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Abstract

Transductive SVM (TSVM) is a well known semi-supervised large margin learning method
for binary text classification. In this paper we extend this method to multi-class and hierar-
chical classification problems. We point out that the determination of labels of unlabeled
examples with fixed classifier weights is a linear programming problem. We devise an
efficient technique for solving it. The method is applicable to general loss functions. We
demonstrate the value of the new method using large margin loss on a number of multi-class
and hierarchical classification datasets.
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1 Introduction

Consider the following supervised learning problem corresponding to a general structured
output prediction problem:

min
w,ξs

F s(w) =
λ

2
‖w‖2 +

1

l

l∑
i=1

ξs
i (1)

where ξs
i = ξ(w,xs

i , y s
i ) is the loss term and {(xs

i , y s
i )}li=1 is the set of labeled examples. For

example, in large margin and maxent models respectively we have

ξ(w,xi , yi) =max
y

L(y, yi)−wT∆f(y, yi;xi) and ξ(w,xi , yi) =−wT f(yi;xi) + log Z (2)

where ∆f(y, yi;xi) = f(yi;xi)− f(y;xi) and Z =
∑

y exp(wT f(y;xi)). Text classification prob-
lems involve a rich and large feature space (e.g., bag-of-words features) and so linear classifiers
work very well (Joachims, 1999). We particularly focus on multi-class and hierarchical classifi-
cation problems (and hence our use of scalar notation for y). In multi-class problems y runs
over the classes and, w and f(y;xi) have one component for each class, with the component
corresponding to y turned on. More generally, in hierarchical classification problems, y runs
over the set of leaf nodes of the hierarchy and, w and f(y;xi) consist of one component for
each node of the hierarchy, with the node components in the path to leaf node y turned on.
λ > 0 is a regularization parameter. A good default value for λ can be chosen depending on the
loss function used.1 The superscript s denotes ‘supervised’; we will use superscript u to denote
elements corresponding to unlabeled examples.

In semi-supervised learning we use a set of unlabeled examples, {xu
i }ni=1 and include the

determination of the labels of these examples as part of the training process:

min
w,yu

F s(w) +
Cu

n

n∑
i=1

ξu
i s.t.

n∑
i=1

δ(y, yu
i ) = n(y) ∀y (3)

where yu = {yu
i }, ξu

i = ξ(w,xu
i , yu

i ) and δ is the Kronecker delta function. Cu is a regularization
parameter for the unlabeled part. A good default value is Cu = 1; we use this value in all our
experiments. (3) consists of constraints on the label counts that come from domain knowledge.
(In practice, one specifies φ(y), the fraction of examples in class y; then the values in {φ(y)n}
are rounded to integers {n(y)} in a suitable way so that

∑
y n(y) = n.2) Such constraints

are crucial for the effective solution of the semi-supervised learning problem; without them
the semi-supervised solution tends to move towards assigning the majority class label to most
unlabeled examples. In more general structured prediction problems (3) may include other
domain constraints (Chang et al., 2007). In this paper we will use just the label constraints
in (3).

Inspired by the effectiveness of the TSVM model of Joachims (1999), there have been a number
of works on the solution of (3) for binary classification with large margin losses. These methods
fall into one of two types: (a) combinatorial optimization; and (b) continuous optimization.

1In the experiments of this paper, for multi-class and hierarchical classification with large margin loss, we use
λ= 10.

2We will assume that quite precise values are given for {n(y)}. The effect of noise in these values on the semi-
supervised solution needs a separate study.
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See (Chapelle et al., 2008, 2006) for a detailed coverage of various specific methods falling
into these two types. In combinatorial optimization the label set yu is determined together with
w. It is usual to use a sequence of alternating optimization steps (fix yu and solve for w, and
then fix w and solve for yu) to obtain the solution. An important advantage of doing this is that
each of the sub-optimization problems can be solved using simple and/or standard solvers. In
continuous optimization yu is eliminated and the resulting (non-convex) optimization problem
is solved for w by minimizing

F s(w) +
Cu

n

n∑
i=1

ρ(w,xu
i ) (4)

where ρ(w,xu
i ) =minyu ξ(w,xu

i , yu
i ). The loss function ξ as well as ρ are usually smoothed so

that the objective function is differentiable and gradient-based optimization techniques can be
employed. Further, the constraints in (3) involving yu are replaced by smooth constraints on w
expressing balance of the mean outputs of each label over the labeled and unlabeled sets.

