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ABSTRACT
Search log sessions contain a large number of paraphrases contributed by users during query
rewriting. However, it is a big challenge to distinguish paraphrases from the simply related
queries in the sessions. This paper addresses this problem by making innovative use of user
behavior information embodied in query sessions. Specifically, we learn paraphrase patterns
from the search log sessions with a classification framework, in which three types of user
behavior features are exploited besides the conventional features. We evaluate the method
using a query log of a commercial search engine. Experimental results demonstrate the
effectiveness of our method, especially the significant contribution of the user behavior features.
We extract over 250,000 pairs of paraphrase patterns from the used search log, with a precision
over 76%.
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1 Introduction

Paraphrases have been shown to be useful in plenty of areas, such as machine translation (MT)
(Callison-Burch et al., 2006; Madnani et al., 2007; Marton et al., 2009), question answering
(QA) (Lin and Pantel, 2001; Ravichandran and Hovy, 2002; Duboue and Chu-Carroll, 2006;
Riezler et al., 2007), and web search (Zukerman and Raskutti, 2002). In particular, the
capability of paraphrasing is essential in web search, since in many cases the user queries need
to be paraphrased so as to improve the quality of the search results.

This paper focuses on learning paraphrase query patterns from search log sessions, which could
be useful in various applications, especially in query paraphrasing. Although search log sessions
have been extensively exploited for mining related queries, this is the first work, as far as we
know, to learn paraphrases from this data source. Mining paraphrase query patterns and related
queries are both useful for search engines, but in different aspects. On the one hand, related
queries can be used for query suggestion and recommendation, using which the users can
extend their search interest and get some related information. However, the related queries are
not suitable for direct query rewriting with the purpose of retrieving more and better results
exactly reflecting the user’s requirement, since the related queries often have different meanings
from the original user query. On the other hand, the paraphrase query patterns are mined
for query paraphrasing, which is to directly rewrite user queries during search. This is useful
especially in the cases where the original user queries contain some uncommon words that
need to be rewritten into more common expressions with the same meaning. The following
examples show the difference between them:

Related queries:
q1: p©Ú=A��p´õ� (what is the height of Kevin Durant)
q2: p©Ú=A�N´õ� (what is the weight of Kevin Durant)
Paraphrase queries:
q1: p©Ú=A��p´õ� (what is the height of Kevin Durant)
q2: p©Ú=A�ý¢�p (true height of Kevin Durant)

In a nutshell, our method involves two steps. In the first step, we induce candidate pattern
pairs from query pairs co-occurring within the same query sessions, while in the second
step, we recognize paraphrase patterns from the candidates using a classifier. We investigate
comprehensive features in paraphrase recognition, including not only conventional features
based on string similarities, but also novel features based on user behaviors. In detail, we design
three types of user behavior features, namely, (1) the frequency based features for measuring
the co-occurrence frequency between two patterns within sessions, (2) the lexical score features
for estimating the lexical level paraphrasing likelihood, and (3) the distance based features for
measuring the separation distance between queries in sessions.

We conduct experiments using a Chinese query log from Baidu1, a commercial search engine.
The results show that the classification based approach is effective in paraphrase recognition.
Particularly, the user behavior features can significantly enhance the classification performance.
More than 250,000 pairs of paraphrase patterns are learned from the used search log with
a precision over 76%, which suggests that the search log sessions are rich in high-quality
paraphrases. Furthermore, we find that our method is complementary to a previous method
learning paraphrases from query-click pairs of query logs, which inspires us to integrate them
in our future research.

1www.baidu.com
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In what follows, we first review related studies in Section 2. We then introduce the pattern
pair induction method in Section 3. The paraphrase pattern recognition method is proposed in
Section 4, in which the user behavior features are described in detail. We present the experiment
results in Section 5 and conclude the paper in Section 6.

