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ABSTRACT
The recent availability of typological databases such as World Atlas of Language Structures
(WALS) has spurred investigations regarding their utility for language classification, the stability
of typological features in genetic linguistics and typological universals across the language
families of the world. Existing work on building NLP resources such as parallel corpora,
treebanks for under-resourced languages has a lot to gain by taking into consideration insights
about inter-language relationships. Since Yarowsky et al. (2001), there have been a number
of attempts to create resources for resource-poor languages by projecting information from
resource-rich languages using comparable corpora. An important intuition in such work is that
syntactic information can be transferred with higher accuracy between languages if they are
similar. In this paper, we compare typological distances derived from fifteen vector similarity
measures with family internal classifications and also lexical divergence. These results are only
a first step towards the use of WALS database in the projection of NLP resources for typologically
or genetically similar, yet resource-poor languages.
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1 Introduction

There are around 7000 languages in this world (Lewis, 2009) which fall into more than 140
genetic families having descended from a common ancestor. The aim of traditional historical
linguistics is to trace the evolutionary path, a tree of extant languages to their extinct common
ancestor. Genealogical relationship is not the only characteristic which relates languages;
languages can also share structurally common features such as word order, similar phoneme
inventory size and morphology. It would be a grave error to posit that two languages are
genetically related due to a single common structural feature. There have been attempts in the
past (Nichols, 1995) to rank the stability of structural features. Stability implies the resistance
of a structural feature to change across space and time. For instance, Dravidian languages have
adhered to subject-object-verb (SOV) word order for the last two thousand years (Krishnamurti,
2003; Dunn et al.). Hence, it can be claimed that the structural feature SOV is very stable in the
Dravidian language family. Also, structural features have recently been used for inferring the
evolutionary tree of a small group of Papuan languages of the Pacific (Dunn et al., 2005).

In the area of computational linguistics, existing work on building NLP resources such as
parallel corpora, treebanks for under-resourced languages has a lot to gain by taking into
consideration insights about inter-language relationships. For example, Birch et al. (2008) is an
interesting example of a work that uses genealogical distances between two language families
to predict the difficulty of machine translation. However, the use of typological distances in
the development of various NLP tools largely remains unexplored. In this paper, we feed such
research by providing robust estimates of inter-language distances and comparing them with
family internal classification and also within-family lexical divergence.

The paper is structured as followed. In Section 2, we summarize the related work. Section 3 lists
the contributions of this work. Section 4 describes the typological database, lexical database
and the criteria for preparing the final dataset. Section 5 presents the different vector similarity
measures and the evaluation procedure. The results of our experiments are given in Section 6.

2 Related Work

Dunn et al. (2005) were the first to apply a well-tested computational phylogenetic method
(from computational biology), Maximum Parsimony (MP; Felsenstein 2004) to typological
features (phonological, syntactic and morphological). They use MP to classify a set of unrelated
languages – in Oceania – belonging to two different families. In another related work, Wichmann
and Saunders (2007) apply three different phylogenetic algorithms – Neighbor Joining (Saitou
and Nei, 1987), MP and Bayesian inference (Huelsenbeck et al., 2001) – to the typological
features (from WALS) of 63 native American languages. They also ranked the typological
features in terms of stability. Nichols and Warnow (2008) survey the use of typological features
for language classification in computational historical linguistics. In a novel work, Bakker et al.
(2009) combine typological distances with lexical similarity to boost the language classification
accuracy. As a first step, they compute the pair-wise typological distances for 355 languages,
obtained through the application of length normalized Hamming distance to 85 typological
features (ranked by Wichmann and Holman 2009). They combine the typological distances with
lexical divergence, derived from lexicostatistical lists, to boost language classification accuracy.
Unfortunately, these works seem to have gone unnoticed in computational linguistics.

Typological feature such as phoneme inventory size (extracted from WALS database; Haspelmath
et al. 2011) was used by Atkinson (2011) to claim that the phoneme inventory size shows a
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negative correlation as one moves away from Africa1. In another work, Dunn et al. (2011)
make an effort towards demonstrating that there are lineage specific trends in the word order
universals across the families of the world.