Zien et al. (2007) extended the continuous optimization approach to (4) for multi-class and
structured output problems. But their experiments only showed limited improvement over
supervised learning. The combinatorial optimization approach, on the other hand, has not
been carefully explored beyond binary classification. Methods based on semi-definite program-
ming (Xu et al., 2006; De Bie and Cristianini, 2004) are impractical, even for medium size
problems. One-versus-rest and one-versus-one ideas have been tried, but it is unclear if they
work well: Zien et al. (2007) and Zubiaga et al. (2009) report failure while Bruzzone et al.
(2006) use a heuristic implementation and report success in one application domain. Unlike
these methods which have binary TSVM as the basis, we take up an implementation of the
approach for the direct multi-class and hierarchical classification formulation in (3). The special
structure in constraints allows the yu determination step to reduce to a degenerate transporta-
tion linear programming problem. So the well-known transportation simplex method can be
used to obtain yu. We show that even this method is not efficient enough. As an alternative we
suggest an effective and much more efficient heuristic label switching algorithm. For binary
classification problems this algorithm is an improved version of the multiple switching algorithm
developed by Sindhwani and Keerthi (2006) for TSVM. Experiments on a number of multi-class
and hierarchical classification datasets show that, like the TSVM method of binary classification,
our method yields a strong lift in performance over supervised learning, especially when the
number of labeled examples is not sufficiently large. Although we demonstrate our method
using hinge loss, the applicability of our approach to general loss functions (e.g., maxent loss)
is a key advantage. The reader is referred to the longer version of this paper (Keerthi et al.,
2012) for details on specialization to maxent losses ((Gärtner et al., 2005), (Graca et al., 2007),
(Ganchev et al., 2009) and (Mann and McCallum, 2010)) and more experimental results.

2 Semi-Supervised Learning Algorithm

The semi-supervised learning algorithm for multi-class and hierarchical classification problems
follows the spirit of the TSVM algorithm (Joachims, 1999). Algorithm 1 gives the steps. It
consists of an initialization part (steps 1-9) that sets starting values for w and yu, followed by
an iterative part (steps 10-15) where w and yu are refined by semi-supervised learning. Using
exactly the same arguments as those in (Joachims, 1999; Sindhwani and Keerthi, 2006) it can
be proved that Algorithm 1 is convergent.

Initialization of w is done by solving the supervised learning problem. This w can be used

1093



to predict yu. However such a yu usually violates the constraints in (3). To choose a yu that
satisfies (3), we do a greedy modification of the predicted yu. Steps 3-9 of Algorithm 1 give the
details.

The iterative part of the algorithm consists of an outer loop and an inner loop. In the outer loop
(steps 10-15) the regularization parameter Cu is varied from a small value to the final value of
1 in annealing steps. This is done to avoid drastic switchings of the labels in yu, which helps the
algorithm reach a better minimum of (3) and hence achieve better performance. For example,
on ten runs of the multi-class dataset, 20NG (see Table 1) with 100 labeled examples and
10,000 unlabeled examples, the average macro F values on test data achieved by supervised
learning, Algorithm 1 without annealing and Algorithm 1 with annealing are, respectively,
0.4577, 0.5377 and 0.6253. Similar performance differences are seen on other datasets too.

The inner loop (steps 11-14) does alternating optimization of w and yu for a given Cu. In
steps 12 and 13 we use the most recent w and yu as the starting points for the respective
sub-optimization problems. Because of this, the overall algorithm remains very efficient in spite
of the many annealing steps involving Cu. Typically, the overall cost of the algorithm is only
about 3-5 times that of solving a supervised learning problem involving (n+ l) examples. For
step 12 one can employ any standard algorithm suited to the chosen loss function. In the rest
of the section we will focus on step 13.

