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ABSTRACT
In this paper we propose SubSum, a subjective logic framework for sentence-based extractive
multi-document summarization. Document summaries perceived by humans are subjective in
nature as human judgements of sentence relevancy are inconsistent and laden with uncertainty.
SubSum captures this uncertainty and extracts significant sentences from a document cluster to
generate extractive summaries. In particular, SubSum represents the sentences of a document
cluster as propositions and computes opinions, a probability measure containing secondary
uncertainty, for these propositions. Sentences with stronger opinions are considered more sig-
nificant and used as candidate sentences. The key advantage of SubSum over other techniques
is its ability to quantify uncertainty. In addition, SubSum is a completely unsupervised approach
and is highly portable across different domains and languages.
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1 Introduction

Automatic multi-document summarization can effectively condense information found in multi-
ple documents into a short, readable synopsis, allowing users to quickly familiarize themselves
with the main ideas of the information. It has vast applications, especially for online documents
where redundancy abounds (Harabagiu and Lacatusu, 2010). Example source documents
include news articles, email threads, blogs, reviews, and search results, just to name a few.
There has been an increasing research effort towards multi-document summarization in recent
years (McKeown and Radev, 1995; Radev and McKeown, 1998; Radev et al.; Carbonell and
Goldstein, 1998; Barzilay et al., 1999; Conroy et al., 2004; Barzilay and McKeown, 2005;
Daumé III and Marcu, 2005; Nenkova and Vanderwende, 2005; Nenkova et al., 2006; Ji, 2006;
Park et al., 2007; Wei et al., 2008; Wan, 2008; Wang et al., 2008; Li et al., 2010; Zhang et al.,
2010; Shen and Li, 2010; Xia et al., 2011; Ribaldo et al., 2012).

Document summaries perceived by humans are subjective in nature. Judgments of sentence
importance can be affected by user interests, preferences and viewpoints, which may vary from
person to person. Any given portion of a document can be interpreted in different fashions
by different people, especially in the way they understand and interpret the context (Pardo
et al., 2002). For example, for the news of "a small plane smashed into the tallest building in
Milan Thursday evening ...", a user could perceive its main idea as a tragic accident, whereas
another user could interpret it as a topic about a terrorist attack. Therefore, people arrive at
their judgements based on subjective information which is not completely certain or reliable.

SubSum Framework: In order to capture the uncertainty of human judgements in summarizing
documents, in this paper we propose SubSum, a subjective logic framework for multi-document
summarization. SubSum represents the sentences of a document cluster as propositions
and computes opinions, a probability measure containing secondary uncertainty, for these
propositions. Sentences with stronger opinions are considered more significant and used as
candidate sentences to summarize a document.

While standard logic deals with propositions that are either true or false, subjective logic
(Josang, 2001) is a type of probabilistic logic that explicitly takes uncertainty and belief into
account. It can be seen as an extension of probability calculus and binary logic. Subjective
logic is particularly suitable for modeling and analyzing situations involving uncertainty and
incomplete knowledge (Josang and McAnally, 2010; Josang, 2001).

SubSum is an evidence-based method. It formulates opinions using evidence derived or found
in a document, which can be terms, phrases, sentences, co-occurrences of words or phrases,
or any syntactic or semantic features. Opinions can clearly classify sentences based on their
importance and can be used to select significant sentences in summarizing a document.

SubSum differs significantly from many existing summarization approaches. Existing approaches
typically use corpus statistics (Luhn, 1958), linguistic features (Hovy and Lin, 1998), linear
algebra methods (Gong and Liu, 2001), or graphical methods (Mihalcea and Tarau, 2005) to
find out relevant sentences within documents. These methods do not focus on capturing or
quantifying uncertainty as SubSum does.

SubSum is completely based on belief measures adapted from Dempster-Shafer theory (Shafer,
1976) and independent of lexical databases, making it easily portable across different do-
mains and languages. Additionally, it does not require any training data as in many existing
summarizers (Conroy et al., 2004; Kupiec et al., 1995).
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Contributions: (1) We propose SubSum, the first subjective logic-based framework for multi-
document summarization, leveraging belief measures to capture uncertainty of human judge-
ments on significance of sentences. (2) SubSum does not require training data, and is highly
portable across different domains and languages. (3) We perform extensive experiments on
benchmark datasets, demonstrating the advantages and effectiveness of the SubSum framework.

