to mark 
other. It is a useful feature because words present in the body of the text are distinguished from 
other words in the document.  

ix) Word in Reference: Every word is marked with R if found in the references else O to mark 
other. The reference word feature is useful because the words in references have a high chance to 
be a keyphrase. 

x) Stemming: The Porter Stemmer algorithm is used to stem every word and the output stem for 
each word is used as a feature. This is because words in keyphrases can appear in different 
inflected forms. 

xi) Context word feature: The preceding and the following word of the current word are 
considered as context feature since keyphrases can be a group of words. 

2.2 Corpus Preparation 

Automatic identification of keyphrases is our main task. In order to perform this task the data 
provided by the SEMEVAL-2 Task Id #5 is being used both for training and testing. In total 144 
scientific articles or papers are provided for training and another 100 documents have been 
marked for testing. All the files are cleaned by placing spaces before and after every punctuation 
mark and removing the citations in the text. The author names appearing after the paper title was 
removed. In the reference section, only the paper or book title was kept and all other details were 
deleted. 
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3 CRF based Keyphrase Extraction System 

3.1 Extraction of Positional Feature 

One algorithm has been defined to extract the title from a document. Another algorithm has been 
defined to extract the positional feature of a word, i.e., whether the word is present in title, 
abstracts, body or in references. 

Algorithm 1: Algorithm to extract the title. 

Step 1:  Read the line one by one from the beginning of the article until a '.'(dot) or '@' found in 
 the line. ('.'(dot) occurs in author’s name and '@' occurs in author’s mail id). 

Step 2:  If '.' found first in a line then each line before it is extracted as Title and returned. 

Step 3:  If '@' found first in a line then extract all the line before it. 

Step 4:  Check the extracted line one by one from beginning. 

Step 5: Take a line; extract all the words of that line. Check whether all the words are not 
 repeated in the article (excluding the references) or not. If not then stop and extract all 
 the previous lines as Title and return. 

Algorithm 2: Algorithm to extract the Positional Features. 

Step 1:  Take each word from the article. 

Step 2:  Stem all the words. 

Step 3:  Check the position of the occurrence of the words. 

Step 4:  If the word occurs in the extracted title (using algorithm 1) of the article then mark it as 
 'T' else ‘O’ in title feature column. 

Step 5:  If the word occurs in between the word ABSTRACT and INTRODUCTION then mark 
 it as 'A' else ‘O’ in abstracts feature column. 

Step 6: If the word occurs in between the word INTRODUCTION and REFERENCES then 
 mark it as 'B' else ‘O’ in body feature column. 

Step 7: If the word occurs after the word REFERENCES then mark it as 'R' else ‘O’ in 
 references feature column. 

3.2 Generating Feature File for CRF 

The features used in the keyphrase extraction system are identified in the following ways.  

Step 1: The dependency parsing is done by the Stanford Parser1. The output of the parser is 
 modified by making the word and the associated tags for every word appearing in a line.   

Step 2:  The same output is used for chunking and for every word it identifies whether the word 
 is a part of a noun phrase or a verb phrase. 

Step 3:  The Stanford POS Tagger2 is used for POS tagging of the documents. 

                                                             
1	  http://nlp.stanford.edu/software/lex-‐parser.shtml	  
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Step 4:  The term frequency (TF) range is identified as defined before. 

Step 5:  Using the algorithms described in Section 3.1 every word is marked as T or O for the 
 title word feature, marked as A or O for the abstract word feature, marked as B or O for 
 the body word feature and marked as R or O for the reference word feature.  

Step 6:  The Porter Stemming Algorithm3 is used to identify the stem of every word that is used 
 as another feature. 

Step 7:  In the training data with the combined keyphrases, the words that begin a keyphrase are 
 marked with B-KP and words that are present intermediate in a keyphrase are marked as 
 I-KP. All other words are marked as O. But for test data only O is marked in this 
 column. 

