
Proceedings of COLING 2012: Technical Papers, pages 3071–3088,
COLING 2012, Mumbai, December 2012.

Stacking Heterogeneous Joint Models of Chinese POS
Tagging and Dependency Parsing

Meishan Zhang Wanxiang Che T ing Liu∗ Zhenghua Li
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

{mszhang, car, tliu, lzh}@ir.hit.edu.cn

ABSTRACT
Previous joint models of Chinese part-of-speech (POS) tagging and dependency parsing are
extended from either graph- or transition-based dependency models. Our analysis shows
that the two models have different error distributions. In addition, integration of graph- and
transition-based dependency parsers by stacked learning (stacking) has achieved significant
improvements. These motivate us to study the problem of stacking graph- and transition-based
joint models. We conduct experiments on Chinese Penn Treebank 5.1 (CTB5.1). The results
demonstrate that the guided transition-based joint model obtains better performance than
the guided graph-based joint model. Further, we introduce a constituent-based joint model
which derives the POS tag sequence and dependency tree from the output of PCFG parsers,
and then integrate it into the guided transition-based joint model. Finally, we achieve the
best performance on CTB5.1, 94.95% in tagging accuracy and 83.98% in parsing accuracy
respectively.

TITLE AND ABSTRACT IN CHINESE

采采采用用用堆堆堆方方方法法法融融融合合合异异异种种种的的的中中中文文文词词词性性性和和和依依依存存存句句句法法法联联联合合合模模模型型型

过去的中文词性和依存句法联合模型基本上都根据基于图的依存句法分析模型或者
基于转移的依存句法分析模型进行拓展而形成的。我们的分析结果表明这两种不同的模型
错误分布并不一样，而且在依存句法中，将基于图的模型和基于转移的模型使用堆方法融
合之后，能够显著的提升依存句法的性能，这些促使我们进一步研究采用堆方法去融合基
于图的和基于转移的词性依存句法联合模型。我们在中文宾州树库5.1版本（CTB5.1）上
进行试验，实验结果表明，相比使用基于图的联合模型为被指导模型，采用转移的联合模
型为被指导模型能取得较好的性能。更进一步，我们介绍了基于短语句法结构的联合模
型，它从一个句子的概率短语文法分析器输出结果中提取句子的词性序列以及依存树结
果，然后我们采用基于短语句法结构的联合模型更进一步指导基于转移的联合模型，最终
我们在CTB5.1的数据上取得了最好结果，词性标注准确率达到94.95%，同时，依存句法
准确率达到83.98%。

KEYWORDS: Chinese POS Tagging, Dependency Parsing, Joint Model, Stacked Learning.

KEYWORDS IN CHINESE: 中文词性标注,依存分析,联合模型,堆方法融合学习.

∗Corresponding author

3071



1 Introduction

Part-of-speech (POS) tagging and dependency parsing are two fundamental natural language
processing (NLP) tasks. Typically, POS tagging is a preprocessing step for dependency parsing,
especially in a pipeline architecture. There are two main problems in a pipeline system: (1)
Dependency parsing suffers the problem of error propagation; (2) POS tagging cannot exploit
useful, important syntactic information for disambiguation.

For Chinese POS tagging and dependency parsing, a pipeline system seriously suffers these
two problems. The study presented in (Li et al., 2011b) demonstrates the error propagation
factor. The authors develop a graph-based joint model for Chinese POS tagging and dependency
parsing. The most interesting thing they found is that even with lower tagging accuracy, a joint
model could achieve higher parsing accuracy. The work presented in (Hatori et al., 2011) also
demonstrates a joint model can largely improve the performance of dependency parsing further.
They propose a transition-based joint model for Chinese POS tagging and dependency parsing.

Recently, ensemble models have been gained a lot of interests in NLP community. Stacked
learning (stacking) (Wolpert, 1992; Breiman, 1996), which is a typical method for ensemble
models, has been applied to a number of NLP tasks for its elegance and conciseness, such
as Chinese Word segmentation (Sun, 2011), POS tagging (Li et al., 2011a), named entity
recognition (Dekai Wu and Carpuat, 2003) and dependency parsing (McDonald, 2006; Nivre and
McDonald, 2008; Martins et al., 2008; Søgaard and Rishøj, 2010; McDonald and Nivre, 2011).
Especially, (Nivre and McDonald, 2008) demonstrate that the performance of dependency
parsing can be largely improved by stacking a graph-based dependency parser and a transition-
based dependency parser. Thus it is interesting to investigate the effect of stacked learning
when it is applied to joint models.

Graph- and transition-based joint models are extended from graph- and transition-based models
of dependency parsing respectively. They are the two mainstream approaches for dependency
parsing. It is noteworthy that, the probabilistic context-free grammar (PCFG) parsers, such as
Brown parser (Charniak and Johnson, 2005) and Berkeley parser (Petrov et al., 2006; Petrov
and Klein, 2007), which are traditionally used for constituent parsing, have also been suggested
for dependency parsing (Yamada and Matsumoto, 2003; McDonald, 2006; Sun, 2012; Che et al.,
2012). We denote these methods by constituent-based models. The precondition of constituent-
based models is that the output constituent structure of the PCFG parsers can be transformed
into dependency structure by rules adequately. This is satisfied for Chinese. Moreover, the
PCFG models can process POS tagging simultaneously in constituent parsing. They treat POS
tagging as a submodule of constituent parsing. Thus we can also adopt a PCFG model for joint
Chinese POS tagging and dependency parsing. We denote it by constituent-based joint model.
(Sun, 2012) proposed to improve the Chinese parsing accuracy by a PCFG parser. Similarly,
(Sun and Uszkoreit, 2012) exploited a PCFG parser to enhance Chinese POS tagging. Thus it is
reasonable to investigate the performance of constituent-based joint models and to improve the
performance of joint Chinese POS tagging and dependency parsing by a constituent-based joint
model.