2 Subjective Logic Preliminaries

Subjective logic (Josang, 2001) operates on subjective beliefs about the world, and uses
opinions to denote the representations of subjective beliefs. In subjective logic, first order
measure of evidence is expressed as belief mass distribution functions over the frame of
discernment. An opinion can be interpreted as a probability measure containing secondary
uncertainty, and as such subjective logic can be seen as an extension of both probability
calculus and binary logic (Josang, 2001). Belief, disbelief, uncertainty, and base rates are the
four main belief representations used to express opinions of propositions in subjective logic.
The following definitions of subjective logic concepts are adapted from Josang’s draft book
(folk.uio.no/josang/papers/subjective_logic.pdf) and (Josang, 2001).

Belief Mass Assignment: Let Θ be a frame of discernment. For each sub-state x ∈ 2Θ, if a
number mΘ(x) is associated such that, mΘ(x) ≥ 0, mΘ(;) = 0,

∑
x∈2Θ mΘ(x) = 1, then mΘ is

called a belief mass assignment in Θ, or BMA for short. For each sub-state x ∈ 2Θ, the number
mΘ(x) is called the belief mass of x.

Belief Function: Let Θ be a frame of discernment, and let mΘ be a BMA on Θ. Then the belief
function corresponding to mΘ is the function b : 2Θ → [0, 1] defined by:

b(x) =
∑
y⊆x

mΘ(y), x , y ∈ 2Θ (1)

Disbelief Function: Let Θ be a frame of discernment, and let mΘ be a BMA on Θ. Then the
disbelief function corresponding to mΘ is the function d : 2Θ → [0, 1] defined by:

d(x) =
∑

y∩x=;
mΘ(y), x , y ∈ 2Θ. (2)

Uncertainty Function: Let Θ be a frame of discernment, and let mΘ be a BMA on Θ. Then the
uncertainty function corresponding to mΘ is the function u : 2Θ [0,1] defined by:

u(x) =
∑

y∩x 6=;,y*x

mΘ(y), x , y ∈ 2Θ. (3)

Base Rate Function: Let Θ be a frame of cardinality k, and let aΘ be the function from Θ
to [0,1]k satisfying, aΘ(;) = 0, aΘ(x i) ∈ [0,1] and

∑k
i=1 aΘ(x i) = 1 Then aΘ is a base rate

distribution over Θ.

Relative Atomicity or Relative Base Rate: Let Θ be a frame of discernment and let x , y ∈ 2Θ.
Then for any given y 6= ; the relative atomicity of x to y is the function a : 2Θ → [0, 1],

a(x/y) =
|x ∩ y|
|y| , x , y ∈ 2Θ, y 6= ;. (4)

It can be observed that x ∩ y = ; ⇒ a(x/y) = 0 and y ⊆ x ⇒ a(x/y) = 1. In all other cases
relative atomicity will be a value between 0 and 1.

Binomial Opinion: LetΘ = {x ,¬x} be either a binary frame or a binary partitioning of an n-ary
frame. A binomial opinion about the truth of state x is an ordered quadruple ωx = (b, d, u, a),
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where b is belief, d is disbelief, u is uncertainty, and a is base rate respectively. These components
satisfy b+ d + u= 1 and b, d, u, a ∈ [0,1].

Probability Expectation of a binomial opinion of proposition x: Let Θ be a frame of dis-
cernment with BMA mΘ then the probability expectation function corresponding to mΘ is the
function E : 2Θ → [0,1] defined by:

E(x) = b(x) + a(x)u(x) (5)

Ordering of Opinions: Let ωx and ωy be two opinions. They can be ordered according to the
following criteria by priority: (1) The opinion with the greatest probability expectation is the
greatest opinion. (2) The opinion with the least uncertainty is the greatest opinion. (3) The
opinion with the least relative atomicity is the greatest opinion.

3 SubSum Framework For Multi-Document Summarization

In this section, we first formally define the multi-document summarization problem, then we
present the SubSum framework. In SubSum, sentences are considered as propositions. The
opinions of these propositions are computed, which signify their importance in the document
cluster and are used to select candidate sentences for summarization purposes.

Multi-Document Summarization Problem: Given a cluster of documents D consisting of a
set of sentences S = {s1, s2, ..., sm} and a set of words W = {w1, w2, ..., wn}, the task of multi-
document summarization is to extract a subset of sentences from S, denoted by Sr (Sr ⊂ S),
that best represent the content of document cluster D.

