
Proceedings of COLING 2012: Technical Papers, pages 2243–2258,
COLING 2012, Mumbai, December 2012.

Collective Search for Concept Disambiguation

Anja P I LZ Gerhard PAASS
Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

anja.pilz@iais.fraunhofer.de, gerhard.paass@iais.fraunhofer.de

ABSTRACT
Name ambiguity is a major problem in information retrieval: The name "Metropolis" may
refer to a movie, a physicist, or Superman’s hometown. Recent work resolves ambiguity in
natural language text by linking name mentions against the corresponding Wikipedia concept
(Wikification). Standard methods comparing a single mention with the corresponding Wikipedia
concept can potentially be improved by simultaneously considering all mentions in the input
document. We propose a novel multiple assignment process based on a collective search over
an inverted index that exploits the coherence of Wikipedia concepts. Based on this coherence,
we compute the best fitting candidate concept for each mention and combine it with context
information in a second search step. Using additional attributes an SVM then re-ranks the result
of this search and estimates if a concept is not covered in Wikipedia. We give a unified view
over the different performance measures used in other state-of-the art approaches and evaluate
our approach on five benchmark corpora. On these corpora, our method has the most stable
performance yielding similar or better results compared to other approaches.

KEYWORDS: Concept and Entity Disambiguation, Wikification, Natural Language Processing,
Search and Ranking.

2243

1 Introduction

A major aim of search engines is the retrieval of information about concepts which may be
any existing object, e.g. person, thing, notion, etc., with a designation or name. In natural
language text however, many concepts share the same name and one concept may be referenced
by different names. Consequently, a search based on pure string matching often yields many
irrelevant results, such as a web page on Superman’s hometown when indeed the user seeked
information on the physicist Metropolis. Concept disambiguation which assigns the correct
sense to the mention of a concept in a given context, can reduce the number of irrelevant results
or group results by sense. The disambiguation of concept mentions is required in applications
such as semantic search, but also many other areas like knowledge base construction or data
base curation.

Recent work, for example (Ratinov et al., 2011), resolves name ambiguity by linking the
name mention against the corresponding Wikipedia article, thus often terming the problem
Wikification. For that, a name mention together with the features of its neighboring context
is compared to the corresponding features of the Wikipedia article. If the difference between
these features is small, a Wikipedia concept is linked to the mention and thus the name’s
ambiguity considered as resolved. A large number of features have been evaluated for concept
disambiguation. Starting with simple bag-of-word descriptions more advanced features were
developed characterizing the sense of surrounding words, e.g. topic model indices (Pilz and
Paass, 2011). But often, approaches remained local and did not exploit the global coherence of
candidate concepts.

In this paper we follow the global approach by simultaneously considering all mentions of an
input document and jointly exploiting relations between potential concepts. We present a novel
measure for concept coherence. We encode this information in a search index allowing fast and
comprehensive access to the relational information present in large knowledge bases such as
Wikipedia. One deficit of most current concept disambiguation methods is that they do not
thoroughly handle the case when a concept mention is not covered by Wikipedia (nil-concepts).
We use an SVM classifier to fine-tune the assignment and to detect nil-concepts. We discuss
the various evaluation measures presented in other papers and apply our algorithm to five
benchmark corpora. While fast and memory efficient, our algorithm yields similar or better
results than its competitors and has the most stable performance of the compared methods.

2 Related Work

Concept disambiguation is closely related to the task of word sense discrimination (Schuetze,
1998), but in addition links the concepts to entries in a reference knowledge base which is
often Wikipedia. Standard or local approaches like Cucerzan (2007) build word and feature
vectors over the words occurring in a context window around the concept mention m and
cluster them using similarity measures such as cosine similarity. Bunescu and Pasca (2006)
correlate context words with Wikipedia categories to formulate a word-taxonomy kernel. This
is used in a Ranking SVM which generates a ranked list of plausible Wikipedia concepts for a
given context of a name mention m. Pilz and Paass (2011) showed that topic model indices
instead of bag-of-word approaches provide a more informative context representation with
better generalization properties.