Algorithm 1 Semi-Supervised Learning Algorithm
1: Solve the supervised learning problem, (1) and get w.
2: Set initial labels for unlabeled examples, yu using steps 3-9 below.
3: Set Y = {y}, the set of all classes, Ay = ; ∀y , and I = {1, . . . , n}.
4: repeat
5: Si =maxy∈Y wT f(y;xu

i ) and yi = arg maxy∈Y wT f(y;xu
i ) ∀i ∈ I .

6: Sort I by decreasing order of Si .
7: By order allocate i to Ayi

while not exceeding sizes specified by n(yi).
8: Remove all allocated i from I and remove all saturated y (i.e., |Ay |= n(y)) from Y .
9: until Y = ;

10: for Cu = {10−4, 3× 10−4, 10−3, 3× 10−3, . . . , 1} (in that order) do
11: repeat
12: Solve (3) for w with yu fixed (i.e., without constraints).
13: Solve (3) for yu with w fixed.
14: until step 13 does not alter yu

15: end for

2.1 Linear programming formulation
Let us now consider optimizing yu with fixed w. Let us represent each yu

i in a 1-of-m represen-
tation by defining boolean variables zi y and requiring that, for each i, exactly one zi y takes the
value 1. This can be done by using the constraint

∑
y zi y = 1 for all i. The label constraints

become
∑

i zi y = n(y) for all y. Let ci y = ξ(w,xu
i , y). With these definitions the optimization

problem of step 13 becomes (irrespective of the type of loss function used) the integer linear
programming problem,

min
∑
i,y

ci yzi y s.t.
∑

y

zi y = 1 ∀i,
∑

i

zi y = n(y) ∀y, zi y ∈ {0, 1} ∀i, y (5)
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This is a special case of the well known Transportation problem (Hadley, 1963) in which the
constraint matrix satisfies unimodularity conditions; hence, the solution of the integer linear
programming problem (5) is same as the solution of the linear programming (LP) problem
(i.e., with the integer constraints left out), i.e., the integer constraints hold automatically at LP
optimality. Previous works (Joachims, 1999; Sindhwani and Keerthi, 2006) do not make this
neat connection to linear programming. The constraints

∑
y zi y = 1 ∀i allow exactly n non-zero

elements in {zi y}i y ; thus there is degeneracy of order m, i.e., there are (n+m) constraints but
only n non-zero solution elements.

2.2 Transportation simplex method

The transportation simplex method (a.k.a., stepping stone method) (Hadley, 1963) is a standard
and generally efficient way of solving LPs such as (5). However, it is not efficient enough for
typical large scale learning situations in which n, the number of unlabeled examples is large and
m, the number of classes, is small. Let us see why. Each iteration of this method starts with a
basis set of n+m−1 basis elements. Then it computes reduced costs for all remaining elements.
This step requires O(nm) effort. If all reduced costs are non-negative then it implies that the
current solution is optimal. If this condition does not hold, elements which have negative
reduced costs are potential elements for entering the basis.3 One non-basis element with a
negative reduced cost (say, the element with the most negative reduced cost) is chosen. The
algorithm now moves the solution to a new basis in which an element of the previous basis is
replaced by the newly entering element. This operation corresponds to moving a chosen set of
examples between classes in a loop so that the label constraints are not violated. The number of
such iterations is observed to be O(nm) and so, the algorithm requires O(n2m2) time. Since n
can be large in semi-supervised learning, the transportation simplex algorithm is not sufficiently
efficient. The main cause of inefficiency is that the step (one basis element changed) is too
small for the amount of work put in (computing all reduced costs)!

2.3 Switching algorithm

We now propose an efficient heuristic switching algorithm for solving (5) that is suited to the
case where n is large but m is small. The main idea is to use only pairwise switching of labels
between classes in order to improve the objective function. (Note that switching makes sure
that the label constraints are not violated.) This algorithm is sub-optimal for m ≥ 3, but still
quite powerful because of two reasons: (a) the solution obtained by the algorithm is usually
close to the true optimal solution; and (b) reaching optimality precisely is not crucial for the
alternating optimization approach (steps 12 and 13 of Algorithm 1) to be effective.

