
Proceedings of COLING 2012: Technical Papers, pages 3089–3104,
COLING 2012, Mumbai, December 2012.

A Lazy Learning Model for Entity Linking
Using Query-Specific Information

WeiZhang1 J ianSu2

ChewLimTan1 YunboCao3 ChinYewLin3

(1) National University of Singapore
(2) Institute for Infocomm Research, Singapore

(3) Microsoft Research Asia
{z-wei,tancl}@comp.nus.edu.sg, sujian@i2r.a-star.edu.sg,

{Yunbo.Cao,cyl}@microsoft.com

Abstract
Entity linking disambiguates a mention of an entity in text to a Knowledge Base (KB). Most previous
studies disambiguate a mention of a name (e.g.“AZ”) based on the distribution knowledge learned
from labeled instances, which are related to other names (e.g.“Hoffman”,“Chad Johnson”, etc.).
The gaps among the distributions of the instances related to different names hinder the further
improvement of the previous approaches. This paper proposes a lazy learning model, which allows
us to improve the learning process with the distribution information specific to the queried name
(e.g.“AZ”). To obtain this distribution information, we automatically label some relevant instances
for the queried name leveraging its unambiguous synonyms. Besides, another advantage is that
our approach still can benefit from the labeled data related to other names (e.g.“Hoffman”,“Chad
Johnson”, etc.), because our model is trained on both the labeled data sets of queried and other
names by mining their shared predictive structure.

Keywords: Entity Linking, Lazy Learning, Query-Specific Information.

3089

1 Introduction
Recently, more and more knowledge bases (KB) which contain rich knowledge about the world’s
entities such as Wikipedia 1, OpenCyc 2 and KIM 3 (Popov et al., 2004) have become available.
These knowledge bases have been shown to form a valuable component for many natural language
processing tasks such as knowledge base population (Ji and Grishman, 2011), text classification
(Wang and Domeniconi, 2008), and cross-document coreference (Finin et al., 2009). However, to be
able to utilize or enrich these KB resources, the applications usually require linking the mentions of
entities in text to their corresponding entries in the knowledge bases, which is called entity linking
task and has been proposed and studied in Text Analysis Conference (TAC) since 2009 (McNamee
and Dang, 2009).

Given a mention of an entity in text and a KB, entity linking is to link the mention to its corresponding
entry in KB. The major challenges of this task are name variation and name ambiguity. Name
variation refers to the case that more than one name variation such as alias, misspelling and acronym
refers to the same entity. For example, both “48th State” and “The Grand Canyon State” refer
to state of Arizona, U.S.. Name ambiguity refers to the case that more than one entity shares the
same name. For example, “AZ” may refer to state of Arizona, the Italian airline Alitalia, the country
Azerbaijan, or other entries in KB that have the same name.

Most previous studies on entity linking used annotated data to learn a classifier or ranker (Dredze
et al., 2010; Lehmann et al., 2010; Zheng et al., 2010; Zhang et al., 2010; Ploch, 2011; Ratinov
et al., 2011) or to estimate parameters (Gottipati and Jiang, 2011; Han and Sun, 2011). Besides,
from the analysis by Ji et al. (2011), all of the top systems from the participants in the shared task of
TAC-114 used supervised learning approaches to solve this disambiguation problem.

Figure 1: The System Architecture for Traditional Approaches. (M contains a certain number of
names. “Hoffman” and “Chad Johnson” are two examples of them.)

However, as there are infinite number of entity names, it is impossible to manually create the labeled
1http://www.wikipedia.org/
2http://www.opencyc.org/
3 http://www.ontotext.com/kim
4http://nlp.cs.qc.cuny.edu/kbp/2011/

3090

data set for each name. The available labeled data for entity linking is only for a certain number of
names. Thus, as shown in Figure 1, the previous approaches disambiguate a mention of the name
(e.g.“AZ") based on the distribution knowledge learned from the labeled mention-KB_entry pairs in
the training set M related to other names (e.g.“Hoffman",“Chad Johnson", etc.). Given the query,
the previous systems are static at evaluation time and their training does not depend on the input
query. However, Figure 2 illustrates the distribution of the labeled instances related to the three
names in a feature space (Bag of Words, Named Entities and Edit Distance, the popular features
used in previous work). We can see that the width and location of the gap to separate positive and
negative instances for different names vary widely. Moreover, the positive-negative instance ratio
of each name is also very different from others. Thus, the entity linker generalized beyond labeled
names (“Hoffman", “Chad Johnson", etc.) without considering the knowledge of the queried name
(“AZ") suffers from this distribution problem.

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

Bag of WordsNamed Entities

E
d

it
 D

is

AZ +

AZ −

Chad Johnson −

Chad Johnson +

Hoffman −

Hoffman +

Figure 2: Instances Illustration in 3D Feature Space (Feature detail is in Table 2)

To narrow down the gap between the instance distributions related to labeled and queried names,
this paper proposes a lazy learning model, in which generalization on the labeled data is delayed
until a query is made. This allows the distribution information specific to queried name to be
incorporated into the learning process. To obtain this distribution information, our lazy learning
model automatically labels some relevant instances for the queried name leveraging its unambiguous
synonyms.