In computational linguistics, Daume III (2009) and Georgi et al. (2010) use typological features
from WALS for investigating relation between phylogenetic groups and feature stability. Georgi
et al. (2010) motivate the use of typological features for projecting linguistic resources such as
treebanks and bootstrapping NLP tools from “resource-rich” to “low-resource” languages which
are genetically unrelated yet, share similar syntactic features due to contact (ex., Swedish to
Finnish or vice-versa). Georgi et al. (2010) compute pair-wise distances from typological feature
vectors using cosine similarity and a shared overlap measure (ratio of number of shared features
to the total number of features, between a pair of feature vectors). They apply three different
clustering algorithms – k-means, partitional, agglomerative – to the WALS dataset with number
of clusters as testing parameter and observe that the clustering performance measure (in terms
of F-score) is not the best when the number of clusters agree with the exact number of families
(121) in the whole-world dataset. They find that the simplest clustering algorithm, k-means,
wins across all the three datasets. However, the authors do not correct for geographical bias in
the dataset.

3 Contributions

In this article, we do not investigate the topic of feature stability or prediction accuracy of
clustering methods discussed in Georgi et al. (2010). Instead, we try to answer the following
questions:

• Do we really need a clustering algorithm to measure the internal classification accuracy
of a language family?
• How well do the typological distances within a family correlate with the lexical distances

derived from lexicostatistical lists (Swadesh, 1952; Wichmann et al., 2011b), originally
proposed for language classification?
• Given that there are more than dozen vector similarity measures, which vector similarity

measure is best suited for the above mentioned tasks?

4 Database

In this section, we describe a database of typological features, referred to as WALS and a
lexicostatistical database called Automated Similarity Judgment Program (ASJP), which are used
in our experiments.

4.1 WALS

The WALS database2 has 144 feature classes for 2676 languages distributed across the world.
As noted in Hammarström (2009), the WALS database is sparse across many language families
of the world and the dataset needs to be pruned before it is used for further investigations. The
database is represented as matrix of languages vs. features. The pruning of the dataset has to be
done in both the directions to avoid sparsity when computing the pair-wise distances between
languages. Following Georgi et al. (2010), we remove all the languages which have less than
25 attested features. We also remove features with less than 10% attestations. This leaves the

1Assuming a mono-genesis hypothesis of language similar to the mono-genesis hypothesis of homo sapiens.
2Accessed on 2011-09-22.
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dataset with 1159 languages and 193 features. Our dataset includes only those families having
more than 10 languages (following Wichmann et al. 2010), shown in Table 1. Georgi et al.
(2010) work with a pruned dataset of 735 languages and two major families Indo-European and
Sino-Tibetan whereas, we stick to investigating the questions in Section 3 for the well-defined
language families – Austronesian, Afro-Asiatic – given in Table 1.

Family Count Family Count
Austronesian 150 (141) Austro-Asiatic 22 (21)
Niger-Congo 143 (123) Oto-Manguean 18 (14)
Sino-Tibetan 81 (68) Arawakan 17 (17)
Australian 73 (65) Uralic 15 (12)
Nilo-Saharan 69 (62) Penutian 14 (11)
Afro-Asiatic 68 (57) Nakh-Daghestanian 13 (13)
Indo-European 60 (56) Tupian 13 (12)
Trans-New Guinea 43 (33) Hokan 12 (12)
Uto-Aztecan 28 (26) Dravidian 10 (9)
Altaic 27 (26) Mayan 10 (7)

Table 1: Number of languages in each family. The number in parenthesis for each family gives
the number of languages present in the database after mapping with ASJP database.

4.2 ASJP

A international consortium of scholars (calling themselves ASJP; Brown et al. 2008) started
collecting Swadesh word lists (Swadesh, 1952) (a short concept meaning list usually ranging
from 40–200) for most of the world’s languages (more than 58%), in the hope of automatizing
the language classification of world’s languages 3. The ASJP lexical items are transcribed using
a broad phonetic transcription called ASJP Code (Brown et al., 2008). The ASJP Code collapses
distinctions in vowel length, stress, tone and reduces all click sounds to a single click symbol.
This database has word lists for a language (given by its unique ISO 693-3 code as well as WALS
code) and its dialects. We use the WALS code to map the languages in WALS database with that
of ASJP database. Whenever a language with a WALS code has more than one word list in ASJP
database, we chose to retain the first language for our experiments. An excerpt of word list for
Russian is shown in Figure 1. The first line consists of name of language, WALS classification
(Indo-European family and Slavic genus), followed by Ethnologue classification (informing that
Russian belongs to Eastern Slavic subgroup of Indo-European family). The second line consists
of the latitude, longitude, number of speakers, WALS code and ISO 639-3 code. Lexical items
begin from the third line.