Let us now give the details of the switching algorithm. Suppose, in the current solution, example
i is in class y. Let us say we move this example to class ȳ. The change in objective function
due to the move is given by δc(i, y, ȳ) = ci ȳ − ci y . Suppose we have another example ī which
is currently in class ȳ and we switch i and ī, i.e., move i to class ȳ and move ī to class y.
The resulting change in objective function is given by ρ(i, y, ī, ȳ) = δc(i, y, ȳ) + δc(ī, ȳ , y).
The more negative ρ(i, y, ī, ȳ) is, the better will be the objective function reduction due to the
switching of i and ī. The algorithm looks greedily for finding as many good switches as possible

3Presence of negative reduced costs may not mean that the current solution is non-optimal. This is due to degeneracy.
It is usually the case that, even when an optimal solution is reached, the transportation algorithm requires several end
steps to move the basis elements around to reach an end state where positive reduced costs are seen.
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Algorithm 2 Switching Algorithm to solve (5)
1: repeat
2: for each class pair (y, ȳ) do
3: Compute δc(i, y, ȳ) for all i in class y and sort the elements in increasing order of δc

values.
4: Compute δc(ī, ȳ , y) for all ī in class ȳ and sort the elements in increasing order of δc

values.
5: Align these two lists (so that the best pair is at the top) to form a switch list of 5-tuples,

{(i, y, ī, ȳ ,ρ(i, y, ī, ȳ)}.
6: Remove any 5-tuple with ρ(i, y, ī, ȳ)≥ 0.
7: end for
8: Merge all the switch lists into one and sort the 5-tuples by increasing order of ρ values.
9: while switch list is non-empty do

10: Pick the top 5-tuple from the switch list; let’s say it is (i, y, ī, ȳ ,ρ(i, y, ī, ȳ)). Move i to
class ȳ and move ī to class y .

11: From the remaining switch list remove all 5-tuples involving either i or ī.
12: end while
13: until the merged switch list from step 8 is empty

at a time. Algorithm 2 gives the details. Steps 2-12 consist of one major greedy iteration and has
cost O(nm2). Steps 2-7 consist of the background work needed to do the greedy switching of
several pairs of examples in steps 9-12. Step 11 is included because, when i and ī are switched,
data related to any 5-tuple in the remaining switch list that involves either i or ī is messed up.
Removing such elements from the remaining switched list allows the algorithm to continue
finding more pairs to apply switching without a need for repeating steps 2-7. It is this multiple
switching idea that gives the needed efficiency lift over the transportation simplex algorithm.

The algorithm is convergent due to the following reasons: the algorithm only performs switch-
ings which reduce the objective function; thus, once a pair of examples is switched, that pair
will not be switched again; and, the number of possible switchings is finite. A typical run
of Algorithm 2 requires about 3 loops through steps 2-12. Since this algorithm only allows
pairwise switching of examples, it cannot assure that the class assignments resulting from it
will be optimal for (5) if m ≥ 3. However, in practice the objective function achieved by the
algorithm is very close to the true optimal value; also, as pointed out earlier, reaching true
optimality turns out to be not crucial for good performance of the semi-supervised algorithm.

We compared the speed performance of transportation simplex and switching algorithms on
real-world datasets such as Ohscal and found that the switching algorithm is faster by two
orders of magnitude. Note that if m is large then steps 2-7 of Algorithm 2 can become expensive.
We have applied the switching algorithm to datasets that have m≤ 105, but haven’t observed
any inefficiency. If m happens to be much larger then steps 2-7 can be modified to work with a
suitably chosen subset of class pairs instead of all possible pairs.