In addition to the new notion of benefiting from the auto-generated instances related with the
queried name, our approach further benefits from the manually labeled data related to other names.
Specifically, the learned linker generalizes on the labeled data sets related to both queried and other
names by exploiting the inherent predictive structure shared by these two data sets. We conduct
evaluation on TAC data. Our experiments show that our proposed lazy learning model significantly
improves entity linking over the state-of-the-art systems.

The remaining of this paper is organized as follows. In Section 2, we review the related work for
entity linking. Section 3 elaborates the pre-processing stage to retrieve the possible KB entries

3091

for a given mention. Section 4 presents our lazy learning for entity linking with query-specific
information. Section 5 discusses a special case - NIL mentions . The experiments are shown in
Section 6. Section 7 concludes the paper.

2 Related Work
As we have discussed, most of the previous entity linking work (Dredze et al., 2010; Lehmann et al.,
2010; Zheng et al., 2010; Zhang et al., 2010; Ploch, 2011; Gottipati and Jiang, 2011; Han and Sun,
2011) fall into the traditional entity linking framework shown in Figure 1. Besides, the collaborative
approach (Chen and Ji, 2011) tried to search similar queries as their query collaboration group by
clustering texts. This differs from our method where we use the selective knowledge from unlabeled
data.

In some other work, entity linking is also called named entity disambiguation using
Wikipedia (Bunescu and Pasca, 2006; Cucerzan, 2007) or Wikification (Mihalcea and Csomai,
2007; Milne and Witten, 2008; Ratinov et al., 2011). These two similar tasks link expressions in
text to their referent Wikipedia pages. However, since Bunescu and Pasca (2006) used Wikipedia
hyperlinks to train the SVM kernel, Cucerzan (2007) used Wikipedia collection and news stories as
the development data, and all of the three Wikification work (Mihalcea and Csomai, 2007; Milne and
Witten, 2008; Ratinov et al., 2011) generalized their ranker on the data generated from Wikipedia
without considering the knowledge of the queried name, they also fall into the traditional entity
linking framework and suffer from the distribution problem in the previous entity linking systems.
Thus, we believe that our proposed lazy learning approach also can benefit these two tasks.

In WePS-3 5, a task of Online Reputation Management was proposed (Amigo et al., 2010; Spina
et al., 2011), which is the same with entity linking when KB only has one entry. Given a set of Twitter
entries containing an ambiguous company name, and given the home page of the company, the task
is to filter out Twitter entries that do not refer the company. Amigo et al. (2010) concluded that it
was not viable to train separate system for each of the companies, as the system must immediately
react to any imaginable company name. Thus, in this benchmark, the set of company names in
the training and test corpora are different. However, the lazy learning approach proposed in this
paper demonstrates that it is feasible to train separate system for each company, and the system can
immediately react to any company name without manually labeling new corpora.

More generally, resolving ambiguous names in Web People Search (WePS) (Artiles et al., 2007) and
Cross-document Coreference (Bagga and Baldwin, 1998) disambiguates names by clustering the
articles according to the entity mentioned. This differs significantly from entity linking, which has a
given entity list (i.e. the KB) to which we disambiguate the mentions.

3 Candidate Generation
Because the knowledge base usually contains millions of entries, it is time-consuming to apply the
disambiguation algorithm to the entire knowledge base. Thus, the following pre-processing process
is conducted to filter out irrelevant KB entries and select only a set of candidates that are potentially
the correct match to the given query (a query consists of a name mention and its associated document
text).

Because of name variation problem, it is ineffective to retrieve entity candidates by comparing the
name strings of mention and KB entry. Thus, we need to use external world knowledge to build the
name variation list for each KB entry. Since our experiment used a KB derived from Wikipedia, and

5http://nlp.uned.es/weps/

3092

other KBs such as KIM and OpenCyc usually can be mapped to Wikipedia (Nguyen and Cao, 2008),
we find the variations for the entries in KB by leveraging name variation sources in Wikipedia:

“titles of entity pages”, “disambiguation pages 6”, “redirect pages 7” and “anchor texts”. Then, the
candidates can be selected by comparing the name string of the mention with the name strings in the
variation list of each KB entry. The KB entry with a name string which matches the name of the
mention is considered as a candidate. In addition, as a pre-processing step, we prefer a candidate set
with high recall. Thus, to increase the recall, we find more candidates by selecting the KB entry if
its name string contains the name string of the mention (e.g. “Cambridge, Massachusetts” contains

“Cambridge”).