2 Related Work

2.1 Paraphrase Learning

Plenty of methods have been proposed to extract paraphrases from various data sources.
In (Barzilay and McKeown, 2001), the authors viewed multiple translation versions of the same
literary works as monolingual parallel corpora and extracted paraphrases with a co-training
algorithm. In (Barzilay and Lee, 2003; Dolan et al., 2004), researchers collected comparable
news articles reporting on the same event, and further extracted parallel sentences for learning
paraphrase phrases and patterns. There are also studies focusing on extracting paraphrases
from large-scale monolingual corpora based on distributional hypothesis (Lin and Pantel, 2001;
Bhagat and Ravichandran, 2008). The basic idea is that phrases or patterns appearing in similar
contexts tend to have the same meaning.

Besides monolingual corpora, bilingual corpora have also been exploited for paraphrase extrac-
tion. Bannard and Callison-Burch (2005) first presented the method to learn paraphrase phrases
from a bilingual phrase table. The key idea is that phrases aligned with the same foreign phrase
could be paraphrases. Callison-Burch (2008) then improved the method by imposing syntax
constraints to filter paraphrases with different syntactic structures. In addition, Zhao et al.
(2008) extended this method to paraphrase pattern extraction.

To our knowledge, few studies have been conducted on learning paraphrases from query
logs. Zhao et al. (2010)’s study might be the closest to our work. Their method is motivated by
the assumption that user queries and the clicked titles are potential paraphrases. Accordingly,
they train a classifier to recognize paraphrases from query-title pairs. They further extract
query-query and title-title paraphrases from the query-title paraphrases based on the assumption
that queries clicking on the same title and titles clicked on for the same query are also likely to
be paraphrases. Additionally, they induce paraphrase patterns from the mined paraphrases. Our
work differs from Zhao et al.’s mainly in that we learn paraphrase patterns from query sessions
instead of query-click pairs. We compare these two methods in the experiments (Section 5.3).

2.2 Search Log Mining

Search engine query logs have been extensively exploited. Especially, there is a large body of
research focusing on mining related queries from search logs and applying them in query
rewriting and recommendation. Such research can be classified into three groups. The
first group of methods utilizes user clicks when computing query similarity. The underlying
assumption is that if users tend to click on similar documents for two queries, then the meanings
of the queries should be similar (Wen et al., 2002; Baeza-Yates and Tiberi, 2007). In the second
group of methods, researchers mine query rewriting terms directly from user clicked documents.
Their basic idea is that terms from queries and user clicked documents are related (Cui et al.,
2002; Riezler et al., 2008). The third group of methods learns related queries from query
sessions. The assumption is that queries submitted by the same user within a short time might
be related in meaning (Fonseca et al., 2005; Jones et al., 2006; Zhang and Nasraoui, 2006;
Szpektor et al., 2011). Our work is close to the third group. However, what we learn are
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paraphrase patterns rather than related queries or patterns.

3 Pattern Pair Induction

3.1 Concepts

Query. In this work, we collect user queries and other useful information from the used search
logs and represent a query q as a triplet:

q = 〈qc, qt, cn〉,

where qc denotes the query content, qt is the time when qc is searched, and cn (≥0) denotes
the number of results clicked by the user. All queries in the search log are first preprocessed, in-
cluding word segmentation, Part-of-Speech (POS) tagging, and Named Entity (NE) recognition.

Session. A query session (QS) is a sequence of queries submitted by the same user within a
short time. We represent a query session with n queries as:

QS = q1...qi ...qn,

where qi is a query described above. Note that the order of queries in a session does matter,
which records the sequence of user actions.

Pattern. A pattern is composed of two parts, i.e., pattern words and slots. Pattern slots can be
instantiated with different words that meet certain constraints. We represent pattern slots as
POS tags, which means that each slot can be instantiated by words with the specified POS. In
our experiments, words with five kinds of POSes are allowed to form slots, including noun (n),
verb (v), adjective (a), numeral (m), and time (t).