Recent work on concept disambiguation follows a more global approach, where all concept
mentions in a document are disambiguated collectively using a coherence measure that is usually

2244

derived from the graph built over an existing knowledge base. Kulkarni et al. (2009) formulate
concept assignment as an optimization problem that assigns concepts to mentions such that the
mention-concept compatibility and global concept-concept coherence is maximal. They solve
the problem using local hill-climbing and linear program relaxations, yielding favorable results
on the MSNBC corpus (Cucerzan, 2007) as well as their own dataset IITB. Han et al. (2011)
propose a graph-based collective concept linking method which can model and exploit the global
interdependence between different assignment decisions. Ratinov et al. (2011) present the
disambiguation model GLOW, a global approach that employs the normalized Google distance
(Milne and Witten, 2008) as well as pointwise mutual information to measure the relatedness
between concepts. To refine the assignment decision they additionally exploit the conditional
probability that a concept belongs to a mention based on Wikipedia link information. Hoffart
et al. (2011b) introduced AIDA which employs YAGO2 (Hoffart et al., 2011a) as an entity
catalog and a rich source of entity types and semantic relationships among entities. They build
a graph containing mentions from the input text and candidate concepts from the reference set
as nodes. The edges are weighted capturing context similarities as well as coherence between
Wikipedia concepts. Using a greedy algorithm they identify a dense sub-graph that contains
exactly one mention-concept edge for each mention, yielding the most likely disambiguation.

We propose an approach that is based on a search index. The usefulness of search indices for
concept resolution was also observed by Song and Heflin (2011) who present an efficient and
scalable system for concept resolution on structured data. Opposed to our objective which is
concept resolution in unstructured data, exploitable attributes are very different and often carry
an inherent distinctive function. In the sequel, we give the details of our approach and compare
it to a representative selection of four recent works showing that it is the most stable method
yielding similar or better results on different benchmark corpora. Although all prior work shows
improved results on benchmark corpora, none of them handles nil-concepts thoroughly. For
specific tasks this might be appropriate, but in a more general setting this means a drastic
simplification as most entities (e.g. persons) are not covered by Wikipedia.

3 Disambiguation as a Search Problem

We study the task of Wikification, i.e. concept disambiguation using Wikipedia as a reference
knowledge base. We use the English version of Wikipedia1 and represent it in the Lucene2

search index Wiki that allows efficient search over the concepts contained in Wikipedia.
We resolve the ambiguity of a mention m in a text document through its assignment to a unique
concept c(m) described in Wikipedia, i.e. c(m) ∈ Wiki = {c1, ..., c|Wiki|}. If the true concept
for m is not covered by an article in Wikipedia, then c(m) ∈ C0, the set of nil-concepts that
we do not distinguish. Basically, Wiki contains all Wikipedia concepts apart from meta pages.
We also excluded disambiguation pages since we assume that an assignment to such a page
does not solve the task of name disambiguation. Furthermore, the varying usage of Wikipedia
mark up language led to un-processable documents that are also not contained in Wiki. Thus,
in the following, we distinguish between linkable concepts contained in the index c ∈ Wiki,
nil-concepts c0 originally not covered by Wikipedia and ignored or missing concepts c̃0 /∈Wiki.

We assume the input to be a natural language text document with a collection of mentions
M= {m1, . . . , mk} to disambiguate. In the case of the benchmark corpora, these mentions are
given. In other real-world applications, they can be provided by an automatic annotator, such

1Downloaded on September 1th, 2011.
2An open source search engine for large scale text collections, http://lucene.apache.org/

2245

as a noun phrase or named entity recognizer (NER). Note that we do not restrict the mentions
to named entities (persons, locations, etc) but also treat general concepts such as bank or tree.