4 Lazy Learning for Linking
We formalize the disambiguation task as follows. We are given a query q (i.e. a document dq with a
mention mq) and its associated KB candidates Cq={c1,..,cN} generated in Section 3, and our goal
is to select the correct KB entry e from the set Cq. Specifically, let φq(q,ci) be a score function
reflecting the likelihood that the candidate ci is the correct KB entry for q. Then, a disambiguation
model is to solve the following optimization problem:

e = arg max
ci∈Cq

φq(q, ci) (1)

Figure 3: Lazy Learning Framework
In this section, we present our lazy learning model to solve this optimization problem. As shown in
Figure 3, our process of the resolution is as follows:

1: Automatically label an instance set Aq based on the query q and candidates Cq.

2: Generalize a function φq on the data set Aq related with the queried name and a
manually labeled data set M related with other names.

3: Select the correct KB entry e from the candidates using the function φq.

As shown in Figure 1, previous approaches generalize a universal linker φ for all of the queries
on a labeled data set M related to irrelevant names (“Hoffman”, “Chad Johnson”, etc.), and they
suffer from the distribution problem shown in Figure 2. In contrast, our lazy learning approach
delays the model generalization until receiving the query. It can generalize a separate function φq
for each query leveraging the distribution knowledge learned from the instances in Aq. As Aq is

6http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
7http://en.wikipedia.org/wiki/Wikipedia:Redirect

3093

automatically labeled for the queried name, it can be used to narrow down the gap of the instance
distributions related to different names shown in Figure 2. Besides, φq also benefits from M in our
model by mining its predictive information shared with Aq. Now, let us elaborate the method for
generating Aq, and the generalization of φq, respectively.

4.1 Distribution Information Aq for Queried Name
In this section, we propose to obtain the distribution information for the queried name by automati-
cally labeling some instances Aq for it. Following our work Zhang et al. (2010), which automatically
generates training data for entity linking, we automatically label the instances related to the queried
name based on its unambiguous synonyms.

Given a document dq with a mention mq and its associated KB candidates Cq, for example,

dq (mq=“AZ”): ...We know that they looked at a house that they might purchase before they left
Scottsdale, AZ. ...;

Cq: {c1: state of Arizona, c2: Azerbaijan, ..., cN : Alitalia},

automatically creating the labeled set Aq for the name “AZ" requires automatically linking some
mentions of “AZ" in text with the KB candidates in Cq. Our approach performs this linking based
on two facts: (a) the title of the KB entry is unambiguous (e.g. “state of Arizona”). (b) The name
variations of KB entry derived from “redirect pages” of Wikipedia in Section 3 are unambiguous
(e.g. “The Grand Canyon State”). Then, we can generate the unambiguous name variation list for
each candidate in Cq (see Table 1).

c1

state of Arizona; The Grand Canyon State; US-
AZ; 48th State; AZ (U.S. state); The Copper
State; Arizona, United States; ...

c2

Azerbaijan; Azerbaidzhan; Republic of Azerbai-
jan; Azerbaijan Republic; Azerbaijani indepen-
dence; Azerbaijan (Republic); ...

...

cN
Alitalia; Alitalia Airlines; Alitalia airways; Ali-
talia.it; Alitalia S.p.A.; ...

Table 1: Unambiguous Variations for the Candidates of “AZ”

Because the unambiguous name only refers to one KB entry, we can link unambiguous name
appearing in a document with the correct KB entry directly without human labor. Thus, we search
the documents with these unambiguous name variations from a large document collection. Two
examples of the retrieved documents are as below:

d1 (m1=“The Grand Canyon State”): ... The Grand Canyon State will get its shot to host the big
game a year from now, ...

d2 (m2=“Azerbaijan Republic”): ... It is located 30 km east of Ardebil and on the borderline with
Azerbaijan Republic. ...

We denote the labeled instance as a 4-tuple (d,m,e,+1/-1), which means mention m in document d
can/cannot be linked with KB entry e. Then, the two unambiguous examples above can be labeled
as (d1, m1, c1, +1) and (d2, m2, c2, +1) automatically.

3094

As we need to label the instances related to the name “AZ”, we further replace the unambiguous
names in the documents with their ambiguous synonyms “AZ”. Then d1 and d2 are converted to:

d1
′ (mq=“AZ”): ...AZ will get its shot to host the big game a year from now, ...

d2
′ (mq=“AZ”): ...It is located 30 km east of Ardebil and on the borderline with AZ. ...

Finally, the labeled data set Aq for the queried name “AZ" is generated, where Aq={(d1
′, mq, c1,

+1),(d1
′, mq, c2, -1), ...,(d1

′, mq, cN , -1),(d2
′, mq, c1, -1),(d2

′, mq, c2, +1), ...,(d2
′, mq, cN , -1) ...}.