In this paper, first we study the integration of a graph-based joint model (JGraph) and a
transition-based joint model (JTrans) by stacked learning. The stacked learning is implemented
using a two-level architecture, where the level-0 consists of one or more predictors of which the
results are exploited as input to enhance the level-1 predictor. Thus either JGraph or JTrans
can be chosen as the level-1 model. We call the stacking model using JGraph as level-1 model

3072



by the guided graph-based joint model and the stacking model using JTrans as level-1 model
by the guided transition-based joint model. Further we introduce a constituent-based joint
model (JConst) and then integrate this model into the previous better stacking model by further
stacking.

We conduct the experiments on Chinese Penn Treebank 5.1 (CTB5.1) data set (Xue et al.,
2005). First, we evaluate the performance of stacking models. The guided transition-based joint
model gets better performance than the guided graph-based joint model, achieving 94.76%
in tagging accuracy and 82.22% in parsing accuracy. Then we evaluate the performance of
our constituent-based joint model. The reported accuracies are 93.45% in POS tagging and
81.03% in dependency parsing. Finally, we integrate the constituent-based joint model into
the guided transition-based joint model by a further stacking. Our final results are 94.95% in
tagging accuracy and 83.98% in parsing accuracy, resulting in further improvements of 0.19%
in tagging accuracy and 1.76% in parsing accuracy.

Finally, detailed error analysis is carried out by two aspects: (1) the different error distributions
of JGraph, JTrans and JConst are shown in detail to interpret the improvements in stacking and
(2) the comparisons between joint models and pipeline approaches are conducted to understand
the interaction between Chinese POS tagging and dependency parsing. Through the analysis,
we can find several interesting phenomenons. For example, JConst can do better for long
distance dependencies, the tagging accuracies of joint models are more fragile facing to wrong
dependencies, dependencies with the head on the right are more easily recognized however the
corresponding POS tags of the modifiers in these dependencies are more difficult to be handled.

The rest of the paper is organized as follows. Section 2 reviews the related works of our paper.
Section 3 describes the graph- and transition-based joint models . Section 4 describes the
stacking models including the guided graph-based joint model and the guided transition-based
joint model. Section 5 describes our constituent-based model and the further stacking model.
Section 6 reports the experimental results. Section 7 gives the systematic analysis of the joint
models. Finally, in Section 8 we conclude this paper and point out our future works.

2 Related Works

Related Works on Joint Models of Chinese POS Tagging and Dependency Parsing (Li et al.,
2011b) present the first joint model for Chinese POS tagging and dependency parsing. They
extend models of graph-based dependency parsing (McDonald et al., 2005; McDonald and
Pereira, 2006; Carreras, 2007; Koo and Collins, 2010), making them enable to handle POS
tagging simultaneously. They conclude that joint models can achieve better performance in
dependency parsing and can do much better some certain POS tagging error patterns.

Secondly, (Hatori et al., 2011) and (Bohnet and Nivre, 2012) propose joint models based
on transition-based dependency parsing (Nivre, 2008; Huang and Sagae, 2010; Zhang and
Nivre, 2011). (Hatori et al., 2011) also examine the results of their joint model carefully,
demonstrating similar conclusions to that of (Li et al., 2011b). However, their certain error
patterns are slightly different with that of (Li et al., 2011b). The differences may be induced by
the different manners of modeling the joint task.

Thirdly, the constituent-based joint model processes joint Chinese POS tagging and dependency
parsing in an indirectly way. It performs the POS tagging and dependency parsing by a
conversion from the initial output of a PCFG parser. In Chinese POS tagging, (Sun and
Uszkoreit, 2012) suggest to enhance Chinese POS tagging guided by the output POS tags of

3073



Berkeley parser (Petrov et al., 2006; Petrov and Klein, 2007). In Chinese dependency parsing,
(Sun, 2012) has proposed to improve the performance of dependency parsing by Berkeley
parser. (Che et al., 2012) have compared the performance of several PCFG parsers on Stanford
dependencies. This method has also been employed for English dependency parsing (Yamada
and Matsumoto, 2003; McDonald, 2006).

In this paper, we study the integration of the three joint models by stacking. Then we discuss
these different joint models including the stacking models comprehensively, aiming for two
purposes: (1) figure out the benefits from stacking and (2) understand the interaction between
Chinese POS tagging and dependency parsing.

Related Works on Stacked Learning Stacked generalization is a meta-learning algorithm that
is first proposed by (Wolpert, 1992) and (Breiman, 1996). It has been exploited in a number of
NLP tasks for integration. We mainly concern the works of stacked learning applied on POS
tagging and dependency parsing. The work of (Li et al., 2011a) presented a mostly recent work
for stacking POS taggers. They exploit the output of a CRF POS tagger to help a perceptron-
based POS tagger with syntactic features. (McDonald, 2006) proposed the first stacking work of
dependency parsing. The author incorporated parse decisions of two constituent-based parsers,
Collins parser (Collins, 1999; Bikel, 2004) and Charniak parser (Charniak, 2000), into the
second-order MST parser. Then (Nivre and McDonald, 2008) suggested integrating graph- and
transition-based models by stacking, and more detailed analysis was given in (McDonald and
Nivre, 2011). (Martins et al., 2008) also demonstrated that stacking transition- and graph-
based parsers can improve parsing performance significantly and meanwhile offer theoretical
interpretations for stacking. In our paper, stacked leaning is applied on the joint tasks of Chinese
POS tagging and dependency parsing.

