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ABSTRACT
Acoustic-phonetic landmarks provide robust cues for speech recognition and are relatively in-
variant between speakers, speaking styles, noise conditions and sampling rates. The ability to
detect acoustic-phonetic landmarks as a front-end for speech recognition has been shown to
improve recognition accuracy. Biomimetic inter-spike intervals and average signal level have
been shown to accurately convey information about acoustic-phonetic landmarks. This paper
explores the use of inter-spike interval and average signal level as input features for landmark
detectors trained and tested on mismatched conditions. These detectors are designed to serve
as a front-end for speech recognition systems. Results indicate that landmark detectors trained
using inter-spike intervals and signal level are relatively robust to both additive channel noise
and changes in sampling rate.
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1 Introduction

Mismatched conditions — differences in channel noise between training audio and testing
audio — are problematic for computer speech recognition systems. Signal enhancement,
mismatch-resistant acoustic features, and architectural compensation within the recognizer
are common solutions (Gong, 1995). The human auditory system implements all three of
these solutions by 1.) enhancing the speech signal via the filtering of the head, outer ear,
and basilar membrane, 2.) extracting prominent, noise-resistant information from the speech
signal, and 3.) implementing dereverberation and noise reduction mechanisms within the
cellular architecture of the brain.

Commercial speech recognizers must inevitably deal with mismatched conditions. Such mis-
matches may include additive channel noise or loss of frequency information. Both of these
events occur in the telephone channel. Telephone-band speech recognition (8 KHz) is a diffi-
cult task (Bourlard, 1996; Karray and Martin, 2003). Both Gaussian systems (Chigier, 1991;
Moreno and Stern, 1994) and non-Gaussian systems (Hasegawa-Johnson et al., 2004) trained
on telephone-band speech are not as accurate as systems trained on wide band speech (16 KHz)
(Halberstadt and Glass, 1998). This may indicate that a speech recognition system should com-
pensate for channel anomalies before the decoding phase.

The distinctive features [silence, continuant, sonorant, syllabic, and consonantal] are binary
valued phonetic descriptors (Stevens, 1999). For example, a sound can either be produced in
the nucleus of a syllable ([+syllabic]) or not ([−syllabic]). The vowel /æ/ is a [+syllabic]
sound and the consonant /d/ is a [−syllabic] sound. A transition between the two sounds, as
in the word “add,” is a [+−syllabic] landmark. Detection and recognition of acoustic-phonetic
landmarks as a front-end to an HMM-based speech recognition system improves both phone
and word recognition accuracy on telephone-band speech (Borys and Hasegawa-Johnson,
2005; Borys, 2008). Landmark-based systems generalize accurately to noisy and mismatched
conditions (Kirchhoff, 1999; Juneja and Espy-Wilson, 2004).

Models of the auditory periphery have been used for denoising/enhancing speech
(Hunt and Lefebvre, 1989; Virag, 1999), speech recognition in clean (Cohen, 1989;
Hunt and Lefebvre, 1989; Ghitza, 1994; Ying et al., 2012) and noisy conditions (Kim et al.,
1999), and emotion recognition (Ying et al., 2012). When applied as a front-end, models of
the auditory periphery improve speech recognition accuracy (Cohen, 1989; Hunt and Lefebvre,
1989; Ghitza, 1994; Virag, 1999), however, such systems fail to achieve human performance.
Current auditory models primarily mimic the cochlea and auditory nerve, both ignoring the
effects of head-related filtering and failing to account for neural processing in the brain-
stem. Neurologists have proposed that the processing in auditory brainstem nuclei, such as
the cochlear nucleus and lateral lemniscus, may improve the robustness of human speech
recognition to changes in environment (Ehret and Romand, 1997; Winer and Schreiner, 2005;
Schnupp et al., 2011).

Both landmark detection and auditory modeling improve recognition accuracy when used as
front-ends for speech recognition systems operating in mismatched conditions. This paper
proposes an approach that unifies the two methods.

2 Data For Mismatched Speech Recognition

The TIMIT corpus (Garofolo et al., 1993) contains 6300 phonetically rich sentences collected
from 630 different male and female speakers from 8 different dialect regions of the United
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States. Each utterance is sampled at a rate of 16 KHz. NTIMIT (Jankowski et al., 1990)
was constructed by filtering the original TIMIT utterances through a telephone channel and
then downsampling to 8 KHz. TIMIT contains detailed, orthographic phonetic transcriptions.
NTIMIT is time aligned with TIMIT such that the original transcriptions describe the NTIMIT
utterances.

3 The Auditory Model

A diagram of the complete binaural auditory model is shown in Figure 1. Relevant parts of the
model are highlighted.