The data set Aq contains the query-specific information and such kind of information is not available
in the training data M, such as the query-specific context features: words “Airlines” and “State”
learned from Aq will be helpful for the disambiguation of “AZ”

4.2 Linear Function φq

In this section, we formulate the disambiguation function φq in Eq. 1 as follows,

φq(q, ci) = uT Xi (2)

where the document dq with a mention mq and the candidate ci in Cq are represented as a feature
vector Xi ∈ χ , and u is a weight vector.

Estimate u on Aq. A popular method for finding u is empirical risk minimization with least square
regularization. In this work, given a training set Aq={(di , mq, ei , Yi)}i=1,...,n(q) (Y ∈ {+1,-1}) related
to the queried name mq, firstly we transfer the instance (di , mq, ei) to the feature vector Xq

i . Then,
Aq={(Xq

i , Yq
i)}i=1,...,n(q) , (X ∈ χ , Y ∈ {+1,-1}). Finally, we aim to find the weigh vector u that

minimizes the empirical loss on the training data,

û= arg min
u

 1

n(q)

n(q)∑
i=1

L(uT Xq
i , Y q

i) +λ‖u‖2

 (3)

where L is a loss function. We use a modification of the Huber’s robust loss function: L(p, y) =
(max(0,1− p y))2, if py ≥ -1; and -4py otherwise. We fix the regularization parameter λ to 10−4.

Transfer (q,ci) to Feature Vector X. The features we adopted to construct Xi from (q,ci) include
13 typical feature types used in TAC (Lehmann et al., 2010; Ji and Grishman, 2011), and the features
are divided into four groups, contextual features (CF), semantic features (SeF), surface features
(SuF) and generation source (GS) (see Table 2).

4.3 Incorporate M to u Estimation
A practical issue that arises in estimating u only on Aq is the paucity of labeled instances for
some queries. This is because we automatically label the instances Aq leveraging its unambiguous
synonyms (see Section 4.1). However, for some queried names, it is hard to find a sufficient number
of unambiguous synonyms or the related documents containing these synonyms. On the other hand,
the total number of available manually labeled instances M for other irrelevant names is relatively
large. To illustrate the role of M in learning, consider the disambiguation of the two mentions
“CPC" and “NY" in two documents. If the first mention “CPC" refers to entity “Communist Party

3095

Name Description
Contextual Features (CF)
Bag of Words The cosine similarity (tf.idf weighting) between query document and

text of the candidate.
Similarity Rank The inverted cosine similarity rank of the candidate in the candidate

set.
Co-occurring NEs Number of the same named entities appearing in query document

and the text of the candidate.
Semantic Features (SeF)
NE type True if NE type (i.e. Person, GPE, Organization) of the query and

the candidate is consistent.
Topic Similarity Topic similarity between query document and text of candidate ob-

tained by LDA (Blei et al., 2003)
Surface Features (SuF)
Surface Match True if the query matches the title of the candidate
Substring Match True if the title of the candidate begins with the query (e.g. “Beijing

China” and “Beijing”)
Acronym True if the query is an acronym for the title of the candidate (e.g.

“NY” and “New York”)
Word Match Number of the same words between the title of the candidate and the

query
Word Miss Number of the different words between the title of the candidate and

the query
Edit Distance Levenshtein distance between name strings of the query and the

candidate’s title
Generation Source (GS)
Wikipedia Source True for each Wikipedia source (i.e. “entity pages", “disambigua-

tion pages", “redirect pages" and “anchor texts" (Section 3)) which
generates the candidate

String Match For the candidate not generated from Wikipedia source, true if it is
generated from full match.

Table 2: Feature Set for Disambiguation.

of China" and the second mention “NY" refers to entity “the city of New York", they have similar
surface features (e.g. feature “acronym" is true), certain surface features effective for linking to
“Communist Party of China" may be also effective for disambiguating “NY", and vice versa

However, with the gap in other aspects between the distributions of Aq and M shown in Section 1,
directly adding M to our training set will produce a lot of noise with respect to the queried name.
Thus, instead of using all the distribution knowledge in M, we propose to only incorporate the shared
knowledge with Aq from M into u estimation based on structural learning.

The Structural Learning Algorithm. Structural learning (Ando and Zhang, 2005b) is a multi-
task learning algorithm that takes advantage of the low-dimensional predictive structure shared
by multiple related problems. Let us assume that we have K prediction problems indexed by
l ∈ {1, .., K}, each with n(l) instances (Xl

i , Yl
i). Each Xl

i is a feature vector of dimension p. Let Θ be
an orthonormal h×p (h is a parameter) matrix, that captures the predictive structure shared by all the

3096

K problems. Then, we decompose the weight vector ul for problem l into two parts: one part that
models the distribution knowledge specific to each problem l and one part that models the common
predictive structure,

ul = wl +Θ
T vl (4)

where wl and vl are weight vectors specific to each prediction problem l. Then, the parameters Θ,
wl and vl can be learned by joint empirical risk minimization, i.e., by minimizing the joint empirical
loss of the predictors for the K problems on the training instances as Eq. 5,

arg min
Θ,wl ,vl

K∑
l=1

 1

n(l)

n(l)∑
i=1

L
��

wl +Θ
T vl

�T
X(l)i , Y (l)i

�
+λ‖wl‖2

 (5)

It shows that wl and vl are estimated on n(l) training instances of problem l. In contrast, Θ is
estimated on all the training instances of the K problems. This is the key reason why structural
learning is effective for learning the predictive structure shared by multiple prediction problems.