3.2 Induce Pattern Pairs

The reason why we learn paraphrase query patterns rather than directly extracting paraphrase
queries is that paraphrase patterns usually achieve a higher coverage in applications than
paraphrase instances. In addition, query patterns are much less sparse than queries. This work
induces pattern pairs from query pairs co-occurring within the same query sessions. In detail,
from a session QS = q1...qi ...qn, we first extract all query pairs 〈qi , q j〉 (1≤ i < j ≤ n) in which
qi and q j share at least one identical word. We then replace one or more shared identical word
with their POS tags (slots), and thereby generate pattern pairs. It is obvious that we may induce
more than one pattern pair from a query pair by selecting different slots. In addition, we assign
a unique number to each pair of aligned slots in a pattern pair to distinguish slots with identical
POS tags.

Figure 1 shows an example of pattern pair induced from a query pair. The slot [n− 1] denotes
that the slot is the first slot in the pattern and the POS of fillers should be noun (n). In practice,
we constrain that each pattern contains at least one content word besides slots, so as to filter
meaningless patterns. In addition, since queries are mostly short, we constrain that each pattern
contains at most two slots. We aggregate pattern pairs induced from all sessions in the search
log and sum up the frequencies for each pair. Pattern pairs satisfying the following requirement
are retained: (1) the frequency of the pattern pair exceeds a threshold T1, (2) the number of
unique fillers for each slot exceeds a threshold T2.
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大象 的 重量
weight of an elephant

大象 有 多重
How much does an elephant weigh

[n-1]  的 重量
weight of an [n-1]

[n-1]  有 多重
How much does an [n-1] weigh

qi

qj

pi

pj

slot filler:

大象(elephant)

slot: [n-1]

Figure 1: Example of pattern pair induction.

4 Paraphrase Pattern Recognition

Following the previous studies (Brockett and Dolan, 2005; Finch et al., 2005; Malakasiotis,
2009), we recast paraphrase pattern recognition as a classification problem. Each induced
pattern pair is classified into one of the two classes, i.e., paraphrase and non-paraphrase. A
Support Vector Machines (SVM) classifier is used in our experiments, since it has proven
effective in this task (Brockett and Dolan, 2005; Finch et al., 2005). Our classification features
can be divided into two groups: the baseline features examined in previous studies (Section
4.1) and user behavior based features proposed in this work (Section 4.2).

4.1 Baseline Features (FBL)

Conventional features for paraphrase recognition include three classes, i.e., lexical features,
syntactic features, and semantic features. The lexical features measure the surface similarity
between word sequences. Syntactic features compute the structural similarity between parse
trees. Semantic features measure deep semantic relatedness based on some external knowledge
base, such as WordNet in English. Our baseline features are mostly lexical features. In detail,
given a pair of candidate patterns p1 and p2, our baseline features include: (1) length ratio
feature, computed as the length of the shorter pattern divided by that of the longer one, (2)
edit distance feature, computed as described in (Zhao et al., 2010), (3) cosine similarity feature,
in which the words are weighted based on tf-idf, (4) word overlap rate feature, (5) character
overlap rate feature2, and (6) named entity feature, a boolean feature indicating whether p1
and p2 contain identical named entities.

We do not use syntactic features because most of user queries are not well-formed sentences
but short n-grams, which cannot be parsed. We do not employ semantic features, either, since
the underlying semantic knowledge bases are language-dependent.

4.2 User Behavior Features (FUB)

The most distinguishing characteristic of the query log, compared with other data sources, is
that it contains rich information about users’ searching and browsing behaviors, which could be

2Chinese words are composed of characters and words with the same meaning often contain similar characters.
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Figure 2: Percentage of paraphrases at each rank.

useful features for recognizing paraphrases. In this work, we design three types of user behavior
features based on the observation and analysis of user behaviors from different aspects, which
are detailed as follows.