3.1 Formulation

Concept of States: A cluster of related documents consisting of n unique words represent an
n-ary frame of discernment Θ. Words are elementary states or atomic states. Sentences and
phrases on the other hand are composite states, which can be represented as the union of
multiple atomic states.

Assumptions: The following framework is proposed for the practical application of subjective
logic in a document analysis/summarization context: (1) Documents in a cluster are related.
(2) All the words or terms (stop words excluded) in a document cluster are atomic. (3)
The sentences are unique, i.e., each sentence occurs only once in given document cluster.
Single-word sentences can also exist.

Document Representation: Sentences of a document cluster are considered as a set of words
separated by a stop mark ".", "!" or "?". These sentences are tokenized to generate words (stop
words excluded). These words and sentences represent atomic and composite states.

We discuss here different notations used in this paper. Θ is the frame of discernment, a document
cluster D can be represented as a set of words, which is denoted by W = {w1, w2, ..., wn}, where
W is a set of words present in the document cluster D. |W |= n. Since there are n words in D,
Θ is an n− ar y frame of discernment. Thus, ρ(Θ) = {{w1}, {w2}, ..., {w1, w2, w3, ..., wn}} ≡ 2Θ,
where |ρ(Θ)|= 2n.

A document cluster D can also be represented by a set of sentences S such that S = {s1, s2, ..., sm},
where |S|= m and si(i ∈ |S|) is an element of ρ(Θ), because each sentence can be represented
as Si = {w j∪wk∪...∪wr} ∈ Θ where Si ∈ ρ(Θ). Note that for practical reasons, |ρ(Θ)| = 2n − 2,
excluding Θ and ;, which is also known as reduced frame of discernment. If there are n words in
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the document cluster, then there can be at maximum 2n − 2 possible states (words and their
co-occurrences). For example, suppose a document cluster D has words a, b, c, d, then {a}, {b},
{c}, {d}, {a, b, c, d}, are the states we use for our analysis (to avoid computational expenses,
we do not consider all the states of |ρ(Θ)|, such as, {ab}, {bc}... {abc}...).
Frequency of States: Before computing Belief Mass Assignment (BMA), frequency of each
states should be computed.

Fx = Σ
m
i=1 fx , x ∈ 2Θ, fx > 0, m= |S|, (6)

where fx is the frequency of the state x in each sentence and m is the total number of sentences
in the document cluster D.

Z = ΣM
j=1Fx , M ∈ |ρ(Θ)|, (7)

where Z is the sum of the frequencies of all states in the document cluster D.

Belief Mass Assignment (BMA): Belief mass assignment (BMA) is computed in this case by

m(x) = Fx/Z , (8)

where Fx , computed by Eq.(6), is the total frequency of that sub-state in all the sentences (or the
whole document), and Z , computed by Eq. (7), is the total frequency of all the existing states
in the document cluster D. The other parameters of belief measure will follow the definitions
presented in Section 2.

Belief Representations of Subjective Opinions: The basic definitions of belief, disbelief,
uncertainty and relative atomicity remain the same as in Section 2. We re-define some of the
other definitions in the following.

Propositional Atomicity: Let Θ be a frame of discernment and x , y ∈ 2Θ. Then for any given
y 6= ;, the propositional atomicity of x is the average relative atomicity values of all x to y.
Precisely,

ap(x) =

∑
∀|a(x/y)6=0| a(x/y)

|a(x/y) 6= 0| , x , y ∈ 2Θ, y 6= ; (9)

Accordingly, Probability Expectation for a given proposition (sentence in this case) x can be
re-written as

PE(x) = b(x) + ap(x)u(x), (10)

where b(x), u(x), and ap(x) are belief, uncertainty and propositional atomicity of proposition
x . Opinions of a sentence can be measured by this probability expectation as in Eq.(10) using
propositional atomicity.

3.2 Procedures

Generally, there are three major problems associated with multi-document summaries: (1)
recognizing and coping with redundancy, (2) identifying important differences among docu-
ments, and (3) ensuring summary coherence, even when material stems from different source
documents (Radev et al., 2002). We have addressed problem (1) in our method. Problems (2)
and (3) are not very significant for us, as our proposed method is applicable for a cluster of
related or coherent documents. Multi-document summary generation using SubSum involves
the following steps:
Step 1 Compute opinions as representativeness scores for the sentences in S.
Step 2 Pick the sentence s ∈ S with the greatest opinion based on ‘ordering of opinions’.
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Step 3 For each state x in s, update its belief mass by setting it to a small number close to zero.
Step 4 If the desired summary length has not been reached, go back to step 1.
Steps 1 and 3 are explained in the following.