Alternating Structure Optimization. The Θ optimization problem in Eq. 5 can be approximately
solved by the following alternating structure optimization procedure (Ando and Zhang, 2005a),

1: Learn K weight vectors u′l for all the K problems on their corresponding instances
independently using empirical risk minimization (similar with Eq. 3).

2: Let U′ = [u′1,...u′K] be the p × K matrix formed from the K weight vectors.

3: Perform Singular Value Decomposition on U′:U′=V1DV T
2 . The first h column

vectors of V1 are stored as rows of Θ̂

Structural Learning for Entity Linking: Incorporate M to u Estimation. As previous entity
linking systems do not consider the information of the queried name, they usually use all the instances
in M without any difference to train the linker. However, in data set M, some instances related with
some particular names may share more predictive information with the queried name than other
instances. Thus, in this work, we group the instances in M based on the “name", and then learn the
shared information from the “name" group instead of individual instance. As shown in Figure 1, the
data set M for entity linking usually has a certain number of names (e.g.“Hoffman",“Chad Johnson",
etc.), each with some labeled instances. Then, we treat each “name” and its associated instances in
M as a prediction problem of structural learning. Besides, the queried name (e.g. “AZ" in Figure 1)
with auto-labeled instances Aq is our target prediction problem, which is the problem we are aiming
to solve.

According to the applications of structural learning in other tasks, such as WSD (Ando, 2006),
structural learning assumes that there exists a predictive structure shared by multiple related
problems. In order to learn the predictive structure Θ shared by M and Aq, we need to (a) select
relevant prediction problems (i.e. relevant names) from M. That is, they should share a certain
predictive structure with the target problem; (b) select useful features from the feature set shown in
Table 2. The relevant prediction problems may only has shared structure with target problem over
certain features. In this paper, we use a set of experiments including feature split and data set M

3097

partitioning to perform these two selection processes. This empirical method for selection will be
elaborated in Section 6.3.

Let us assume that we have selected relevant names from data set M, which together with the
queried name can be used as the K related prediction problems in structural learning. Applying
structural learning to the K problems, we can obtain the shared structure Θ̂ by alternating structure
optimization. Then, the weight vector u for the queried name in Eq. 2 can be approximately solved
by the following procedure:

1: Learn ŵ and v̂ for the queried name by minimizing the empirical risk on data set Aq:

arg min
w,v

 1

n(q)

n(q)∑
i=1

L
�
(w+ Θ̂T v)Xq

i , Y q
i

�
+λ‖w‖2

2: The estimated weight vector u for the queried name is:

û= ŵ+ Θ̂T v̂

The Θ̂T v̂ part is learned from the selected names in M and all the instances in Aq, and therefore it
can model the shared predictive structure between M and Aq, and remove the noises in M as we
expected. The ŵ part is learned from the data set Aq, which can tackle the distribution problem (see
Figure 2) in the previous work only using M.

5 Predicting NIL Mentions
So far we have assumed that each mention has a correct KB entry; however, when we run over
a large corpus, a significant number of entities will not appear in the KB. In this situation, the
document dq with mention mq should be linked to NIL. Traditional approaches usually need an
additional classification step to resolve this problem (Zheng et al., 2010; Lehmann et al., 2010). In
contrast, our approach seamlessly takes into account the NIL prediction problem. As we define Y ∈
{+1,-1} to denote whether the pair of the mention and KB entry can be linked together, the median 0
can be assigned to φq(q,NIL). Then Eq. 1 is extended to:

e = arg max
ci∈Cq∪N I L

φq(q, ci) (6)

6 Experiments and Discussions

6.1 Experimental Setup

In our study, we use TAC-108 KB and document collection to evaluate our approach for entity linking.
The KB is derived from Wikipedia, which contains 818,741 different entries and the document
collection contains 1.7 million documents from newswire and blog text. Each KB entry consists of
the Wikipedia Infobox 9 and the corresponding Wikipedia page text.

8http://nlp.cs.qc.cuny.edu/kbp/2010/
9http://en.wikipedia.org/wiki/Template:Infobox

3098

The test set of TAC-10 has 2,250 mentions across three named entity (NE) types: Person (PER),
Geo-Political Entity (GPE) and Organization (ORG). The documents containing these mentions
are from the document collection above. The training set of TAC-10 consists of 5,404 mentions.
Among them, 3,404 mentions are used as the data set M in our approach and the remaining 2,000
mentions are used as development set in our experiments.