3 Two Models for Joint Chinese POS Tagging and Dependency parsing

A dependency tree for an input sentence x= w0w1 · · ·wn (where w0 = ROOT) can be denoted
by d= {(h, m) | 0≤ h≤ n, 0< m≤ n}, where (h, m) represents a dependency wh→ wm whose
head word (or father) is wh and modifier word (or child) is wm. The task of dependency parsing
is to find an optimum dependency tree d for the input sentence x. Generally, the POS tag
sequence of the sentence t= t1 · · · tn (where t i ∈ T, 1≤ i ≤ n, T is the POS tag set) is taken as
an input for dependency parsing, which is determined by the task of POS tagging, thus forming
a pipeline model of the two tasks. POS tagging is a typical sequence labeling problems which
can be resolved by algorithms such as maximum-entropy (Ratnaparkhi, 1996), conditional
random fields (CRF) (Lafferty et al., 2001) and averaged perceptron (Collins, 2002). The goal
of joint models of the two tasks is to find an optimum dependency tree and an optimum POS
tag sequence (̂t, d̂) for x concurrently.

3.1 Graph-based Joint Model

The graph-based joint model is first proposed by (Li et al., 2011b). Such a model is extended
from a graph-based model for dependency parsing (McDonald et al., 2005; McDonald and
Pereira, 2006; Carreras, 2007; Koo and Collins, 2010). In the model, the score of a dependency
tree along with POS tags on each node is factored into scores of small parts.

(Li et al., 2011b) have introduced several different graph-based joint models in term of small
parts employed in the models. According to the results they reported, we employ the model
Li-11(v1,2nd) in terms of both accuracies and decoding speed. The scoring parts of the model

3074



include dependencies, siblings and grandchilds, as is shown in Figure 1. The score function of
Li-11(v1,2nd) can be represented by Equation 1,

Scorejoint(x, t,d) =
∑

{(h,m)}⊆d

wpos · fpos(x, t, m) +wdep · fdep(x, t, h, m) +
∑

{(h,s)(h,m)}⊆d

wsib · fsib(x, t, h, s, m)

+
∑

{(g,h)(h,m)}⊆d

wgrd · fgrd(x, t, g, h, m)
(1)

where w denotes the model parameters and fpos(·), fdep(·), fsib(·), fgrd(·) denote the features of
POS tagging, dependency part, sibling part and grandchild part.

h m

dependency

h s m

sibling

g h m

grandchild

Figure 1: The scoring parts used in our graph-based joint model. Each node in the scoring parts
has been tagged with POS already.

For more detailed description, we refer to the original paper. We call this graph-based joint
model as JGraph for brevity.

3.2 Transition-based Joint Model

(Hatori et al., 2011) propose the first joint model of Chinese POS tagging and transition-based
dependency parsing (Nivre, 2008; Huang and Sagae, 2010; Zhang and Nivre, 2011). In a
transition-based system, we learn a joint model for scoring the transition Ai from one state
STi to the next ST j . As shown in Figure 2, the state ST of the transition system is composed
by a stack S and a queue Q, where S = (· · · , s1, s0) is a stack of dependency trees along with
POS tags and Q = (q0, q1, · · · , qn− j) = (w j , w j+1, · · · , wn) is the remaining words which have
not been processed at the current state.

s2

stack

...

...

s0

s0.lc s0.rc

... ...

...

s1

s1.lc s1.rc

... ...

...

queue

q0 q1 ...

Figure 2: A state in the transition-based joint model. The figure is borrowed from (Huang and
Sagae, 2010).

The candidate transition action A at each step is defined as follows:

• SHIFT(t) (SH(t)): move the head word w j of queue Q into the stack S, assigning the
word with the POS tag t.

• REDUCE-RIGHT (RR): merge the top two trees s0, s1 into a new subtree s
x

0 s1.

• REDUCE-LEFT (RL): merge the top two trees s0, s1 into a new subtree sx0 s1.

3075



Equation 2 describes the score function of the transition-based joint model.

Scorejoint(x, t,d) =
∑

Ai=SHIFT(t)

wpos · fpos(STi , Ai , t) +
∑

wsyn · fsyn(STi , Ai) (2)

where fpos(·) refers to the general features exploited in POS tagging and fsyn(·) is all other
features which are syntax related.

In this work, we employ the joint model of Joint-ZN− in (Hatori et al., 2011) after considering
the performance. We refer to their paper for more detailed descriptions. We thank the authors
for sharing their code with us. We make some changes to make the basic POS tagging features
the same with that in JGraph. We call this transition-based joint model as JTrans for brevity.

4 Stacking Joint Models

Stacked learning is a typical approach for model integration. The idea of stacked learning is
to include two "level" of predictors : the level-0 includes one or more predictors g1, · · · gK(K ≥
1) : Rd → R and the level-1 consists of one single predictor h : Rd+k → R. Each predictor gk of
level 0 receives input x ∈ Rd and outputs a predictiongk(x). The level-1 predictor takes as input
〈x, g1(x), · · · , gK(x)〉 and outputs a final prediction h(x, g1(x), · · · , gK(x)).

In our work, we have two strategies for stacking JGraph and JTrans. The guided graph-based
joint model exploits JGraph as the level-1 model and the guided transition-based joint model
exploits JTrans as the level-1 model. We will describe them in the following respectively.

4.1 The Guided Graph-based Joint Model

The guided graph-based joint model, which we call JGraph(JTrans), exploits JGraph as the
level-1 model and JTrans as level-0 model. As shown in Equation 1, the graph-based joint
model computes a dependency tree along with POS tags by factored it into small parts including
dependencies, siblings and grandchilds. Correspondingly, assuming the output of JTrans is
(̂tJTrans = tJTrans

1 · · · tJTrans
n , d̂JTrans), the score function of JGraph(JTrans) becomes:

Scorejoint(x, t,d) =
∑

{(h,m)}⊆d

wpos · fpos(x, t, t̂JTrans, m) +wdep · fdep(x, t, h, m, d̂JTrans)

+
∑

{(h,s)(h,m)}⊆d

wsib · fsib(x, t, h, s, m, d̂JTrans) +
∑

{(g,h)(h,m)}⊆d

wgrd · fgrd(x, t, g, h, m, d̂JTrans)
(3)

We can see that the feature functions are modified to include additional arguments t̂JTrans and
d̂JTrans. Thus new features related with the additional arguments will be produced. These new
features account for the guided features over the output of JTrans. The specific features used
by JGraph(JTrans) are given in Table 1.