Computation of Opinions: A key step of SubSum is to assign a representativeness score
(opinion) for each sentence si ∈ S, for the document cluster D. Algorithm 1 explains how
SubSum computes opinions.

ALGORITHM 1: Computing Opinions of Sentences

Input: A document cluster D containing a set S of sentences.
Output: A weighted list of sentences Sweighted ∈ S for D.

1 Pre-process D;
2 Extract the states X , where X ∈ 2Θ;
3 Assign bel ie f masses to the states using Eq.(8);
4 foreach sentence s ∈ S do
5 Apply Eq.(1) to compute bel ie f b(s);
6 Apply Eq.(3) to compute uncer taint y u(s);
7 Apply Eq.(9) to compute proposi t ional atomici t y ap(s);
8 Apply Eq.(10) to compute probabil i t y ex pectat ion PE(s);
9 end

10 Sweighted = weighted list of sentences.

Context Adjustment: Using frequency-based approaches to determine summary content in
multi-document summarization results in a repetitive summary (Nenkova et al., 2006). In
SubSum, the assignment of belief masses is dependent on frequency of occurrence of words.
Thus, we need to consider removal of redundant contexts. The basic intuition of redundancy
removal has been taken from (Nenkova et al., 2006). For each state (atomic or composite) x in
the sentence s chosen at step 3, we update its belief masses by setting it to a very small number
close to 0. Here we use 0.00001 for this number.

4 Evaluation

Qualitative analysis of summarizers is done by comparing them against human abstracts using
ROUGE (Lin, 2004). For evaluation of our SubSum framework, we have compared ROUGE-
generated recall, precision, and F -measure with baseline summaries and other summarizers
using standard benchmarks of DUC (Document Understanding Conference duc.nist.gov)-
DUC2001, DUC2002, and DUC2004 datasets.

4.1 Methodology

Frequency is a good predictor of content in human summaries according to (Nenkova et al.,
2006). The word frequency feature forms the basis of the SubSum framework as we use the
frequency of each state of Θ to assign that state’s belief mass (Eq. 8). This belief mass further
contributes to the computation of opinion, which is the main sentence scoring function of
SubSum. Through the experiments discussed below, we focus on how well SubSum corresponds
to human-generated summaries and observe its performance when compared to other methods.

Pre-processing of Documents: Documents of each cluster are pre-processed by tokenizing
them into words, removing stop-words and then by stemming (using Snowball snowball.
tartarus.org/index.php) to retain the root form of the words. Unique instances of
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sentences are selected by removing the duplicates if at all they occur in the document cluster.
The processed word list and the sentence list are then used by SubSum for summarization.

Comparison Partners: The human-generated summaries provided by DUC datasets have been
used as reference summaries for qualitative evaluation of automatic summarizers. These
datasets also provide baseline summaries that can be used for comparison purposes. In addition,
we have used the 16 system summaries from DUC2004. These summaries are referred to as
peer followed by a reference number provided by the dataset.

Beyond the baselines, we have implemented a summarizer based on Composition Functions
(CF) (Nenkova et al., 2006) as an additional comparison partner. Nenkova et al., (Nenkova
et al., 2006) proposed a context-sensitive frequency-based summarizer that uses a composition
function to assign importance weights to sentences. Out of the three proposed composition
functions, we have chosen the best one, Avr, as our comparison partner.

In addition, to test the effect of context adjustments in multi-document summarization, we have
also included comparisons with with SubSum_NoAdj and CF_NoAdj, which are the modified
versions of SubSum and CF without performing any context adjustments (basically omitting
Step 3 of the procedures mentioned in Sec.3.2).

Evaluation Metrics: Our evaluation was done using 1-gram setting of ROUGE (Lin, 2004),
which was found to have the highest correlation with human judgments, namely at a confidence
level of 95%. ROUGE calculates Precision, Recall, and F -measure values. In our experiments,
summary length was set to 100 words. The exact parameters we used were -c 95 -n 4 -x -m -r
1000 -w 1.2 -l 100 -a -z.