To improve the individual disambiguation performance for each mi , we simultaneously consider
all mentions M to determine the best fitting candidate concepts bestFit(mi). We propose a
disambiguation process that uses the search index Wiki to generate candidate concepts, as
well as a supervised SVM classifier to adjust the ranking of these candidates and to detect
nil-concepts c0. This process consists of the following steps that are described in more detail in
the following sections:

Step 1 Run a collective search using an ensemble query with terms from all mentions
m1, . . . , mk to create sets of potential candidates Ci ⊂Wiki for each mi (Alg. 1.1-1.10).

Step 2 Compute the cross coherence over all candidates in the sets C1, . . . ,Ck to find related
concept sets (c.f. Eq. 4), Alg.1.11-1.13).

Step 3 Determine the bestFiti ∈ Wiki for each mention mi , based on the maximum cross
coherence of each candidate in Ci (c.f. Eq. 6, Alg. 1.15).

Step 4 For each mi combine the attributes of mi and bestFiti into one query and search Wiki,
which yields a set of improved concepts C∗i ⊂Wiki (Alg. 2.2-2.12).

Step 5 Apply an SVM classifier to all C∗1, . . . ,C∗k for re-ranking and nil-concept detection,
resulting in the final predicted concept ĉi ∈ C∗i ∪C0 for each mi (c.f. Sec. 4.2, Alg. 2.17).

3.1 Concept Attributes in the Wiki index
Using the information stored in the article itself as well as Wikipedia’s hyperlink graph, we
enhance the representing concept c ∈Wiki with the searchable fields outlined in this section.

Name fields Special attention is given to name fields, since for unambiguous mentions the
name is often sufficient for linkage. Each concept has a unique titleLong field which contains
the title of the associated Wikipedia article. From this, we generate additional fields. The
title field stores the part of titleLong that is not used as a disambiguation term (usually a
qualifying term in parentheses). Abbreviations are generated via a simple heuristic and stored in
separate abbreviation fields. As an example, the index concept representing the Wikipedia
article Michael Jordan (footballer) has the fields: (titleLong, "Michael Jordan (footballer)"),
(title, "Michael Jordan"), (abbreviation, "MJ"), (abbreviation, "M. Jordan") etc.

Furthermore, we add the redirect information from the Wikipedia redirect dump to the corre-
sponding index concepts. In general, redirects provide a large resource of synonyms. In some
cases, however, they can also be misleading, since they do not necessarily compose equivalence
relations. For instance, Ulrich Merkel is a redirect for German chancellor Angela Merkel, but
actually is the latter’s spouse. Still, we consider all redirects without pre-processing, since a
more well defined redirect scheme would already require a disambiguation step. The index
concept for Angela Merkel is hence enriched with the field (redirect,"Ulrich Merkel").

Inspired by Ratinov et al. (2011), we create meantBy fields that, similar to redirects, provide
concept names that may not be found in the article text itself. In a pre-processing step, we
iterate over all articles in Wikipedia and analyze the pairs (c, m) of link target concept c and
associated anchor text m. For each pair (c, m) we record the frequency of occurrence #(c, m)
and estimate the concept-mention probability p(c|m) through

p(c|m)≈ #(c, m)∑
ci∈Wiki #(ci , m)

. (1)

2246

For instance, we obtain p(Japan|"Japan") ≈ 0.97. Note that these are not true probabilities,
since due to parsing errors or too aggressive stemming, we may observe that

∑
i p(ci |m) 6= 1.

Lucene ranks the search results for a query according to a product of the following factors: the
term frequency of the term x in the document, its inverted document frequency idf(x), a weight
factor boost(x) and the document’s length norm (Hatcher et al., 2010). For the final index
creation, we use the above probabilities as boosts on the meantBy fields: the index concept for
Japan has the field (meantBy,"Japan", 0.97), where the field’s searchable content is the surface
form "Japan" and the field’s boost is the estimated probability value p(c|m) = 0.97. To keep
memory consumption as low as possible, we create an auxiliary index to retrieve these values
efficiently.

In the following we refer to the above fields as name fields. Name fields allow queries of the form
(title, m), (redirect, m) or (meantBy, m). In our experiments, we will show results when
additional context information is ignored and only name fields are used for disambiguation.