The head, outer, and middle ear are modeled using Tidemann’s head-related transfer function
(HRTF) measurements (Tidemann, 2011). The output of the HRTF is a set of two acoustic
signals — the sound as it is heard at both the left and right ears. HRTF output inputs to the
basilar membrane (BM) model.

The BM is modeled using a bank of 2760 parallel gammatone filters. The design of the gamma-
tone filters mimics that in (Patterson and Holdsworth, 1996). The central frequencies of the fil-
ters are spaced according to the ERB (equivalent rectangular bandwidth) (Moore and Glasberg,
1983) scale, with 100 filters per ERB, arranged at center frequencies between f1 = 60Hz and
f2760 = 8000Hz. The filter outputs at each time t can be placed side by side to form a topo-
graphic map of BM motion from time t = 0 to time t = T . Examples of such maps for the
vowel /i/ are shown in Figure 2.

The location on the BM with the maximal vertical displacement corresponds to a maximum in
acoustic pressure (Geisler, 1998) which in turn corresponds to the frequency of the acoustic
stimulus (Bekesy, 1960). In Figure 2, a spatio-temporal maximum is equivalent to a pressure
maximum. The biomimetic model assumes that processes of lateral inhibition (e.g., as in
(Greenberg, 1988)) prevent auditory nerve (AN) fibers from responding to sub-maximal inputs,
so that any individual nerve fiber fires only when it is aligned with a spatio-temporal pressure
maximum. This aspect of the model is not physiologically accurate, but this approximation
is extremely useful for controlling the computational complexity of the biomimetic model. A
minimum displacement is required for the inner hair cells (IHCs) to fire. Figure 3 shows which
IHCs fire in response to the BM filter outputs of Figure 2. In the figure, an “x” indicates that
the IHC corresponding to a given frequency fired at time t. Intensity information is not shown
in the figure. A spectrogram of the same audio data used to create Figures 2 and 3 is shown in
Figure 4.

The intensity level can be calculated directly from the displacement of the BM model.

I(t, fm) = 20 log10

ym(t)
Yre f

(1)

Here, I(t, fm) is the intensity level in decibels in the mth frequency band at time t, ym(t) is
the observed output at time t from the mth filter given that a maximum has been found, and
Yre f is the threshold of hearing of the BM model.

Level, frequency, and timing information for the duration of the acoustic signal are stored as a
sparse binary third order tensor A. An individual entry in A is referenced by its time, frequency,
and intensity level values and A(t, f , i) ∈ {0,1}. When A(t, f , i) = 1, the neuron has fired at
time t for an auditory signal at frequency f (in Hz) having level i dB. A value of 0 indicates that
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Figure 1: The complete auditory model. The model filters the signal s[n] through a head-
related transfer function (HRTF). The HRTF produces a two-channel audio signal that is fil-
tered by the basilar membrane (BM) model. The BM model innervates a cochlear nucleus
(CN) model. The CN model innervates a superior olive (SO) model, a lateral lemniscus (LL)
model, and a model of the inferior colliculus (IC). The SO model inputs to the LL and the IC.
The LL model inputs to the IC. The IC outputs tonotopic and non-tonotopic acoustic features.
Only the HRTF, BM, and parts of the CN and LL are described in this paper.

Figure 2: (A.) A topographic map of basilar membrane (BM) displacement as a function of
time and frequency for the vowel /i/ (as in the word “she”) for speaker MMDB0 from the
TIMIT corpus. (B.) A topographic map of basilar membrane (BM) displacement as a function
of time and frequency for the vowel /i/ for speaker MMDB0 from the NTIMIT corpus. For both
(A.) and (B.), the x-axis is the time in seconds. The y-axis is frequency in Hertz. The z-axis is
the amplitude of the the auditory filter outputs.

Figure 3: (A.) Inner hair cell (IHC) activation as derived from the tonotopic map of the vowel
/i/ produced by the speaker MMDB0 from the TIMIT corpus shown in Figure 2A. (B.) Inner
hair cell (IHC) activation as derived from the tonotopic map of the vowel /i/ produced by the
speaker MMDB0 from the NTIMIT corpus shown in Figure 2B. In both (A.) and (B.), an “x”
indicates that the IHC corresponding to a given frequency (y-axis) has fired at time t (x-axis).
The y-axis is spaced according to the ERB scale.
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Figure 4: (A.) A spectrogram of the vowel /i/ produced by speaker MMDB0 from the TIMIT
corpus. (B.) A spectrogram of the vowel /i/ produced by speaker MMDB0 from the NTIMIT
corpus. corresponding inner hair cell (IHC) maps are shown in Figures 3A and 3B, respectively.

the neuron has not fired at time t. The majority of entries in A will be equal to 0 for any given
speech utterance. The left and right ears of the model each produce their own independent
tensors (Al and Ar , respectively), though, for current experiments only the left channel is used.
The tensor A is analogous to the information transmitted via the AN.