4.2 Results

Performance Comparison: Since the length of summaries was set to 100 words, the perfor-
mance of summarizers was determined by examining the ROUGE recall scores.

Table 1 presents the average performance (recall, precision, and F -measure) of the summarizers
over all the 30 DUC2001 and 59 DUC2002 sub-datasets. From table 1, we can observe that
SubSum corresponds well to the human reference summaries, outperforming the baseline and
CF. In particular, for DUC2001, SubSum outperformed the baseline by 3.4% and CF by 0.6% in
terms of recall. For DUC2002, SubSum outperformed the baseline by 4.2% and CF by 2.1% in
terms of recall.

DUC2001 DUC2002
Methods Recall Precision F-measure Recall Precision F-measure
SubSum 0.3306 0.2836 0.3051 0.3294 0.3331 0.3312

SubSum_NoAdj 0.3244 0.2784 0.2995 0.3371 0.3393 0.3381
Baseline 0.2967 0.2558 0.2746 0.2872 0.2938 0.2901

CF 0.3246 0.2792 0.3001 0.3084 0.3362 0.3216
CF_NoAdj 0.3150 0.2703 0.2909 0.2927 0.3165 0.3040

Table 1: Average ROUGE-1 values on DUC2001 and DUC2002

Note that the DUC2001 and DUC2002 datasets have extremely strong baselines. As analyzed
by (Nenkova, 2005), these baselines correspond to the selection of first n sentences of a news
article. (Sarkar, 2012) has pointed out that beating DUC2001 and DUC2002 baseline summaries
is difficult. According to (Das and Martins, 2007), many of the best performing summarization
systems could not outperform the DUC2001 and DUC2002 baselines with statistical significance.
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For example, the summarizers in (Nenkova et al., 2006) and (Erkan and Radev, 2004) either
reached the baselines or outperformed them with a small margin.

Methods Recall Precision F-measure
SubSum 0.3849 0.3418 0.3621

SubSum_NoAdj 0.3814 0.3382 0.3584
Baseline 0.3215 0.2954 0.3049

CF 0.3765 0.3347 0.3543
CF_NoAdj 0.3632 0.3213 0.3409

peer11 0.3254 0.3452 0.3317
peer27 0.3154 0.2987 0.3061
peer34 0.3830 0.3429 0.3618
peer44 0.3694 0.3365 0.3520
peer55 0.3694 0.3281 0.3474
peer65 0.3913 0.3462 0.3674
peer81 0.3764 0.3353 0.3546
peer93 0.3432 0.3391 0.3375
peer102 0.3857 0.3467 0.3651
peer111 0.2336 0.2097 0.2209
peer117 0.3476 0.3126 0.3291
peer120 0.3248 0.3765 0.3423
peer123 0.3056 0.3195 0.3097
peer124 0.3784 0.3375 0.3567
peer138 0.3422 0.3090 0.3247

Table 2: Average ROUGE-1 values on DUC2004

Table 2 presents the average performance (recall, precision, and F -measure) of the summarizers
over all the 50 DUC2004 sub-datasets. From the results we can have similar observations that
SubSum corresponds well to the human reference summaries, outperforming the baseline by
6.3% and CF by 0.8% in terms of recall.

SubSum performed extremely well compared to other DUC2004 peer summarization systems.
It significantly outperformed most systems, roughly tied with peer34 and peer102, and slightly
lost to peer65. Note that peer65 is a supervised HMM system (Conroy et al., 2004) that
requires training data and parameter adjustment, while SubSum is non-supervised and totally
data-driven. Overall, SubSum is among the best of DUC2004 participants.

Effect of Context Adjustment: Tables 1 and 2 have included the ROUGE evaluation scores
for SubSum_NoAdj and CF_NoAdj as two other comparison partners of SubSum and CF.
SubSum_NoAdj and CF_NoAdj are the modified versions of SubSum and CF without context
adjustment in the summarization process. As discussed in Sec. 3.2, one of the main purposes of
context adjustment is to remove context redundancy, which is a typical issue in multi-document
summarization. From the results we can observe that CF outperformed CF_NoAdj in all the
three datasets, showing that the content selection capability of CF would be affected by the
removal of the context adjustment step. On the contrary, SubSum_NoAdj performed comparably
to SubSum, where it slightly lost to SubSum for DUC2001 and DUC2004 and won by a small
margin for DUC2002. This reflects the fact that SubSum can handle redundancy to some extent
even without applying context adjustments separately.
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