We adopt micro-averaged accuracy officially used in TAC-10 evaluation for our experiments, i.e. the
number of correct links (including NIL) divided by the total number of the mentions.

6.2 Statistics of Data Set Aq

To minimize the distribution gap discussed in Section 1, we incorporate the distribution knowledge
learned from Aq to the learning process. Thus, one of the key factors for the success of our lazy
learning model is whether we can obtain Aq for the queries.

Therefore, firstly we investigate the amount of the labeled instances created for each query. When
our model runs over the test data set, we find that 359 queries are assigned empty candidate sets (i.e.
Cq = ;) by the process described in Section 3. For these queries, we can directly link them with NIL
without disambiguation. Thus, we only need to create Aq for the remaining 1,891 queries.

Figure 4 compares the proportions of the queries in different Aq size ranges. It shows that we have
successfully created non-empty Aq for 96% of the 1,891 queries. This proves that our approach
learning the distribution knowledge for the queried name from the automatically labeled instances
Aq is feasible in practice. This also supports our assumption about the existence of the document
with unambiguous synonyms in the document collection.

We also note that 49% of the queries have 10 to 99 labeled instances in Aq and 37% have 100 to 999
instances for each linker . In contrast, previous approaches usually trained their model on thousands
of labeled instances. Thus, it suggests that we need more labeled instances for some queries and it is
necessary to still leverage the manually labeled data set M in our learning process.

Figure 4: Proportions of the Queries Based on the Sizes of their Corresponding Aq

6.3 Exploring Θ Configuration
Because our lazy learning model generalizes on both the distribution knowledge learned from Aq
and the predictive structure Θ shared by Aq and M, the effectiveness of such shared structure Θ is
another key factor for the success of our lazy learning model. Thus, inspired by the work (Ando,
2006) for WSD, we design a set of experiments to investigate the configuration of Θ.

Consider the disambiguation of the two mentions “CPC" and “NY" in two documents again. They
have similar surface features (e.g. feature “acronym" is true). The surface features effective for
linking to “Communist Party of China" may be also effective for disambiguating “NY" to “the

3099

city of New York”, and vice versa. However, with respect to the semantic features, these two
disambiguation problems may not have much in common. This is because “Communist Party
of China" is likely related with the topic “politics", but “the city of New York" does not have
such particular topic. That is, shared structure Θ between different names may depend on feature
types, and in that case, seeking Θ for each of feature groups (CF, SeF, SuF and GS in Table 2)
separately may be more effective. Hence, we experimented with both Θ configuration in Eq. 5 and
Θ configuration, learning a Θ j for each feature group j separately in Eq. 7.

K∑
l=1

 1

n(l)

n(l)∑
i=1

L

wT

l X(l)i +
∑
j∈F

v(j) Tl Θ jX
(l, j)
i , Y (l)i

+λ‖wl‖2

 (7)

where F is a set of disjoint feature groups, and X(j) (or v(j)) is a portion of the feature vector X (or
weight vector v) corresponding to feature group j, respectively.

The NE types of the instances in Aq and M are PER, GPE and ORG. Intuitively, the predictive
structures of the names with the same NE type may be more similar than those of cross-NE-
type names. Therefore, except for the feature split discussed above, we explore another two Θ
configurations. One learns Θ from Aq and the whole M for each query. The other learns Θ from Aq
and the subset of M, where the instances have the same NE type with the query.

Thus, we experimented on our development data set with the combinations of the two types of Θ
configuration, i.e. configuration of feature split F and configuration for partitioning of data set M.

Figure 5 compares the performance using the variousΘ configurations, and the results are in line with
our expectation. F={CF+SeF+SuF+GS} treats the features of these four types as one group. It is
equivalent to theΘ configuration without feature split in Eq. 5. Comparison of F={CF, SeF, SuF, GS}
(learningΘ j for these four feature groups separately by Eq. 7) and F={CF+SeF+SuF+GS} indicates
that use of the feature split indeed improves disambiguation performance. We are also interested
in whether all the feature groups are suitable for learning Θ j . Thus, we further experimented with
F={SeF, SuF, GS}, F={CF, SuF, GS}, F={CF, SeF, GS} and F={CF, SeF, SuF}. Figure 5 shows that
these different subsets of feature groups do not improve the performance over using all the feature
groups, and it proves that all the feature groups contribute to the learning of Θ. Besides, this figure
also shows that learning Θ from Aq and the subset of M (i.e. instances have the same NE type with
the query) usually performs better than learning it from Aq and the whole M. At last, as Θ has one
parameter - its dimensionality h, the performance shown in this figure is the ceiling performance on
the development set obtained at the best dimensionality (in {10, 50, 100,...}).

6.4 Evaluation Results for Lazy Learning
The experiments in this section evaluate our lazy learning model on the test data set of TAC-10. Our
experiments used the best dimensionality h= 150 of Θ tuned on the development set in Section 6.3.