Context fields Assuming that each concept is thoroughly depicted in the article’s main text,
we use this context (except stop words) in a designated context field. This allows us to place
queries of the form (context,"w"), where "w" may be the mention itself or any other key word
extracted from the input document.

Type fields For all Wiki concepts that can be automatically aligned with YAGO (Suchanek
et al., 2008), we add the type information extracted from YAGO, such as person, location, etc..
If the mention text has been tagged as a named entity by a NER, we can use this additional
meta information to place a more distinctive query, for example a query (type,"person").

Both context and type fields can be queried separately, and we will show the influence of context
and type usage in our experiments.

Link fields Relational information is an important factor for concept resolution and
Wikipedia’s link structure provides a straightforward resource to model relations among con-
cepts. We store all outlinks {c→ c′} of a Wikipedia concept in the fields (linkText,"m") of the
respective index concept c, where "m" is the anchor text used for the outlink target concept c′.
These fields are used to compute the relatedness among concepts (c.f. Eq. 3) but also queried
in the collective search step of our disambiguation algorithm (Alg. 1.1-1.2).

3.2 Mention-specific Attributes

To create specific disambiguating attributes for each mention mi , we first extract the mention’s
name, type and context attributes from the input document.

Name and type attributes Having collected all mentions from the input document, we keep
the name (i.e. the surface form) and if present, the type information as attributes for each mi .
We then run a mention expansion that searches for mentions that are token-wise contained in
previous mentions. If the type of two mentions is the same, the shorter mention is expanded
to the longer one. For example, if M={("Al Gore", per), ("Gore", per), ("Gore Bay", loc)}, the
result of mention expansion is M ={("Al Gore", per), ("Al Gore", per), ("Gore Bay", loc)}. If the
NER did not identify the type of "Gore", we still assume that it refers to the person "Al Gore",
since the abbreviation of person names is much more common compared to the abbreviation

2247

of location names. In our experiments, we found that the expansion of mention names has a
positive impact on disambiguation performance.

Context attributes We use both local as well as document level context information. The
local context is a [2, 2] noun-window around the mention without stop words. Additionally, we
extract tf-idf ranked key words from the document text and keep the 20 words with highest
tf-idf value as document key words. This set is then localized for each mi: from the joint set of
local context words and document key words, we keep only those words that appear at least
once in the text of an index concept whose title matches mi . In the same way, we compute
key words from the headline of the input document, assuming that headline information is
especially important.

Topic information Additionally to the pure word-based context information, we use an LDA
topic model (Blei and Lafferty, 2009) to infer the most likely topic distribution of the input
document. The LDA model was trained with Z = 500 topics on the CoNLL training corpus (c.f.
Sec. 5) where words are the surface forms of the named entities appearing in the documents.
We then apply this topic model to the input document giving local context words of mention mi
a five-fold weight. This yields a specific topic distribution topic(mi) for each mention mi .

Name, type and context attributes of the input mentions can be matched to the according index
fields using specific queries. Topic information is used for relatedness computation as well as a
distinct feature for the Ranking SVM.

4 Disambiguation via Search and Ranking

Having defined the components of our search index and the input to our system, we explain the
search process for Wikification in this section. The first part of our disambiguation procedure is
to jointly treat all mentions m1, . . . , mk in the input document to generate a bestFit candidate
for each mi . The algorithm for this is depicted in Alg. 1

4.1 bestFit concepts from collective search using ensemble queries

Our assumption is that Wikipedia articles containing many of the input mentions are likely to
be of a similar content as the input document. From the outlink target concepts these articles
provide, we can automatically generate good disambiguation candidates concepts (step 1).