The octopus cells of the cochlear nucleus (CN) detect synchrony among AN fibers. The tensor
A is a more sparse representation than the representation transmitted by the physiological
AN. While it is known that octopus fibers are innervated by many AN fibers and that the
organization of these fibers is tonotopic, the exact organization of the innervating fibers is
unknown. To combat this problem, synchrony is detected using the logical union (∪i) of
the binary variables A(t, f , i) over different values of i, and summing over a time-frequency
window of duration Tw and over Fw frequency bands. In other words,

Sw(t, f ) =
Tw−1∑
τ=0

Fw−1∑
φ=0

∪Imax
i=Imin

A(t −τ, f −φ, i) (2)

and

Ow(t, f ) =
½

1 Sw(t, f )> ρ
0 otherwise

where ρ is the minimum number of active neurons in a window w required for the octopus
cell to fire. The optimum window size was determined experimentally to be 3 ms by 60 neural
inputs (0.6 ERB) with an optimum firing threshold of ρ = 2. The frequency step is 0.2 ERB.
Each octopus cell overlaps 0.4 ERB with its neighbor. The time step is 1 ms.

The lateral lemniscus (LL) model determines the rate ROw(t, f ) at which the octopus cells corre-
sponding to frequency f fire at time t. The rate (inverse inter-spike interval) is determined as
follows

ROw(t, f ) =
1

τ(Ow(tm, f ))−τ(Ow(tn, f ))
(3)

where τ(Ow(t, f )) = t, and Ow(tm, f ) and Ow(tn, f ) are two chronologically ordered, nonzero
instances of octopus cell activation, i.e., tm > tn.

The multipolar neurons of the CN calculate the average spectral level of synchronous frequen-
cies. The average spectral level is calculated as follows

Mw(t, f ) =

∑Tw−1
τ=0

∑Fw−1
φ=0 I(t −τ, f −φ)

Tw Fw
(4)
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Level is summed from all active nerve fibers in a time-frequency window of duration Tw and
over Fw frequency bands. The multipolar cells use the same window as the octopus cells (3 ms
by 0.6 ERB) to calculate the average level. The average level feature Mw(t, f ) differs from the
Mel-frequency spectral coefficients (MFSCs) in at least two ways, and may therefore encode
complementary information: 1. ) Mw(t, f ) averages the log magnitude, whereas MFSC are the
logarithm of an averaged magnitude, and 2. ) Mw(t, f ) averages only detected peaks, whereas
MFSC averages all signal components. These properties of the auditory model may make it
more resistant to additive noise and channel-dependent filtering.

4 Experiments

Ten support vector machines (SVMs) were trained using the TIMIT corpus to detect the land-
marks listed in Table 1. The training set consisted of the SX TIMIT audio files. The two separate
test sets contained the SI files from TIMIT and the SI files from NTIMIT. A total of 10000 train-
ing tokens (5000 landmark tokens and 5000 non-landmark tokens) were extracted from the
TIMIT training data. A total of 8000 tokens (4000 landmark tokens and 4000 non-landmark
tokens) were extracted for each of the test sets. No tokens overlap between the training and
testing sets.

For the training set and each of the test sets, Mel-frequency cepstral coefficients (MFCCs), the
neural firing rate and level features described in this paper (NRL), and a combination set of
the MFCCs and NRLs (MFCCNRL) were calculated. The MFCCs were calculated using a 25 ms
window with a time-step of 5 ms. NRL features are calculated every millisecond to match the
maximal firing rate of the octopus cells of the CN. The NRL feature vector is a 276 dimensional
vector composed of 138 instances of Ow(t, f ) and 138 instances of Mw(t, f ) for the window w
at time t.

The training and testing data for each landmark detector SVM in Table 1 consist of feature
vectors ~x t containing 11 concatenated acoustic feature frames. The first frame in ~x t was sam-
pled at 50 ms before the landmark, the 6th frame was sampled at the landmark time t, and
the 11th frame was sampled at 50 ms after the landmark; i.e., ~x t ≡ [~yt−50, . . . , ~yt , . . . , ~yt+50]
where ~yt included either MFCCs, NRLs, or a combination of MFCCs and NRL features (MFCC-
NRL). In other words, ~x t is created by concatenating n acoustic feature frames on both sides
of the landmark frame ~yt , where the time step between frames is 10 ms and the total number
of concatenated frames in ~x t is 2n+ 1.

Radial basis function (RBF) SVMs (Burges, 1998) were trained on TIMIT to detect acoustic
landmarks. The TIMIT landmark detectors were tested on TIMIT and NTIMIT. No adaption
algorithms were implemented. Results are shown in Table 1. SVM training and testing was
performed using LibSVM (Chang and Lin, 2001).