4.2 The Guided Transition-based Joint Model

The guided transition-based joint model, which we call JTrans(JGraph), exploits JTrans as the
level-1 model and JGraph as level-0 model. As shown in Equation 1, the transition-based joint
model computes a dependency tree along with POS tags by the sequence of transition actions of
shaping it. Correspondingly, assuming the output of JTrans is (̂tJGraph = tJGraph

1 · · · tJoinG
n , d̂JGraph),

the score function of JTrans(JGraph) becomes:

Scorejoint(x, t,d) =
∑

Ai=SHIFT(t)

wpos · fpos(STi , Ai , t, t̂JGraph) +
∑

wsyn · fsyn(STi , Ai , d̂
JGraph) (4)

3076



The Guided Graph-based Joint Model: JGraph(JTrans)

pos { t̂JTrans
m , t̂JTrans

m ◦ t̂JTrans
m−1 , t̂JTrans

m ◦ t̂JTrans
m+1 , t̂JTrans

m−1 ◦ t̂JTrans
m+1 } ⊗ {tm, wm ◦ tm}

dep {Whether hxm is in d̂JTrans?} ⊗{th, tm, th ◦ tm}
sib {Whether hxm and hxs are in d̂JTrans?}⊗{th, tm, th ◦ tm}
grd {Whether gxhxm is in d̂JTrans?}⊗{th, tm, th ◦ tm}
The Guided Transition-based Joint Model: JTrans(JGraph)

pos {tm, wm ◦ tm} ⊗ { t̂JGraph
m , t̂JGraph

m ◦ t̂JGraph
m−1 , t̂JGraph

m ◦ t̂JGraph
m+1 , t̂JGraph

m−1 ◦ t̂JGraph
m+1 }

syn

{Whether sx0 s1 is in d̂JGraph?, Whether sy0 s1 is in d̂JGraph?} ⊗{s0.t, s1.t, s0.t ◦ s1.t},
{Whether sx0 s1 is in d̂JGraph?, Whether sy0 s1 is in d̂JGraph?} ⊗ {Whether sx0 (s0.lc) is in
d̂JGraph?, Whether sx0 (s0.rc) is in d̂JGraph?, Whether sx1 (s1.lc) is in d̂JGraph?, Whether
sx1 (s1.rc) is in d̂JGraph?} ⊗{s0.t, s1.t, s0.t ◦ s1.t}

Table 1: Guided features for JGraph(JTrans) and JTrans(JGraph). These features are defined
by referring to (Li et al., 2011a) for POS related features and (Nivre and McDonald, 2008) for
syntax related features. The symbol ⊗ denotes a cross join operation, and the symbol ◦ denotes
a conjoin operation. In features of JTrans(JGraph), the index of m refers to the involved word
for tagging, x .t denotes the POS tag of word x , and x .lc and x .rc denote x ’s leftmost and
rightmost child.

We can see that the feature functions are modified to include additional arguments t̂JGraph and
d̂JGraph. Thus new features related with the additional arguments will be produced. These new
features account for the guided features over the output of JGraph. The specific features used
by JTrans(JGraph) are given in Table 1.

5 Constituent-based Joint Model and Further Stacking

5.1 Constituent-based Joint Model

Constituent-based joint models rely on certain PCFG parsers which exploit context-free grammar
(CFG) to shape the search space for possible syntactic analysis. POS tagging and syntax analysis
are usually processed simultaneously in PCFG parsers. These models have significant differences
with the above two models. They model the joint POS tagging and dependency parsing in an
indirect way. These models resolve the joint task by a two-step process: (1) constituent parsing
and (2) rule-based transformation from constituent structures (CS) to dependency structures
(DS). One advantage of constituent-based joint models is that all well-studied PCFG parsers can
be used for the joint task. Figure 3 shows an example for this method.

In this work, we choose Berkeley parser1 (Petrov et al., 2006; Petrov and Klein, 2007) to
perform constituent parsing for its high performance in Chinese. We call this constituent-
based joint model as JConst for brevity. Berkeley parser is an unlexicalized PCFG parser with
latent variables. The observed constituent trees are automatically modeled with fined-grained
unobserved constituent trees using latent variables. In Chinese POS tagging, (Sun and Uszkoreit,
2012) have proposed to use the output of Berkeley parser to enhance Chinese POS tagging. In
Chinese dependency parsing, (Sun, 2012) has suggested to use Berkeley parser to improve the

1http://code.google.com/p/berkeleyparser

3077



(a) Constituent structure with head nodes
marked already.

(b) Dependency structure.

Figure 3: An example of constituent-based joint model: 戴相龙说中国经济发展为亚洲作出积
极贡献(Dai Xianglong said that Chinese economic development made positive contributions for
Asia). The left constituent structure can be converted to the right dependency structure, and
the head nodes (marked by [H]) are specified by CS-to-DS rules.

performance of parsing accuracy, and (Che et al., 2012) have demonstrate that Berkeley parser
outperforms several other PCFG parsers for Chinese Stanford dependencies.

5.2 Stacking Constituent-based Joint Model as the Second Level-0 Model

As mentioned in Section 4, we have introduced the integration of JGraph and JTrans by stacked
learning. Here we concern a more complex case to integrate JConst into the ensemble model of
JGraph and JTrans. Actually, it can be carried out very simply by adding the features of JConst
similar to the other level-0 model. For example, if we exploit the guided graph-based joint
model to integrate JConst, the guided features related with JConst are similar to that related
with JTrans, which are produced by replacing the output of JTrans with JConst.