To retrieve these candidate concepts, we create an ensemble query that jointly treats the names of
all mentions mi and thus exploits the co-occurrence of mentions as link texts (see Alg. 1.1). This
query then contains one query term (linkText, mi) per mention mi . Using this query, a search
in Wiki then yields a ranked list of concepts Ccol l that collectively contain the input mentions mi
as values in their linkText fields (Alg. 1.2). Lucene ranks each concept ccol l ∈ Ccol l with a
score sL , based on the number of matches ccol l has on the fields (linkText, mi). The higher
the ranking of ccol l , the more mentions the concept ccol l contains as link text.
We keep the top 30 concepts in Ccol l from which we extract the collection of outlink targets C→.
Next, we endow each outlink target concept c ∈ C→ with a weight w(c) that is the sum over the
concepts’ scores in which it appears as an outlink target, i.e. ccol l → c (Alg. 1.4):

∀c ∈ C→ : w(c) =
∑

ccol l∈Ccol l

δcsL(ccol l), δc =

¨
1 iff ccol l → c,

0 else.
(2)

2248

Since the collection C→ may contain a huge number of concepts appearing only once as an
outlink target, we keep only the top 100 candidate concepts in C→, that have the highest
weights w(c).
Next, we need to relate the elements in the candidate concept set C→ to the input mentions.
More specifically, we analyze for each c ∈ C→ if either the title or the redirect of c contains the
text of mention mi . If so, we add c to the candidate set Ci for mention mi (Alg. 1.7 ff). Note
that one c can then be contained in multiple candidate sets. The result of the collective search
is the collection {Ci}ki=1, where each Ci is a set of candidate concepts for mention mi .

Our intuition is that concepts mentioned jointly in an input document should be related. To
model the relatedness between Wikipedia concepts, we follow the approach of Milne and Witten
(2008) who define the normalized Google distance (NGD) of two concepts ci and c j as

NGD(ci , c j) =
log
�
|{c′→ ci} ∩ {c′→ c j}|

�
− log

�
max(|{c′→ c}|, |{c′→ c j}|)

�

log(|{c′→ ·}|)− log
�

min(|{c′→ ci}|, |{c′→ c j}|)
� , (3)

where {c′ → ci} is the collection of all concepts c′ that link to ci (i.e. the inlinks of ci) and
|{c′→ ·}| is the total number of links in Wikipedia. In the case that the concepts ci and c j share
no inlinks, i.e. {c′→ ci} ∩ {c′→ c j}= ;, we define NGD(ci , c j) = 0.

Using the above NGD, we can measure the relatedness of two candidate concepts. To account
for the collective fitness of a set of candidates, we introduce cross coherence which basically
states how well a concept ci j ∈ Ci fits to the other candidate concepts {Cl}kl=1. More formally,
we define the cross coherence of a candidate concept ci j and a collection of concepts {Cl}kl=1 as

cross coherence(ci j , {Cl}kl=1) =
1

k

k∑
i′=1

i′ 6=i;Ci 6=Ci′

1

|Ci′ |
∑

c′∈Ci′
ci j 6=c′

∆NGD(ci j , c′), (4)

with k the number of mentions in the document, i the index of mention mi and j the index
over the candidate concepts for mi . The second sum is the average NGD (Eq. 3) of ci j to the
concepts in another candidate set Ci′ which is again averaged over all candidate sets by the first
sum. Cross coherence can be interpreted as the average distance of a concept to a collection of
concepts and has range [0,1], where 0 denotes a completely unrelated concept. We compute
cross coherence in step 2 (Alg. 1.11-1.13) to determine the relatedness of candidates extracted
in the previous step 1.

The factor ∆ in Eq. 4 serves as an additional relatedness weighting between two concepts.
While both Milne and Witten (2008) and Ratinov et al. (2011) used the standard NGD with
∆= 1, we analyze three additional weighting schemes. The scheme ∆cosNGD weighs the NGD
via the cosine distance cos(ci , c j) between the term vectors of two article texts. Additionally, we
introduce ∆topicsNGD that uses the thematical distance between two article link text collections.
More specifically, we use a LDA topic model to infer the topic probability distribution over the
words contained in a concept’s outlink collection {c→ c′} (for more details on the topic model,
see 3.2). We define ∆topics as the Hellinger distance between two concepts’ outlink text topic
probability distributions:

∆topics(ci , c j) = 1−
Z∑

z=1

p
topicz(ci) · topicz(c j), (5)

2249

where topic(ci) and topic(c j) are the topic probability distribution vectors for the link texts of
the concepts ci and c j and Z is the number of topics in the LDA model. The subtraction from 1
assures that ∆topics = 0 iff topic(ci) = topic(c j) and is required to maintain the interpretation
of cross coherence as a distance. The last relatedness measure we analyze is cosine distance
without NGD.