4.3 Binarization

Each feature in the WALS dataset is either a binary feature (presence or absence of the feature
in a language) or a multi-valued feature, coded as a discrete integers over a finite range. Georgi
et al. (2010) binarize the feature values by recording the presence or absence of a feature value
in a language. This binarization greatly expands the length of the feature vector for a language
but allows to represent a wide-ranged feature such as word order (which has 7 feature values)
in terms of a sequence of 1’s and 0’s. The issue of binary vs. multi-valued features has been a

3Available at: http://email.eva.mpg.de/~wichmann/listss14.zip
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Figure 1: 10 lexical items in Russian.

point of debate in genetic linguistics and has been shown to not give very different results for
the Indo-European classification (Atkinson and Gray, 2006).

5 Measures

In this section, we list the 15 vector similarity measures (shown in Table 2), followed by a
description of the evaluation measure used in our work to compare the typological distances to
WALS classification. We also describe the procedure used to compute lexical divergence from
the ASJP lists.
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Boolean similarity

hamming #6=0(v1 ˆ v2)

jaccard
#6=0(v1 ˆ v2)

#6=0(v1 ˆ v2) +#6=0(v1&v2)

tanimoto
2 ∗#6=0(v1 ˆ v2)

#6=0(v1&v2) +#=0(v1‖v2) + 2 ∗#6=0(v1 ˆ v2)

matching
#6=0(v1 ˆ v2)

#v1

dice
#6=0(v1 ˆ v2)

#6=0(v1 ˆ v2) + 2 ∗#6=0(v1&v2)

sokalsneath
2 ∗# 6=0(v1 ˆ v2)

2 ∗#6=0(v1 ˆ v2) +#6=0(v1&v2)

russellrao
#6=0(v1 ˆ v2) +#=0(v1‖v2)

#v1

yule
2 ∗# 6=0(v1 − v2) ∗#=0(v1 − v2)

#6=0(v1 − v2) ∗#=0(v1 − v2) +#6=0(v1&v2) ∗#=0(v1‖v2)

Table 2: Different vector similarity measures used in our experiments (distance computed
between v1 and v2). In vector similarity measures, ‖‖ represents the L2 norm of the vector, and
σ represents the difference from mean of vector (µ1) i.e. (v1 −µ1). Similarly, for the boolean
similarity measures, ˆ stands for the logical XOR operation between bit vectors while & and ‖
stand for logical AND and OR operations respectively. # 6=0 (·) stands for number of non-zero
bits in a boolean vector.

5.1 Internal classification accuracy

Apart from typological information for the world’s languages, WALS also provides a two-level
classification of a language family. In the WALS classification, the top level is the family
name, the next level is genus and a language rests at the bottom. For instance, Indo-European
family has 10 genera. Genus is a consensually defined unit and not a rigorously established
genealogical unit (Hammarström, 2009). Rather, a genus corresponds to a group of languages
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which are supposed to have descended from a proto-language which is about 3500 to 4000
years old. For instance, WALS lists Indic and Iranian languages as separate genera whereas,
both the genera are actually descendants of Proto-Indo-Iranian which in turn descended from
Proto-Indo-European – a fact well-known in historical linguistics (Campbell and Poser, 2008).

The WALS classification for each language family listed in Table 1, can be represented as a
2D-matrix with languages along both rows and columns. Each cell of such a matrix represents
the WALS relationship in a language pair in the family. A cell has 0 if a language pair belong
to the same genus and 1 if they belong to different genera. The pair-wise distance matrix
obtained from each vector similarity measure is compared to the 2D-matrix using a special case
of pearson’s r, called point-biserial correlation 4.

5.2 Lexical distance

The ASJP program computes the distance between two languages as the average pair-wise
length-normalized Levenshtein distance, called Levenshtein Distance Normalized (LDN) (Leven-
shtein, 1965). LDN is further modified to account for chance resemblance such as accidental
phoneme inventory similarity between a pair of languages to yield LDND (Levenshtein Dis-
tance Normalized Divided; Holman et al. 2008). The performance of LDND distance matrices
was evaluated against two expert classifications of world’s languages in at least two recent
works (Pompei et al., 2011; Wichmann et al., 2011a). Their findings confirm that the LDND
matrices largely agree with the classification given by historical linguists. This result puts us on
a strong ground to use ASJP’s LDND as a measure of lexical divergence within a family.