By adding JConst for further stacking, there are two level-0 models in stacking. Besides the
independent guided features of the two level-0 models, we suppose that the consistency of
the two level-0 models is also an effective indicator. For example, in dependency parsing, if
wxh wm exists in both level-0 models, then the probability of adding such a dependency should
be much higher, and if wxh wm exists in only one of the level-0 models, the probability should
be lower but also a positive contribution, and further if wxh wm doesn’t exist in anyone of the
level-0 models, the probability should be much lower with a negative impact. We name the
features related with the consistency of the two level-0 models as guided consistent features.
Table 2 lists the guided consistent features used in this work. Both the guided graph-based joint
model and the guided transition-based joint model are considered.

6 Experiments

6.1 Experimental Settings

We use CTB5.1 to conduct our experiments. Following the works of (Li et al., 2011b) and
(Hatori et al., 2011), we use the standard split of CTB5.1 described in (Duan et al., 2007) and
the conversion rules of CS-to-DS in (Zhang and Clark, 2008).

We use the standard tagging accuracy to evaluate POS tagging. For dependency parsing, we
use word accuracy (also known as dependency accuracy or UAS), root accuracy and complete

3078



The Guided Graph-based Joint Model: JGraph(JTrans, JConst)

pos {Whether t̂JTrans
m is identical to t̂JConst

m ?} ⊗{ t̂JTrans
m ◦ tm, t̂JTrans

m ◦wm ◦ tm}
dep {Whether the heads of m are identical in d̂JTrans and d̂JConst?} ⊗ {Whether hxm is in

d̂JTrans?} ⊗{th, tm, th ◦ tm}
The Guided Transition-based Joint Model: JTrans(JGraph, JConst)

pos {Whether t̂JGraph
m is identical to t̂JConst

m ?} ⊗{ t̂JGraph
m ◦ tm, t̂JGraph

m ◦wm ◦ tm}

syn
{Whether the heads of s0 are identical in d̂JGraph and d̂JConst?, Whether the heads of s1

are identical in d̂JGraph and d̂JConst?} ⊗ {Whether sx0 s1 is in d̂JGraph?, Whether sy0 s1 is in
d̂JGraph?} ⊗{s0.t, s1.t, s0.t ◦ s1.t}

Table 2: Guided consistent features.

match rate (all excluding punctuation) to evaluate the performance.

The models are trained iteratively and the best one is chosen for final evaluation for each
joint model in terms of tagging accuracy and dependency accuracy on development set. The
iterative number for graph-based joint models and transition-based joint models are 15 and 50
respectively. The beam size of our transition-based joint models is set to 64. In stacked learning,
we split the train data into five folds to get augmented train data for level-1 model.

6.2 Stacking Graph- and Transition-based Joint Models

6.2.1 Baseline Performance

At first, we evaluate the performance of our baseline joint models: JGraph and JTrans. The
performance of the pipeline models of JGraph and JTrans are also reported. Table 3 shows the
results. The POS tagger of pipeline models is trained using averaged perceptron (Collins, 2002),
exploiting the features which are only related with POS tagging. Our POS tagger achieves a
tagging accuracy of 94.34% on development set, and 94.11% on test set, which is higher than
the pipeline models of (Li et al., 2011b) and (Hatori et al., 2011). PGraph and PTrans denote
the pipeline models of JGraph and JTrans respectively.

As shown in Table 3, both JGraph and JTrans achieve higher parsing accuracies than the
pipeline models, where JGraph achieves increases of 1.36% and JTrans achieves increases of
1.61%. In tagging accuracy, JGraph achieve increases of 0.4% compared to PGraph, whereas
JTrans suffers very little loss compared to PTrans. JGraph has a significant improvement in POS
tagging compared to the reported results in their paper as they have enhanced the model before
sharing the code for us. We use the code shared by the authors of (Hatori et al., 2011) to train
JTrans, meanwhile some modifications have been done to make the basic POS tagging features
identical with JGraph. However our parsing accuracy is slightly lower than the reported results
in their paper. The work of (Bohnet and Nivre, 2012) is the only one other related work for joint
Chinese POS tagging and dependency parsing. They also reported their results on CTB5.1 data
set. However we didn’t make a comparison as they employed a different conversion method for
CS-to-DS.

3079



Syntactic Metrics Tagging
word root compl. Accuracy

Stacking
JGraph(JTrans) 82.04 78.17 30.21 94.52
JTrans(JGraph) 82.22 78.03 30.58 94.76

Graph
JGraph 80.88 75.55 28.83 94.51
PGraph 79.52 75.34 26.70 94.11

(Li et al., 2011b) (v1,2nd) 80.74 75.80 28.24 93.08

Transition
JTrans 80.91 76.91 29.32 94.07
PTrans 79.30 75.73 27.80 94.11

(Hatori et al., 2011)(ZN) 81.33 77.93 29.90 93.94

Table 3: The results of baseline models on test corpus. Results of significant test show that the
p-value of tagging accuracy is lower than 10−3 and the p-value of parsing accuracy is lower
than 10−5 for both JGraph(JTrans) and JTrans(JGraph).

6.2.2 Stacking Results

Table 3 shows the results of integration JGraph and JConst by stacked learning. We can see
both the guided graph-based joint model and the guided transition-based achieve significantly
improvements compared to the baseline models. The guided transition-based joint model
obtains slightly better performance than the guided graph-based joint model, achieving the
tagging accuracy of 94.76% and the parsing accuracy of 82.22%. (Nivre and McDonald, 2008)
have done a similar work on dependency parsing. Their result demonstrate that the the guided
graph-based model is better than the guided transition-based model in Chinese. Our results
are different. This is perhaps caused by our baseline models are more complex, especially the
transition-based joint model.