Frequency based Features (Ff r ). According to our observation, pattern pairs that frequently
co-occur within sessions are more likely to be paraphrases. We substantiate our observation
with an experiment, in which we randomly sampled 100 patterns with at least 10 candidate
paraphrase patterns. We ranked all candidates according to their co-occurrence frequency with
the target pattern and kept top-10. The 1000 pattern pairs are manually evaluated and the
percentage of paraphrases at each rank is depicted in Figure 2. As can be seen, the percentage
of paraphrases decreases as the rank gets lower. We therefore design the frequency based
feature as:

F f r(p1, p2) =
f req(p1, p2)∑

p f req(p1, p) + C1
, (1)

where f req(p1, p2) is the frequency of 〈p1, p2〉 on the whole set of pattern pairs, C1 is a constant
parameter used to avoid overestimating the feature value when p1 is too infrequent. We also
compute the frequency based feature in the other direction, i.e., F f r(p2, p1) in the same way.

Lexical Score Features (Fl s). Inspired by lexical weight features used to measure phrase
pair quality in machine translation (Koehn et al., 2003), we introduce lexical score features
to measure the lexical level paraphrase likelihood of each pattern pair. We design a lexical
scoring approach based on the observation that many words keep unchanged when users
rewrite their queries within sessions. It is reasonable to assume that those unchanged words
across queries should exclusively align with themselves, while the changed words may likely
form paraphrase word pairs. Accordingly, given a pair of related queries q1 = w11...w1m and
q2 = w21...w2n extracted from the same session, we compute two scores for any word pair
〈w1i , w2 j〉 (1 ≤ i ≤ m, 1 ≤ j ≤ n, w1i 6= w2 j) from them, namely, a positive score a+(w1i , w2 j)
and a negative score a−(w1i , w2 j). Suppose W is the set of identical words shared by q1 and q2,
and l = |W |, we compute a+(w1i , w2 j) and a−(w1i , w2 j) as:
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三文鱼
salmon 

做法
cooking method 

三文鱼
salmon 

怎么
How to

做
cook

(a)

1
1

1
0.5

0.5

电影
movies 

周润发
Chow Yun-Fat

(b)
电视剧
TV shows 

电影
movies 

周润发
Chow Yun-Fat

1
1

1

1

Figure 3: Examples of lexical scoring.

a+(w1i , w2 j) =

(
0 i f w1i ∈W ∨w2 j ∈W

1
(m−l)∗(n−l)

otherwise

a−(w1i , w2 j) =

¨
1 i f w1i ∈W ∨w2 j ∈W
0 otherwise

It can be interpreted that, if a word w in q1 also appears in the other q2, then w cannot align
with other words in q2 (i.e., such alignment gets a negative score). Otherwise, w will get
an equal likelihood to align with each word in q2 (i.e., gets a positive score). Examples in
Figure 3 illustrate the lexical scoring process. A solid line denotes a positive alignment (a+),
whereas a dashed line denotes a negative alignment (a−). The a+ and a− scores are also given
in the figure. As can be seen, the lexical scoring approach assigns a+ scores to the potential
paraphrases (e.g., cooking method and how to cook) and a− scores to the incorrectly aligned
pairs (e.g., movies and TV shows).

We sum up a+ and a− scores for each word pair w1i and w2 j over all the extracted query pairs
and compute the lexical score LS(w1i , w2 j) as follows:

LS(w1i , w2 j) =

∑
a+(w1i , w2 j)∑

a+(w1i , w2 j) +
∑

a−(w1i , w2 j) + C2
, (2)

where C2 is a smoothing parameter. At run time, for a pattern pair 〈p1, p2〉, we ignore slots,
stop words, and the shared identical words from two patterns. Suppose the left words are
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p′1 = w11...w1m and p′2 = w21...w2n, we define the lexical score feature Fls(p1, p2) as follows:

Fls(p1, p2) =
1

n

n∑
j=1

max
1≤i≤m

LS(w1i , w2 j). (3)

We compute feature Fls(p2, p1) in the same way.