5 Results

Landmark detection results are shown in Table 1. When training and testing conditions
are matched, NRL and MFCCNRL-based detectors outperform the MFCC baseline. Detectors
trained on MFCCNRLs are not as accurate as those trained on the NRLs alone. When train-
ing and testing conditions are mismatched, (i.e., added noise and downsampling), the overall
landmark detection accuracy degrades. In mismatched conditions, NRL and MFCCNRL-based
landmark detectors generally either outperform the MFCC baseline or do not produce results
significantly different from the baseline. SVM landmark detectors trained on the MFCCNRL do
not perform as well as the SVMs trained on NRL. Significance is calculated using the binomial
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TIMIT/TIMIT TIMIT/NTIMIT
MFCC NRL MFCCNRL MFCC NRL MFCCNRL

−+silence 92.6 94.7 93.4 84.3 86.1 85.8
+−silence 87.2 94.9 91.6 82.3 87.6 86.8
−+continuant 81.2 89.1 86.4 70.8 79.4 79.4
+−continuant 92.3 92.7 91.5 85.5 86.5 85.3
−+sonorant 81.9 88.8 86.5 74.0 73.5 77.9
+−sonorant 93.9 92.6 93.1 86.2 79.1 88.0
−+syllabic 85.6 89.5 85.5 77.0 87.1 80.5
+−syllabic 85.8 88.1 84.5 83.0 86.5 79.5
−+consonantal 90.8 92.0 90.0 86.5 83.2 87.3
+−consonantal 80.4 85.4 82.2 71.2 71.6 74.9

Table 1: Support vector machine (SVM) landmark detection results for SVMs trained and
tested on TIMIT (TIMIT/TIMIT), and for SVMs trained on TIMIT and tested on NTIMIT
(TIMIT/NTIMIT). SVMs are trained using a Mel-frequency cepstral coefficients (MFCCs), audi-
tory neural rate and level (NRL), and a combination of MFCCs and NRLs (MFCCNRL). Chance
is 50%. Underlined values show a significant difference in accuracy from the MFCC baseline
for p = 0.05/20 = 0.0025. The factor of 20 is necessary because for any given test set, the
table above shows the results of 20 simultaneous significance tests.
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Figure 5: Detection accuracy as a function of the number of concatenated acoustic feature
frames in ~x t for the [−+syllabic] MFCC-based landmark detection SVM. The [−+syllabic]
landmark detector was tested on TIMIT (solid line) and NTIMIT (dashed line).
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Figure 6: Detection accuracy as a function the number of concatenated acoustic feature frames
in ~x t for the [−+syllabic] rate and level-based landmark detection SVM. The [−+syllabic]
landmark detector was tested on TIMIT (solid line) and NTIMIT (dashed line).

test described in (Gillick and Cox, 1989).

Figure 5 shows a plot of detection accuracy vs number of concatenated frames in ~x t for the
MFCC-based [−+syllabic] landmark detector for both test corpora. For MFCC-based SVMs, no
significant increase in detection accuracy is observed as a function of the number of concate-
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Figure 7: Detection accuracy as a function of the number of concatenated acoustic feature
frames in ~x t for the [−+syllabic] MFCC/rate and level-based landmark detection SVM. The
[−+syllabic] landmark detector was tested on TIMIT (solid line) and NTIMIT (dashed line).

nated frames when the training and testing conditions are mismatched. Detection accuracy
increases as a function of the number of concatenated frames when the training and testing
conditions are matched.

Figure 6 shows a plot of detection accuracy vs number of concatenated frames in ~x t for the
NRL-based [−+syllabic] landmark detector for both test corpora. The detection accuracy of
the NRL-based SVMs increases as a function of the number of concatenated frames regardless
of whether the training and testing conditions are matched or mismatched.

Figure 7 shows a plot of detection accuracy vs the number of concatenated frames in ~x t for
the MFCCNRL-based [−+syllabic] landmark detector. There is a slight increase in landmark
detection accuracy as a function of the number of concatenated frames for both matched and
mismatched conditions.

Conclusion

This paper explores the use of octopus cell neural firing rate and average spectral level as
acoustic features, and presents an auditory model that can be used to create these features.
Neural firing rate and average spectral level accurately represent acoustic-phonetic landmarks
in both matched and mismatched conditions.

The current system exploits only the left channel of the model. In the brainstem, input to
both ears is essential for signal denoising. Future work will explore methods to combine both
channels to increase landmark detection accuracy in mismatched conditions.

Accurate landmark detection may be essential for accurate phonetic segmentation — a process
that is essential for speech recognition. The current system provides a building block for an
automatic speech segmentation system designed to be integrated with a speech recognizer.
Implementation of these systems is the focus of future research.
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