The distribution of the languages included in this study is plotted in Figure 2.

Figure 2: Visual representation of world’s languages in the final dataset.

The correlation between typological distances and lexical distances is (within a family) computed
as the spearman’s rank correlation ρ between the typological and lexical distances for all
language pairs in the family. It is worth noting that Bakker et al. (2009) also compare LDND
distance matrices with WALS distance matrices for 355 languages from various families using a
pearson’s r whereas, we compare within-family LDND matrices with WALS distance matrices
derived from 15 similarity measures.

6 Results

In this section, we present and discuss the results of our experiments in internal classification
and correlation with lexical divergence. We use heat maps to visualize the correlation matrices
resulting from both experiments.

4http://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient
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6.1 Internal classification

The point bi-serial correlation, r, introduced in Section 5, lies in the range of −1 to +1. The
value of r is blank for Arawakan and Mayan families since both families have a single genus
in their respective WALS classifications. Subsequently, r is shown in white for both of these
families. Chessboard measure is blank across all language families since it gives a single score
of 1 between two different binary vectors. Interestingly, all vector similarity measures perform
well for Australian, Austro-Asiatic, Indo-European and Sino-Tibetan language families, except
for ‘russellrao’. We take this result to be encouraging since they consist of more than 33% of the
total languages in the sample given in Table 1. Among the measures, ‘matching’, ‘seuclidean’,
‘tanimoto’, ‘euclidean’, ‘hamming’ and ‘manhattan’ perform the best across the four families.
Interestingly, the widely used ‘cosine’ measure does not perform as well as ‘hamming’. None
of the vector similarity measures seem to perform well for Austronesian and Niger-Congo
families which have more than 14% and 11% of the world’s languages respectively. The worst
performing language family is Tupian. This does not come as a surprise, since Tupian has 5
genera with one language in each and a single genus comprising the rest of family. Australian
and Austro-Asiatic families shows the maximum correlation across ‘seuclidean’, ‘tanimoto’,
‘euclidean’, ‘hamming’ and ‘manhattan’.

Figure 3: Heatmap showing the gradience of r across different language families and vector
similarity measures.

6.2 Lexical divergence

The rank correlation between LDND and vector similarity measures is high across Australian,
Sino-Tibetan, Uralic, Indo-European and Niger-Congo families. The ‘Russel-Rao’ measure works
the best for families – Arawakan, Austro-Asiatic, Tupian and Afro-Asiatic – which otherwise
have poor correlation scores for the rest of measures. The maximum correlation is for ‘yule’
measure in Uralic family. Indo-European, the well-studied family, shows a correlation from
0.08 to the maximum possible correlation across all measures, except for ‘Russell-Rao’ and
‘Bray-Curtis’ distances. The Hokan family shows the lowest amount of correlations across all
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distance measures. One possible reason for this could be the controversial nature of the family,
with a lack of proper consensus among historical linguistics regarding its status as a seperate
language family.

Figure 4: Heatmap showing the gradience of ρ across different families and vector similarity
measures.

Conclusion

In summary, choosing the right vector similarity measure when calculating typological distances
makes a difference in the internal classification accuracy. The choice of similarity measure does
not influence the correlation between WALS distances and LDND distances within a family.
The internal classification accuracies are similar to the accuracies reported in Bakker et al.
(2009). Our correlation matrix suggests that internal classification accuracies of LDND matrices
(reported in Bakker et al. 2009) can be boosted through the right combination of typological
distances and lexical distances. There is also a need to investigate the effect of geographical
proximity and time depth of the language families on typological distances. In fact, our work in
this paper is a starting point to tease apart the influence of geographical proximity and time
depth factors from typological similarity. In our experiments, we did not control for feature
stability and experimented on all available features. By choosing a smaller set of typological
features (from the ranking of Wichmann and Holman (2009)) and right similarity measure
one might achieve higher accuracies. The current rate of language extinction is unprecedented
in human history. Our findings might be helpful in speeding up the language classification of
many small dying families by serving as a springboard for traditional historical linguists.
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