In step 3, we compute the final result of the collective search procedure, i.e. the bestFit concepts.
We define the bestFit candidate concept for each mention mi by the product of the weight w(c)
(computed in step 1) and c’s cross coherence value (computed in step 2):

bestFiti = arg max
c∈Ci

(w(c) · cross coherence(c)). (6)

When the concept-mention association in step 1(c) yields no result, no bestFit candidate can
be assigned. Note that if we used the triple of w(c), cross coherence(c) and p(c|m), high-prior
candidates are likely to dominate, even if their coherence is low.

Algorithm 1: Collective search for bestFit candidate generation
Input: List of mentions M= {m1, . . . , mk}
Output: A bestFiti candidate for each mi ∈M, i.e. {(m1, bestFit1), . . . , (mk , bestFitk)}

1.1 query = (linkText, name(m1))∧ . . .∧ (linkText, name(mk)) // step 1(a): create ensemble query using all mi
1.2 Ccol l = search Wiki using query
1.3 C→ =

⋃
ccol l∈Ccol l

{ccol l → c′} // collect outlink target concepts from collective search result Ccol l

1.4 for c ∈ C→ do // step 1(b): compute concept weights
1.5 compute concept weight according to Eq. 2
1.6 keep only top 100 link target concepts in C→
1.7 for mi ∈M do // step 1(c): relate concepts to mentions
1.8 initialize candidate set Ci = ;
1.9 for c ∈ C→ do

1.10 add c to candidate set Ci if title or redirect of c contains mention text mi

1.11 for i = 1, . . . , k do // step 2
1.12 for ci j ∈ Ci do
1.13 compute cross coherence according to Eq. 4
1.14 for mi ∈M do // step 3
1.15 find bestFit concept according to Eq. 6
1.16 return {(m1, bestFit1), . . . , (mk , bestFitk)}

4.2 Combining Search Results and Supervised Learning

The final disambiguation algorithm Alg. 2 has two steps (step 4 and 5). First, we run a search
on Wiki to create ranked sets of candidate concepts C∗1, . . . ,C∗k with one set C∗i ⊂ Wiki per
mention mi . Second, a pre-trained SVM is applied to re-rank this output and detect nil-concepts.
The result is the disambiguated list of input mentions, where each mention mi is associated
with a unique concept ĉi ∈Wiki∪C0, i.e. {(m1, ĉ1), . . . , (mk, ĉk)}.
In the search part (step 4), we restrict the size of each C∗i (i.e. the number of search results) to
5, which we experimentally found to be sufficient. Initially, we also require each concept c∗i ∈ C∗i
to have at least 5 inlinks. This inlink prior aims at filtering out rarely referenced concepts. Then
we run separate searches using only the titleLong, title and redirect fields of the index
documents to find direct matches between mention mi and concepts c ∈Wiki (Alg. 2.3). If
such a match c̃ has been found, we give an additional query boost for the attributes of c̃, that is
the title of c̃ is used as an additional query term with a five times higher weight than the other

2250

query terms. For the bestFit concept we proceed analogously.
If either c̃ or bestFiti has a lower number of inlinks than initially assumed, the inlink prior is
adapted automatically (Alg. 2.6). Alternatively, if the maximum returned score of the first
search (Alg. 2.10) is less than a threshold τ = 1, we re-run the search without the prior
constraint (Alg. 2.12). After prioritisation on the results from direct and collective search, we
add each mention’s individual attributes to account for type and context information. In our
experiments, we evaluate searches of different coverage, more specifically searches using

• name attributes, i.e. we add queries only on name fields (Alg. 2.7)
• name and type attributes, i.e. we extend the query using the mention’s type (Alg. 2.8)
• name, type and context attributes, i.e. we additionally query context fields (Alg. 2.9).