Table 3 shows the performances of three baseline methods and our approach with overall accuracy
as well as accuracy on five subsets of the test set.

The second row (M (Eq.3)) used empirical risk minimization to estimate the weight vector u on
the data set M (similar with Eq. 3). The third row (M(SVM)) used SVM classifier (Herbrich et al.,
2000) to estimate the model on M. These two methods are similar with most of the previous work
for disambiguation, because all of them disambiguate a mention of a name based on the distribution

3100

Figure 5: Accuracy on Development Set (As Θ has one parameter - its dimensionality h, the perfor-
mance here is the ceiling performance obtained on the development set at the best dimensionality in
{10, 50, 100,...})

knowledge learned from other labeled names. Row 5 (or 6) Aq+Θ (or Θ j) shows the accuracy of
our lazy learning model, which generalized the linker on both the distribution knowledge learned
from Aq and the predictive structure Θ shared by Aq and M. Row 5 does not use feature split or
data set M partitioning for learning Θ, but Row 6 uses them. Comparison of Row 6 and Row 2, 3
indicates our lazy learning model achieves significant improvements of 4.1% and 3.8%, respectively
(ρ < 0.05, χ2 statistical significance test). This significant improvement obtained by our approach
is from solving the distribution problem (see Section 1) of previous methods.

Besides, Row 4 (M+Aq) used empirical risk minimization to estimate u on the data set M and
Aq directly. Comparing it with our lazy learning model, the idea to learn the shared predictive
information Θ achieves significant (ρ < 0.05) gain. This is because, rather than directly using M
with a lot of noise, we only incorporate the useful information in M shared with Aq to our learning
process.

ALL inKB NIL PER ORG GPE
M(Eq.3) 83.7 81.1 85.9 92.0 82.1 76.9
M(SVM) 84.0 78.5 88.6 92.1 84.0 76.0
M+Aq 84.5 81.4 87.1 92.7 82.7 78.1
Aq+Θ 86.6 84.5 88.3 94.8 85.2 79.7
Aq+Θ j 87.8 85.5 90.0 96.1 86.3 80.9

Table 3: Micro-averaged Accuracy on Test Set

6.5 Comparison with State-of-the-Art Performance
We also compare our approach with the top systems in TAC-10. As shown in Figure 6, our lazy
learning model achieves a 2% (or 5.9%) improvement over the best (or second best) system in
TAC-10. The best system “lcc” used a state-of-the-art machine learning algorithm (i.e., logistic
classifier) for disambiguation. However, same with other previous work, they only trained their
model on data set M without considering the knowledge related to the queried name. Comparing it
with our approach, it proves that our lazy learning model has effectively tackled the distribution

3101

problem in the previous work and indeed improved the disambiguation systems. On the TAC-11 data
set, we obtain the similar result. We apply our method in this paper to our system in TAC-11 (Zhang
et al., 2011), which achieves 87.6% with a 1.3% improvement.

Figure 6: A Comparison with TAC-10 Systems

6.6 Response Time
Our lazy learning delays the generalization on the labeled data until receiving the query. Hence,
comparing with previous work, it increases the response time of the system for each query. However,
many of the entity linking applications such as knowledge base population do not require real-time
user interaction, and therefore they are time-insensitive applications. For those potential time-
sensitive applications, we can calculate u′i (i=1,...,K) in the optimization procedure of Eq. 5 before
receiving the query and extract the features from the candidates in parallel. In our experiment, when
using 8 CPUs (1.86GHz) for the multi-thread configuration and using Lemur/Indri10 to index and
search document for generating Aq, our approach can disambiguate the mentions in an article as fast
as the baseline method (M (Eq.3)) using a single CPU.

7 Conclusions and Future Work
With the goal of achieving higher disambiguation performance, our focus was to solve the distribution
problem in previous approaches. We have presented a lazy learning model, which can incorporate
the distribution knowledge of the queried name to the learning process. To obtain this distribution
knowledge, we proposed to automatically label relevant instances Aq for the queried name. Besides,
instead of using or combining labeled data set M directly to train the linker, we proposed to use the
predictive structure Θ shared by M and Aq. Our experiment showed that the best configuration of
Θ was to use feature split over all the feature groups and use data set M partitioning according to
NE type. Finally, our experiments also proved that previous approaches for entity linking can be
significantly improved.

In the future, to further improve the disambiguation performance, we would like to explore more
methods to learn the knowledge from M and Aq.

Acknowledgments
This work is partially supported by Microsoft Research Asia eHealth Theme Program.

10http://www.lemurproject.org/indri.php

3102

References
Amigo, E., Artiles, J., Gonzalo, J., Spina, D., Liu, B., and Corujo, A. (2010). Weps3 eval-
uation campaign: Overview of the on-line reputation management task. In CLEF (Notebook
Papers/LABs/Workshops) 2010.