6.3 Stacking Constituent-based Joint Model as the Second Level-0 Model

We have shown that the guided transition-based joint model achieves better performance. Thus
we integrate the constituent-based joint model into this guided model in our work.

6.3.1 Performance of the Constituent-based Joint Model

Table 5 shows the performance of JConst. The parsing accuracy of JConst is slightly higher than
JGraph and JTrans. This demonstrates that JConst is also an effective method for joint Chinese
POS tagging and dependency parsing. However, the tagging accuracy is not good. This may
be caused by that Berkeley parser is a generative model, and thus relatively poor POS related
features can be used in it.

6.3.2 Effectiveness of Guided Consistent Features

For further stacking JConst, we have suggested the guided consistent features. To test the effect
of guided consistent features, we conduct feature ablation experiments. Table 4 shows the
results on development set, where the mark {-GC} denotes the model without guided consistent
features. The ablation of the guided consistent features resulted in 0.2% decreases in tagging
accuracy and 0.28% decreases of parsing accuracy for JTrans(JGraph, JConst), showing the
effectiveness of these features.

3080



Syntactic Metrics Tagging
word root compl. Accuracy

JTrans(JGraph, JConst) 84.68 80.38 34.37 95.31
JTrans(JGraph, JConst){-GC} 84.40 79.82 34.12 95.11

Table 4: Feature ablation for guided consistent features.

6.3.3 Final Results

Table 5 shows the final results of stacking JGraph, JTrans and JConst together. The final stacking
model JTrans(JGraph, JConst) achieves a tagging accuracy of 94.95% and a dependency accu-
racy of 83.98%, obtaining further increases of 0.19% in tagging accuracy and 1.76% in parsing
accuracy compared to JTrans(JGraph). The improvements of JTrans(JGraph, JConst) compared
to JTrans(JGraph) are larger than that of JTrans(JGraph) compared to JGraph or JTrans. In both
tagging and parsing performance, JTrans(JGraph, JConst) is better than JTrans(JGraph), and
meanwhile JTrans(JGraph) is better than anyone of {JGraph, JTrans, JConst} . It demonstrates
that each individual joint model has a positive impact in the stacking.

Syntactic Metrics Tagging
word root compl. Accuracy

JTrans(JGraph, JConst) 83.98 81.29 32.15 94.95
JConst 81.03 78.12 28.01 93.45

Table 5: Final results of further stacking for constituent-based joint model.

7 Analysis

The analysis is conducted on test corpus of CTB5.1. It includes two aspects. First we carefully
examine the error distributions of the joint models, which can help us to figure out how stacked
learning helps Chinese POS tagging and dependency parsing. Then we compare the joint
models to pipeline models, which can help us to understand the interaction between Chinese
POS tagging and dependency parsing.

7.1 Comparisons between Heterogeneous Joint Models

In this section, we mainly concern the performance of dependency parsing. Generally, stacking
can perform effectively when the differences between baseline models are very large. For
the final stacking model JTrans(JGraph, JConst), the baseline models include JGraph, JTrans,
JConst.

First, we display the scatter plots of the parsing accuracies of JGraph against JTrans, JTrans
against JConst and JConst against JGraph respectively. Each point (x , y) in the scatter plots
denotes a sentence’s parsing accuracy in the two joint models. If the point is upper the line
y = x , it denotes that the joint model represented by vertical axis achieve higher dependency
accuracy for the sentence. As is shown in Figure 4, the points seem to be random distributed in
the three plots, and the number of points divided by line y = x seems equal. These demonstrates
that the error distributions of the three baseline models are rather different. Each model can
process better on some sentences, and also may perform worse on some other sentences. By
stacking, we can take advantage of the strengths of each model, thus resulting in a better
performance.

3081



0

20

40

60

80

100

0 20 40 60 80 100

D
e

p
e

n
d

e
n

cy
 A

cc
u

ra
cy

 o
f 

JG
ra

p
h

 (
%

) 

Dependency Accuracy of JTrans (%) 

(a) x:JTrans,y:JGraph

0

20

40

60

80

100

0 20 40 60 80 100

D
e

p
e

n
d

e
n

c
y

 A
c
c
u

ra
c
y

 o
f 

JT
ra

n
s
 (

%
) 

Dependency Accuracy of JConst (%) 

(b) x:JConst,y:JTrans

0

20

40

60

80

100

0 20 40 60 80 100

D
e

p
e

n
d

e
n

c
y

 A
c
c
u

ra
c
y

 o
f 

JC
o

n
s
t 

(%
) 

Dependency Accuracy of JGraph (%) 

(c) x:JGraph,y:JConst

Figure 4: Scatter plots of dependency accuracies of every two baseline models.

Figure 5 shows the performance of dependency parsing in term of dependency length. Depen-
dency length denotes the distance between the head and modifier in a dependency. Generally,
dependency accuracies decrease when the distance between the head and modifier become
longer. JConst can do better than the other two baseline models. JGraph and JTrans model
dependency trees directly, and dependency length is a very important factor when building a
dependency to shape the tree, thus JGraph and JTrans can be influenced much by it. However,
JConst builds a dependency tree indirectly, the syntax analysis is done under the grammar of
CFG, which needn’t consider the attributes of a dependency tree. Thus dependency length has
smaller influence to JConst. During the stacking, the model can learn that JConst is good at the
dependencies with long dependency length. Thus the final stacking model can perform well for
long dependency length, which is shown in Figure 5.

50

55

60

65

70

75

80

85

90

95

0 1 2 3 4 5 6 7 8 9 10 11

D
e

p
e

n
d

e
n

cy
 P

re
ci

si
o

n
 (

%
) 

Dependency Length 

JGraph
JTrans
JConst
JTrans(JGraph,JConst)

50

55

60

65

70

75

80

85

90

95

0 1 2 3 4 5 6 7 8 9 10 11

D
ep

en
de

nc
y 

Re
ca

ll 
(%

) 

Dependency Length 

JGraph
JTrans
JConst
JTrans(JGraph,JConst)

Figure 5: Dependency arc precision/recall relative to predicted/gold dependency length.