Distance based Features (Fdis). It is obvious that we should not treat all query pairs from a
session equally. Our observation of the user behaviors reveals that queries close to each other
in a session are more likely to be paraphrases than those far apart. Therefore, given a pair of
related queries 〈qi , q j〉 from a session QS, we measure the distance between two queries from
three aspects:

• Query based distance dq. dq is defined as the number of queries between qi and q j in the
session QS:

dq(qi , q j) = j− i− 1. (4)

• Click based distance dc. The motivation here is that if a user clicks on a few retrieved
results, it is likely that the user finds related information from the current results, and it
is therefore less likely for her to further paraphrase the query. Given the number of clicks
cnk for query qk, dc is defined as the sum of clicks between qi and q j:

dc(qi , q j) =
j−1∑
k=i

cnk. (5)

• Search time based distance d t. Given the timestamps qt i and qt j for queries qi and q j ,
d t is defined as the search time interval between qi and q j in the session QS:

d t(qi , q j) = qt j − qt i . (6)

The distance of a pattern pair 〈p1, p2〉 is defined as the average distance between query pairs
from which 〈p1, p2〉 is induced. Let d x(p1, p2) be the distance between two patterns, we define
the distance based feature as: Fd x(p1, p2) = ex p{−d x(p1, p2)}, which guarantees that: (1) the
smaller the distance, the larger the feature value, and (2) the feature values vary in the range
(0,1].

5 Experiments

In our experiments, we used a query log from Baidu, a Chinese commercial search engine for
extracting paraphrase query patterns. The queries were first segmented into sessions using an
algorithm based on both time interval and content relatedness. A total of 87,744,130 sessions,
containing 362,994,092 queries, were collected from the used query log after removing sessions
with only one query. Query preprocessing, including word segmentation, POS tagging, and NE
recognition3, was performed using toolkits implemented based on the state-of-the-art models.

3Our NE classes include not only conventional classes like person, location, organization, numeral, and time, but also
some classes frequently occur in user queries, including movie, tv show, song, novel, brand, video game, and software.
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P (%) R (%) F (%)
FBL 73.09 57.88 64.45
FBL+F f r 73.84 63.01* 67.90*
FBL+Fls 75.19* 61.87* 67.82*
FBL+Fdis 73.96 63.90* 68.48*
FBL+F f r+Fls 75.85* 64.32* 69.54*
FBL+F f r+Fls+Fdis 76.39* 67.36* 71.54*

Table 1: P/R/F under different feature combinations. “*” indicates that the improvement is
significant (p < 0.05) compared with the classifier using only baseline features.

We induced 868,243 pattern pairs from the sessions as described in Section 3. Note that, in
practice, we eliminated pattern pairs in which one pattern subsumes the other, i.e., the case
of expansion or reduction, as well as the pairs in which two patterns only have some trivial
differences, such as inserting or deleting a stop word. The libsvm toolkit4 was used as the
classifier, with its default parameter settings. Some other parameters used in our method were
set empirically: T1 = 5, T2 = 3, C1 = 20, C2 = 10.

5.1 Evaluation of the Classifier

We randomly sampled 5115 candidate pattern pairs to form the experimental data set. Two
Chinese native speakers were asked to annotate the pattern pairs separately. A pattern pair
should be annotated as positive (correct paraphrase patterns) or negative (otherwise). We
follow the instance-based evaluation approach proposed by Szpektor et al. (2007). Particularly,
we provide pattern slot fillers to the annotators along with the pattern pairs. A pattern pair
is judged as paraphrase only when most of the instances generated by filling the slots with
the provided fillers are paraphrases. We calculated the annotation agreement between two
annotators. The result shows that the observed agreement is 0.96 and the Kappa value is 0.90.
We believe that the high annotation agreement is due to the careful training of the annotators
and the instance-based evaluation approach. A third annotator was asked to decide the final
annotation for the disagreed pattern pairs.