3 Experiments with large margin loss

In this section we give results of experiments on our method as applied to multi-class and
hierarchical classification problems using the large margin loss function, (2). We used the loss,
L(y, yi) = δ(y, yi). Eight multi-class datasets and two hierarchical classification datasets were
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Table 1: Properties of datasets. N : number of examples, d : number of features, m : number of
classes, Type: M=Multi-Class; H=Hierarchical, with D=Depth and I=# Internal Nodes

20NG la1 webkb ohscal reut8 sector mnist usps 20NG rcv-mcat
N 19928 3204 8277 11162 8201 9619 70000 9298 19928 154706
d 62061 31472 3000 11465 10783 55197 779 256 62061 11429
m 20 6 7 10 8 105 10 10 20 7

Type M M M M M M M M H H
D/I 3/8 2/10
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Figure 1: Hierarchical classification dataset - Variation of performance (Macro F): Left - as
a function of the number of labeled examples (LabSize). Dashed black line corresponds to
supervised learning; Continuous black line corresponds to the semi-supervised method; Dashed
horizontal red line corresponds to the supervised classifier built using L and U with their labels
known. Right - as a function of the number of unlabeled examples (UnLabSize), with the
number of labeled examples fixed at 80.

used. Due to lack of space, performance results are given only for some datasets. The reader
is referred to the longer version of this paper (Keerthi et al., 2012) for details on other data
sets. Properties of these datasets (Lang, 1995; Forman, 2003; McCallum and Nigam, 1998;
Lewis et al., 2006; LeCun, 2011; Tibshirani, 2011) are given in Table 1. Most of these datasets
are standard text classification benchmarks. We include two image datasets, mnist and usps to
point out that our methods are useful in other application domains too. rcv-mcat is a subset
of rcv1 (Lewis et al., 2006) corresponding to the sub-tree belonging to the high level category
MCAT with seven leaf nodes consisting of the categories, EQUITY, BOND, FOREX, COMMODITY,
SOFT, METAL and ENERGY. In one run of each dataset, 50% of the examples were randomly
chosen to form the unlabeled set, U; 20% of the examples were put aside in a set L to form
labeled data; the remaining data formed the test set. Ten such runs were done to compute the
mean and standard deviation of (test) performance. Performance was measured in terms of
Macro F (mean of the F values associated with various classes).

In the first experiment, we fixed the number of labeled examples (to 80) and varied the number
of unlabeled examples from small to big values. The variation of performance as a function
of the number of unlabeled examples, for the multi-class dataset, 20NG, is given in Figure 1
(Right). Performance steadily improves as more unlabeled data is added. Next we fixed the
unlabeled data to U and varied the labeled data size from small values up to |L|. This is an
important study for semi-supervised learning methods since their main value is when labeled
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Figure 2: Multi-class datasets: Variation of performance (Macro F) as a function of the number of
labeled examples (LabSize). Dashed black line corresponds to supervised learning; Continuous
black line corresponds to the semi-supervised method; Dashed horizontal red line corresponds
to the supervised classifier built using L and U with their labels known.

data is sparse (lower side of the learning curve). The variation of performance as a function of
the number of labeled examples is shown in Figure 1 (Left). The same holds in other datasets
too. The results for four multi-class datasets are given in Figure 2. Clearly, semi-supervised
learning is very useful and yields good improvement over supervised learning especially when
labeled data is sparse. The degree of improvement is sharp in some datasets (e.g., reut8) and
mild in some datasets (e.g., sector). While the semi-supervised method is successful in linear
classifier settings such as in text classification and natural language processing, we want to
caution, like (Chapelle et al., 2008), that it may not work well on datasets originating from
nonlinear manifold structure.

4 Conclusion

In this paper we extended the TSVM approach of semi-supervised binary classification to multi-
class and hierarchical classification problems with general loss functions, and demonstrated the
effectiveness of the extended approach. As a natural next step we are exploring the approach
for structured output prediction. The yu determination process is harder in this case since
reduction to linear programming is not automatic. But good solutions are still possible. In many
applications of structured output prediction, labeled data consists of examples with partial
labels. This can be handled in our approach by including all unknown labels as a part of yu.
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