7.2 Comparisons between Joint Models and Pipeline Models

Impact on POS tagging : Intuitively, the tagging accuracy should be much higher if the
dependency structures are correctly predicted. Table 6 shows the tagging accuracies of the
different models with correct dependency heads and wrong heads respectively. The accuracies
of words with correct heads are 10% higher than that with wrong heads on average. Joint
models are more easily affected by the correctness of dependency head compared to PGraph2.
This is caused by that we have exploited the syntactic features for POS tagging in joint models.

Next, we investigate which POS tagging error patterns can be influenced greatly in joint models.
Figure 6 shows the related high frequency error patterns. The error patterns with rectangles
upper the horizontal line are positive error patterns which joint models can do better, and
the error patterns with rectangles below are negative error patterns which joint models can

2We only choose PGraph for comparison since it achieves better performance than PTrans.

3082



PGraph JGraph JTrans JConst JTrans(JGraph, JConst)
Correctly Headed 96.23 96.92↑ 96.64↑ 96.36↑ 97.03↑
Wrongly Headed 86.65 85.34↓ 84.16↓ 81.79↓ 84.7↓

Table 6: POS tagging accuracies with correct dependency heads and wrong dependency heads.

do worse. We can see that the joint models can do significantly better on such error patterns
like NN→ VV and DEC→ DEG, and in contrast joint models can do worse on error patterns
for example NR→ NN and NN→ JJ. Actually, the positive error patterns are important for
dependency parsing and the positive error patterns usually needn’t to be distinguished in
dependency parsing, we will demonstrate it later.

-150

-120

-90

-60

-30

0

30

60

90

120

150

NN->VV DEC->DEG NR->NN DEG->DEC VV->NN NN->JJ P->VV VV->AD JJ->NN VA->VV VV->P

D
ec

re
as

ed
 E

rr
o

r 
N

u
m

b
er

 

POS Tagging Error Pattern 

JGraph
JTrans
JConst
JTrans(JGraph,JConst)

Figure 6: POS tagging error patterns influenced significantly by joint models.
Finally, the arc direction of dependency is also an important factor to influence the POS tagging
accuracy. Table 7 shows the POS tagging accuracy of modifier words in term of gold arc
direction wyi w j , wxi w j (i < j)3. In Chinese, the POS tags such as NN, JJ or AD, which are
difficult to be distinguished by dependency parsing, are usually tagged for modifier words in
wyi w j , thus we can see that joint models gain little improvements for wyi w j .

PGraph JGraph JTrans JConst JTrans(JGraph, JConst)
wyi w j 94.12 94.24 93.78 92.86 94.51
wxi w j 93.95 94.92 94.54 94.54 95.62

Table 7: POS tagging accuracies of modifier words in term of the gold arc direction.
Impact on dependency parsing : We mainly concern how POS tagging errors influence the
performance of dependency parsing. In the previous discussion, we have demonstrated that
dependency structures can influence some certain POS tagging error patterns significantly. We
expect that the parsing accuracies should decrease sharply for the POS error patterns who
demonstrate positive influences, because we suppose that these error patterns are harmful
for dependency parsing, thus they can be distinguished by dependency parsing. Figure 7
shows the dependency accuracies of these POS tagging error patterns. We can see that the
parsing accuracies of joint models for positive error patterns such as NN→ VV, DEC→ DEG
and DEG→ DEC drop drastically compared to PGraph. This conforms to our expectation. It
demonstrates that joint models can do much better on certain POS tagging errors which are
harmful for dependency parsing.

We also look into the impact of dependency arc direction on dependency parsing. Table 8
shows the dependency accuracies in term of gold arc direction. Generally, joint models do much
better than PGraph in both wyi w j and wxi w j . The accuracy of wyi w j is significantly higher than
wxi w j . One interpretation is that the words with POS tags such as NN, JJ or AD are usually

3We neglect the ROOT when considering the arc direction.

3083



0

20

40

60

80

100

NN->VV DEC->DEG NR->NN DEG->DEC VV->NN NN->JJ P->VV VV->AD JJ->NN VA->VV VV->P

De
pe

nd
en

cy
 A

cc
ur

ac
y 

(%
) 

POS Tagging Error Pattern 

PGraph
JGraph
JTrans
JConst
JTrans(JGraph,JConst)

Figure 7: Dependency accuracies of different POS tagging error patterns.

easier to find their dependency head, and the head of such words is always on the right. Further,
the accuracy gap of JConst between wyi w j and wxi w j is apparently smaller than the JGraph
and JConst, which is similar to the phenomenon that dependency length has smaller influence
to JConst, as dependency length and arc direction are important factors in JTrans and JConst
which process dependency parsing directly.

PGraph JGraph JTrans JConst JTrans(JGraph, JConst)
wyi w j 81.03 82.01 82.44 81.75 84.81
wxi w j 76.45 78.92 77.73 79.7 82.35

Table 8: Dependency accuracies in term of the gold arc direction.

Conclusions

In this paper, we present a study to investigate the integration of joint models of Chinese POS
tagging and dependency parsing by stacked learning. First we integrate two joint models:
JGraph and JTrans. We find that the stacking can improve the performance of joint models
significantly. Meanwhile our experimental results demonstrate that the guided transition-based
joint model can do better than the guided graph-based joint model. Next, we introduce
a constituent-based joint model JConst, which employ a PCFG parser to get the result of
constituent structure and then extract the results of POS tagging and dependency parsing from
it. To further improve the performance of joint models, we integrate the JConst into the guided
transition-based joint model by further stacking. The final stacking joint model achieves a POS
tagging accuracy of 94.95% and a parsing accuracy of 83.98% in Chinese, resulting in total
error reductions of 8% and 16% respectively compared to the best model of JGraph, JTrans and
JConst.