To evaluate the classifier, we ran 5-fold cross validation with the human annotated data, in
which we used 4/5 of the data for training and the rest 1/5 for testing in each run. The
evaluation criteria are precision (P), recall (R), and f-measure (F) with regard to the positive
class. The average P, R, and F of the classifier under different feature combinations over five
runs are reported in Table 1.

The first line of table 1 shows the classification performance when we only use the baseline
features. Lines 2-4 summarize the performance when we add each type of user behavior features
separately. As can be seen, all the user behavior features can significantly improve the recall
and f-measure. This is not surprising, since many paraphrase patterns are not similar enough
at the surface level. The user behavior features supply additional evidences for measuring the
semantic closeness between patterns, which help to recognize more paraphrase patterns with
larger surface difference. Furthermore, lines 5-6 show that the classification performance keeps
improving when the user behavior features are added one by one. We achieve the highest P,
R, and F when all three types of user behavior features are used. This result indicates that the

4downloaded from: www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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P (%) R (%) F (%)
all features 76.39 67.36 71.54
w/o Fdq 76.49 67.36 71.58
w/o Fdc 76.53 67.24 71.54
w/o Fd t 76.60 67.36 71.64
w/o Fdq+Fdc 76.74 67.42 71.71
w/o Fdq+Fd t 76.45 67.24 71.50
w/o Fdc+Fd t 75.42 64.14* 69.26*

Table 2: Analysis of the distance based features. “*” indicates that the degradation is significant
(p < 0.05) compared with the classifier using all features.

user behavior features improve the performance from different aspects, it is thus necessary to
combine them together.

We can find from line 3 of Table 1 that the lexical score features also significantly improve the
precision of the classifier, which implies that this type of features is useful for filtering noise.
We find after analyzing the data that, query pairs like “_dÈ'Ë�p (Justin Bieber height)”
and “_dÈ'Ë�pN (Justin Bieber height and weight)” are quite common in users’ search
sessions, in which a query is expanded by adding a word closely related to the original query
words. As a result, many closely related non-paraphrase word pairs, like�p (height) andN
 (weight), get large a− scores and thereby penalized by the lexical score features. That’s the
main reason why the precision can be enhanced using this type of features.

People may wonder if our lexical score features can outperform the lexical weight features used
in MT. For comparison, we implemented the latter on our data set. In detail, we conducted
word alignment on the candidate pattern pairs and computed lexical weights in two directions
as proposed in (Koehn et al., 2003). We then replaced our lexical score features with the lexical
weights and evaluated the classifier via 5-fold cross validation. The average performance is:
P=74.78%, R=67.30%, F=70.76%. As can be seen, the performance is lower than the current
result (See the last line of Table 1), especially in precision. This result suggests that the lexical
weighting approach in MT is unsuitable in paraphrase recognition. The main reason, we believe,
is that it is unable to penalize the closely related non-paraphrases as our approach does.

In addition, since the distance based features are defined from three different aspects, we need
to evaluate the individual contributions of these features. To this end, we omitted one or two
distance based features from several runs and analyzed the influence. The results are given
in Table 2. It is interesting to find from lines 2-4 of the table that, there is no degradation in
performance when we omitted each distance based feature separately, which suggests that the
features may not be independent of each other. Further results can be found from lines 5-7,
where we omitted two features together each time. We can see that eliminating the click based
and search time based distance features together (Fdc+Fd t) leads to an obvious degradation
in recall and f-measure, while the query based distance feature (Fdq) seems helpless. It also
implies that the Fdc and Fd t features follow the same trend. Actually, it is likely that the user’s
requirement has already been satisfied by the current search results if she spends a long time
clicking on and browsing the results. It is therefore less possible for her to paraphrase the
query any more. In other words, users’ clicking and browsing behaviors are good indicators for
recognizing paraphrases.
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Phrase Substitution (42.80%)

p1: [n-1]c® p2: [n-1]c�
([n-1] vocabulary) ([n-1] words)

p1: [n-1]��o�O p2: [n-1]��o\�
(why was [n-1] imprisoned) (why was [n-1] jailed)