3.3 Training the CRF and Running Test Files 

A template file is created in order to train the system using the feature file generated from the 
tanning set following the above procedure described in the Section 3.2. After training the C++ 
based CRF++ 0.53 package4 which is readily available as open source for segmenting or labeling 
sequential data, a model file is produced. The model file is required to run the test files. 

The feature file is again created from the test set using the above steps as outlined in Section 3.2 
except the step 7. For test set the last feature column i.e. Keyphrase column, is marked with ‘O’. 
This feature file is used with the C++ based CRF++ 0.53 package. After running the Test files 
into the system, the system produce the output file with the keyphrases marked with B-KP and I-
KP. All the Keyphrases are extracted from the output file and stemmed using Porter Stemmer. 

4 Evaluation and Error Analysis 

The evaluation results of the CRF based keyphrase extraction system are shown in Table 3, 
where P, R and F mean micro-averaged precision, recall and F-scores. In second column, R 
denotes the use of the reader-assigned keyword set as gold-standard data and C denotes the use of 
combined keywords i.e. both author-assigned and reader-assigned keyword sets as answers. 
There are three sets of score. First set of score i.e. Top 5 candidates, is obtained by evaluating 
only top 5 keyphrases from evaluated data. Similarly Top 10 candidates set is obtained by 
evaluating top 10 keyphrases and Top 15 Candidates set result is obtained by evaluating all 15 
keyphrases.  

Team By Top 5 Candidates Top 10 candidates Top 15 candidates 
  

R 
C 

P R F P R F P R F 

JU_CSE 
36.33% 15.09% 21.33% 27.41% 22.76% 24.87% 22.54% 28.08% 25.01% 

52.08% 17.77% 26.49% 39.69% 27.07% 32.18% 32.34% 33.09% 32.71% 

TABLE 3 – Result for JU_CSE system with CRF 

                                                                                                                                                                     
2	  http://nlp.stanford.edu/software/tagger.shtml	  
3	  http://tartarus.org/~martin/PorterStemmer/	  
4	  http://crfpp.sourceforge.net/	  
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The scores for the top 5 candidates and top 10 candidates of keyphrases extracted show a better 
precision score since the keyphrases are generally concentrated in the title and abstracts. The 
recall shows a contrast improvement from 17.77% to 33.09% as the number of candidate 
increases since the coverage of the text increases. The F-score is 32.71% when top 15 candidates 
are considered which is 17.61% i.e. 2.17 times better from the best baseline model with F-score 
of 15.10%. Different features have been tried and the best feature we have used in the system is: 

F = {Dependency, POSi-1, POSi, POSi+1, NEi-1, NEi, NEi+1, chunking, TF range, Title, Abstract, 
Body, Reference, Stem of word,Wi-1, Wi, Wi+1} 

Here, POSi-1, POSi and POSi+1 are the POS tags of the previous word, the current word and the 
following word respectively. Similarly Wi-1, Wi and Wi+1 denote the previous word, the current 
word and the following word respectively. This POSi and Wi give a contrasting result when only 
the word and the POS of the word are considered.  

A better result could have been obtained if Term Frequency * Inverse Document Frequency 
(TF*IDF) range is included (Frank et al., 1999; Witten et al., 1999). TF*IDF measures the 
document cohesion. The maximum value of the TF*IDF (max_TF_IDF) can be divided into five 
equal size (size_of_range) and each of the TF*IDF values is mapped to the appropriate range (0 
to 4). i.e. 

5
max_TF_IDF =ngesize_of_ra , 

We have used the Unigram template in the template file CRF++ 0.53 package but the use of 
bigram could have improved the score. 

Conclusion and Perspectives 

A CRF based approach to keyphrase extraction has been attempted in the present task for 
scientific articles. Proper cleaning of the input documents and identification of more appropriate 
features could have improved the score. 

In future we will use MWE as a feature in CRF. Most of the cases the keyphrases are multi-word. 
We also like to port our system in different domains like news, tourism, health or general.  
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