Further, we conduct a detailed analysis aiming to figure out how stacked learning helps
dependency parsing and POS tagging, and meanwhile aiming to understand the relationship
between Chinese POS tagging and dependency parsing. We can find that JGraph, JTrans and
JConst are very different in error distribution, joint models can do much better on certain POS
tagging errors which are harmful for dependency parsing.

Acknowledgments

We especially thank Weiwei Sun for her suggestion of stacking constituent-based models in this
work. This work was supported by National Natural Science Foundation of China (NSFC) via
grant 61133012, the National “863” Major Projects via grant 2011AA01A207, and the National
“863” Leading Technology Research Project via grant 2012AA011102.

References

Bikel, D. M. (2004). Intricacies of collins parsing model. Computational Linguistics, 30(4):479–
511.

3084



Bohnet, B. and Nivre, J. (2012). A transition-based system for joint part-of-speech tagging
and labeled non-projective dependency parsing. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 1455–1465, Jeju Island, Korea. Association for Computational Linguistics.

Breiman, L. (1996). Stacked regressions. Machine Learning, 24:49–64.

Carreras, X. (2007). Experiments with a higher-order projective dependency parser. In
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pages 957–961.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the Second Meeting
of North American Chapter of Association for Computational Linguistics (NAACL2000).

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 173–180, Ann Arbor, Michigan. Association for Computational
Linguistics.

Che, W., Spitkovsky, V., and Liu, T. (2012). A comparison of chinese parsers for stanford
dependencies. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 11–16, Jeju Island, Korea. Association for
Computational Linguistics.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
Pennsylvania University.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, pages 1–8. Association for Computational Linguistics.

Dekai Wu, G. N. and Carpuat, M. (2003). A stacked, voted, stacked model for named
entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003.

Duan, X., Zhao, J., and Xu, B. (2007). Probabilistic models for action-based chinese dependency
parsing. In Kok, J. N., Koronacki, J., de Mántaras, R. L., Matwin, S., Mladenic, D., and Skowron,
A., editors, Proceedings of ECML/ECPPKDD, volume 4701 of Lecture Notes in Computer Science,
pages 559–566. Springer.

Hatori, J., Matsuzaki, T., Miyao, Y., and Tsujii, J. (2011). Incremental joint pos tagging and
dependency parsing in chinese. In Proceedings of 5th International Joint Conference on Natural
Language Processing, pages 1216–1224, Chiang Mai, Thailand. Asian Federation of Natural
Language Processing.

Huang, L. and Sagae, K. (2010). Dynamic programming for linear-time incremental parsing.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages
1077–1086, Uppsala, Sweden. Association for Computational Linguistics.

Koo, T. and Collins, M. (2010). Efficient third-order dependency parsers. In Proceedings of the
48th Annual Meeting of the ACL, number July, pages 1–11.

3085



Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In ICML, pages 282–289.

Li, Z., Che, W., and Liu, T. (2011a). Improving chinese pos tagging with dependency parsing.
In Proceedings of 5th International Joint Conference on Natural Language Processing, pages
1447–1451, Chiang Mai, Thailand. Asian Federation of Natural Language Processing.

Li, Z., Zhang, M., Che, W., Liu, T., Chen, W., and Li, H. (2011b). Joint models for chinese pos
tagging and dependency parsing. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1180–1191, Edinburgh, Scotland, UK. Association for
Computational Linguistics.

Martins, A. F. T., Das, D., Smith, N. A., and Xing, E. P. (2008). Stacking dependency parsers. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages
157–166, Honolulu, Hawaii. Association for Computational Linguistics.

McDonald, R. (2006). Discriminative learning and spanning tree algorithms for dependency
parsing. PhD thesis, University of Pennsylvania.

McDonald, R., Crammer, K., and Pereira, F. (2005). Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics
- ACL ’05, number June, pages 91–98, Morristown, NJ, USA.

McDonald, R. and Nivre, J. (2011). Analyzing and integrating dependency parsers. Computa-
tional Linguistics, 37(1):197–230.

McDonald, R. and Pereira, F. (2006). Online learning of approximate dependency parsing
algorithms. In Proceedings of EACL.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34(4):513–553.

Nivre, J. and McDonald, R. (2008). Integrating graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages 950–958, Columbus, Ohio. Association for
Computational Linguistics.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 433–440, Sydney, Australia. Association for Computational Linguistics.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing. In Human
Language Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference, pages 404–411, Rochester,
New York. Association for Computational Linguistics.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. In Proceedings of the
Empirical Methods in Natural Language Processing.

Søgaard, A. and Rishøj, C. (2010). Semi-supervised dependency parsing using generalized
tri-training. In Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010), pages 1065–1073, Beijing, China. Coling 2010 Organizing Committee.

3086



Sun, W. (2011). A stacked sub-word model for joint chinese word segmentation and part-of-
speech tagging. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 1385–1394, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Sun, W. (2012). Learning Chinese Language Structures with Multiple Views. PhD thesis, Saarland
University.

Sun, W. and Uszkoreit, H. (2012). Capturing paradigmatic and syntagmatic lexical relations:
Towards accurate chinese part-of-speech tagging. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 242–252, Jeju
Island, Korea. Association for Computational Linguistics.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5:241–259.

Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. (2005). The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Language Engineering, 11(2):207–238.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support vector
machines. In Proceedings of 8th International Workshop on Parsing Technologies (IWPT2003).

Zhang, Y. and Clark, S. (2008). A tale of two parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 562–571, Honolulu, Hawaii. Association for
Computational Linguistics.

Zhang, Y. and Nivre, J. (2011). Transition-based dependency parsing with rich non-local
features. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 188–193, Portland, Oregon, USA. Association
for Computational Linguistics.

3087