Information +/- (38.22%)

p1: ìÄæÃÅ [n-1] p2: ìÄæ� [n-1]
(Nokia mobile phone [n-1]) (Nokia [n-1])

p1: [n-1] [n-2]�Á¤1 p2: [n-1] [n-2]�¤1
([n-1] [n-2] exam results) ([n-1] [n-2] results)

Spelling Correction (12.04%)

p1: [n-1] [v-2]@p p2: [n-1] [v-2]=p
(where is [n-1] [v-2]) (where is [n-1] [v-2])

p1: [n-1] tongyici p2: [n-1]ÓÂc
([n-1] synonyms) ([n-1] synonyms)

Complex Paraphrase (6.94%)

p1: [n-1]�í p2: [n-1]��5
(Is [n-1] important?) (importance of [n-1])

p1: XÛ£� [n-1] p2: [n-1]�£��{
(how to cure [n-1]) (treatment of [n-1])

Table 3: Examples of the extracted paraphrase patterns under different types.

5.2 Evaluation of the Paraphrase Patterns

We used all the 5115 pairs of human annotated patterns to train a classifier, which was then
applied to recognize paraphrase patterns from the candidate pattern pairs. A total of 252,963
pairs of paraphrase patterns were extracted in this way. Our statistics show that the average
length of the patterns is 2.78 (words), which is mainly because the user queries are mostly short.
One may argue that the short paraphrase patterns cannot cover long queries in applications
such as query paraphrasing. We believe this problem can be alleviated by allowing partial match
of patterns when applying them on long queries. Further statistics show that, over 77% of the
paraphrase patterns contain only one slot, and over 90% slots are noun slots.

We randomly sampled 1000 pairs of paraphrase patterns for human assessment. The result
shows that the precision is 76.4%. Typological analysis shows that the correct paraphrase
patterns can be classified into four groups, including (1) phrase substitution, (2) adding or
removing (+/-) information that does not change the meaning, (3) spelling correction, and
(4) complex paraphrases, involving both word replacement and structural transformation. The
distributions and examples are depicted in Table 3.

As can be seen, phrase substitution is the most represented class, with over 42% of all paraphrase
patterns. This is consistent with the statistics reported in (Zhao et al., 2008). There are also
quite a few paraphrase patterns in the class “information +/-”, reflecting that many users tend
to add or remove information to refine their queries while preserving the meaning. The third
class, i.e., spelling correction was not conventionally regarded as a type of paraphrase. However,
pattern pairs of this class actually convey the same requirement of users and are useful in
applications such as query correction. Complex paraphrases are scarce compared with the other
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three classes, suggesting that users do not often dramatically transform their queries if their
requirement does not change. Note that, paraphrase patterns of the type spelling correction
can only be applied in one direction, namely, to paraphrase the incorrect queries to the correct
forms, while the other three types are not sensitive to the direction. Our method is not likely to
learn paraphrase patterns with wrong direction, as people seldom paraphrase a correct query to
an incorrect one in the search sessions.

It is interesting to find out to what extent the paraphrase patterns are dependent on the
slot fillers. Our analysis shows that more than 76% of the paraphrase patterns are context-
independent, which means that the pattern pairs convey the same meaning no matter what
words instantiate the slots. For the other 24% of paraphrase patterns, the paraphrase relation-
ship holds only under certain contexts. For example, the pattern pair “�o [n-1]Ð (what [n-1]
is good)” and “�o [n-1] Ð¯ (what [n-1] is delicious)” can be viewed as paraphrases only
when the slot is filled with a food name. Judging in what context the paraphrase patterns can
be applied is important in applications, which will be left in our future work.