Ando, R. K. (2006). Applying alternating structure optimization to word sense disambiguation. In
Conference on Natural Language Learning (CoNLL).

Ando, R. K. and Zhang, T. (2005a). A framework for learning predictive structures from multiple
tasks and unlabeled data. In Journal of Machine Learning Research, 6(Nov):1817–1853.

Ando, R. K. and Zhang, T. (2005b). A high-performance semi-supervised learning method for text
chunking. In Annual Meeting of the Association for Computational Linguistics (ACL).

Artiles, J., Gonzalo, J., and Sekine, S. (2007). The semeval-2007 web evaluation: Establishing
a benchmark for the web people search task. In the Fourth International Workshop on Semantic
Evaluations (SemEval-2007).

Bagga, A. and Baldwin, B. (1998). Entity-based cross-document coreferencing using the vector
space model. In joint conference of the International Committee on Computational Linguistics and
the Association for Computational Linguistics (COLING-ACL).

Blei, D., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. In Journal of Machine
Learning Research 3:993-1022, 2003.

Bunescu, R. and Pasca, M. (2006). Using encyclopedic knowledge for named entity disambiguation.
In the 11th Conference of the European Chapter of the Association for Computational Linguistics.

Chen, Z. and Ji, H. (2011). Collaborative ranking: A case study on entity linking. In the Conference
on Empirical Methods in Natural Language Processing.

Cucerzan, S. (2007). Large-scale named entity disambiguation based on wikipedia data. In the
Conference on Empirical Methods in Natural Language Processing.

Dredze, M., McNamee, P., Rao, D., Gerber, A., and Finin, T. (2010). Entity disambiguation for
knowledge base population. In 23rd International Conference on Computational Linguistics.

Finin, T., Syed, Z., Mayfield, J., McNamee, P., and Piatko, C. (2009). Using wikitology for
cross-document entity coreference resolution. In AAAI Conference on Artificial Intelligence.

Gottipati, S. and Jiang, J. (2011). Linking entities to a knowledge base with query expansion. In
the Conference on Empirical Methods in Natural Language Processing.

Han, X. and Sun, L. (2011). A generative entity-mention model for linking entities with knowledge
base. In the 49th Annual Meeting of the Association for Computational Linguistics (ACL).

Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries for ordinal
regression. In Advances in Large Margin Classifiers (pp. 115-132).

Ji, H. and Grishman, R. (2011). Knowledge base population: Successful approaches and challenges.
In the 49th Annual Meeting of the Association for Computational Linguistics.

3103

Ji, H., Grishman, R., and Dang, H. T. (2011). An overview of the tac2011 knowledge base
population track. In Text Analytics Conference.

Lehmann, J., Monahan, S., Nezda, L., Jung, A., and Shi, Y. (2010). Lcc approaches to knowledge
base population at tac 2010. In Text Analysis Conference 2010 Workshop.

McNamee, P. and Dang, H. (2009). Overview of the tac 2009 knowledge base population track. In
Text Analysis Conference.

Mihalcea, R. and Csomai, A. (2007). Wikify!: linking documents to encyclopedic knowledge. In
the sixteenth ACM conference on Conference on information and knowledge management.

Milne, D. and Witten, I. H. (2008). Learning to link with wikipedia. In the ACM Conference on
Information and Knowledge Management.

Nguyen, H. T. and Cao, T. H. (2008). Named entity disambiguation on an ontology enriched by
wikipedia. In Research, Innovation and Vision for the Future. RIVF.

Ploch, D. (2011). Exploring entity relations for named entity disambiguation. In 49th Annual
Meeting of the Association for Computational Linguistics (ACL).

Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., and Kirilov, A. (2004). Kim - a semantic
platform for information extraction and retrieval. In Journal of Natural Language Engineering.

Ratinov, L., Roth, D., Downey, D., and Anderson, M. (2011). Local and global algorithms for
disambiguation to wikipedia. In the 49th Annual Meeting of the Association for Computational
Linguistics.

Spina, D., Amigo, E., and Gonzalo, J. (2011). Filter keywords and majority class strategies for
company name disambiguation in twitter. In CLEF.

Wang, P. and Domeniconi, C. (2008). Building semantic kernels for text classification using
wikipedia. In 14th ACM SIGKDD international conference on Knowledge discovery and data
mining.

Zhang, W., Su, J., Chen, B., Wang, W., Toh, Z., Sim, Y., Cao, Y., Lin, C. Y., and Tan, C. L. (2011).
I2r-nus-msra at tac 2011: Entity linking. In Text Analysis Conference.

Zhang, W., Su, J., Tan, C., and Wang, W. (2010). Entity linking leveraging automatically generated
annotation. In 23rd International Conference on Computational Linguistics.

Zheng, Z., Li, F., Huang, M., and Zhu, X. (2010). Learning to link entities with knowledge base.
In Annual Conference of the North American Chapter of the ACL.

3104