5.3 Comparison Experiments

In this section, we compare our method with the method proposed in (Zhao et al., 2010), which
is referred to as Zhao-10 hereafter. As mentioned above, Zhao-10 makes use of the click-through
relationship between queries and clicked document titles from query logs. In particular, Zhao-10
learns paraphrase patterns in two steps. In the first one, it extracts candidate paraphrases from
three sources, namely, pairs of queries and clicked titles, pairs of queries clicking on the same
title, and pairs of titles clicked on for the same query. A classifier is employed to filter the
candidates from each source. Then in the second step, it induces paraphrase patterns from each
pair of paraphrases 〈p1, p2〉 by abstracting one word shared by p1 and p2 as slot [X].

We ran Zhao-10 on our search log data and extracted 53,198 pairs of paraphrase patterns after
removing the ones with only trivial differences between each other. We randomly selected 1000
pairs for manual annotation, and the result shows that the precision is 82.6%. Comparing this
result with that reported in Section 5.2, we can find that the paraphrase patterns extracted with
Zhao-10 are more precise than those extracted with the method proposed in this paper, but
the quantity is smaller. We also analyze the types of the extracted correct paraphrase patterns
as we do in section 5.2. The analysis result suggests that the paraphrase patterns extracted
with Zhao-10 can also be classified into the four types as mentioned above, but the distribution
is quite different: (1) phrase substitution: 82.13%, (2) information +/-: 9.79%, (3) spelling
correction: 2.20%, (4) complex paraphrase: 5.88%.

Furthermore, we examined the intersection between paraphrase patterns extracted with our
method and Zhao-105. The result shows that the intersection is extremely small. Only 707 pairs
of paraphrase patterns were extracted with both methods. This result implies that our method
and Zhao-10 are quite complementary. It is promising to integrate these two methods for
paraphrase extraction, whereby we can make full use of the search log information, including
queries, clicks, and sessions.

5Since the pattern slots are not specified with POS tags in Zhao-10, we did not consider POS mismatch when
counting the intersection of two sets of paraphrase patterns.
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5.4 Analysis of Portability

People may wonder whether the proposed method can be extended to other languages or other
applications. Here we analyze the portability of the method from two aspects:

Language portability. In our experiments, we used preprocessing tools to process Chinese
query logs, which include word segmentation, POS tagging, and NE recognition (NER). Although
these modules were implemented to process Chinese, the underlying algorithms and models
can be language independent. However, please note that the models should be trained with
annotated query data, since models trained with normal sentences or texts usually do not
work well if they are directly applied on query corpora. Especially, in the NER module, we
automatically mine new candidate NEs from the query logs everyday and update the NE
dictionary, so as to handle the emerging NEs in user queries. To summarize, the preprocessing
modules can be implemented based on language-independent models, but they should be
specially trained and adapted for query data.

Application portability. The method is designed for mining paraphrase queries, which could
then be used in query rewriting. However, the mined paraphrase patterns can also be used in
other applications, especially the paraphrases with the type “phrase substitution”, which we
believe can be used in sentence rewriting and sentence similarity computation (i.e., matching
paraphrases from two sentences when computing their similarity). We will examine the
usefulness of the mined paraphrases in other applications in our future experiments.

6 Conclusions and Future Work

This paper proposes a classification-based method for learning paraphrase query patterns from
search log sessions. The following conclusions can be drawn from the experiment results. Firstly,
we for the first time demonstrate that search log session data is a rich source for extracting
paraphrase patterns. Secondly, the classification-based method is effective in paraphrase pattern
extraction. Especially, the proposed user behavior features evidently improve the classification
performance. Thirdly, our method and the click-through based method (Zhao et al., 2010)
are complementary. In our future work, we will improve our paraphrase extraction model by
taking advantages of both the query session and click-through knowledge from search logs. In
addition, we will try to automatically classify the extracted paraphrase patterns into different
types (see Table 3), so as to suit different applications.
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