Using this comprehensive query, the search result in Wiki is a either a set of ranked concepts
C∗i or an empty set, in which case the search did yield no result. We collect all concept sets C∗i
into an overall set {C∗i }ki=1 on which we apply a linear ranking SVM (step 5). Each concept c∗i
is represented by a vector of features that are computed both from the index ranking sL(c∗i) as
well as in relation to the input mention. We use the ranking in different feature representations:
sL,log(c∗i) = log sL(c∗i), sL,norm(c∗i) =

sL(c∗i)∑
c∗′i ∈C∗i

sL(c∗
′

i)
, sL,rank(c∗i) =

sL(c∗i)
arg max sL(c∗i ∈C∗i)

. Additional features

are the concept-mention probability p(c∗i |mi), the cross coherence of c∗i computed as in 4 but
now in relation to the improved concept set {C∗i }ki=1, the Hellinger distance over the topic
distributions topic(m) and topic(c∗i). As proposed by Bunescu and Pasca (2006), we use a
feature f0 for nil-concepts c0 that is required for the automatic detection of these nil-concepts.

We train the Ranking SVM on the CoNLL train corpus which is annotated with Wikipedia
concepts as well as nil-concepts. Positive and negative examples are extracted in the same
way as we generate disambiguation candidates. For instance, a positive example is the correct
candidate c∗i for a mention mi and the negative examples are all other c∗i ∈ C∗i for that mention.
Additionally, if not already present when the search did yield no result, we add a candidate c0
for each mention whose only feature is f0.

In the final step 5 we use the trained SVM to re-rank the index output (Alg. 2.17). While the
index search often provides a reliable candidate, implicit features such as coherence, concept-
mention probability and topic similarity are only partially graspable by Wiki and may induce a
SVM re-ranking.

5 Benchmark Corpora

Recent work published a variety of benchmark corpora for Wikification, most of them consisting
of English newspaper articles from different time periods. Table 1 gives an overview of the
corpora treated in this paper. The major difference between these corpora is the annotation
scheme. Cucerzan, Ratinov et al., Milne and Witten and Kulkarni et al. treated mentions of all
types on MSNBC, ACE, AQUAINT3 and IITB4 respectively. Hoffart et al. considered only named
entity mentions in the CoNLL corpus5. Additional to differing mention types, there are also
annotation differences that render comparison difficult. For instance, in CoNLLb the mention
"Taiwan" is linked to Republic of China, while in ACE it is linked to Taiwan. We also observed

3MSNBC, AQUAINT and ACE are publicly available and described in detail in (Ratinov et al., 2011).
4IITB is publicly available and described in detail in (Kulkarni et al., 2009).
5CoNLL is publicly available and described in detail in (Hoffart et al., 2011b), we consider CoNLL testb called

CoNLLb in the following.

2251

Algorithm 2: Disambiguation algorithm
Input: List of mentions M= m1, . . . , mk , where each mi has name, type, context & bestFit attributes.
Output: List of disambiguated mentions M= {(m1, ĉ1), . . . , (mk , ĉk)}

2.1 for mi ∈M do // step 4
2.2 pin = 5 // initialize inlink prior
2.3 c̃ = directMatch(mi) // c.f. Sec. 4.2
2.4 if c̃ 6= ; then add boosted query terms for attributes of c̃
2.5 if bestFiti 6= ; then add boosted query terms for attributes of bestFiti
2.6 pin =min

�
pin(c̃), pin(bestFiti), pin

�
// reduce prior on inlinks

2.7 query.addNameQuery(name(mi)) // add name attributes to the query terms
2.8 if type then query.addTypeQuery(type(mi)) // add type attributes to the query terms
2.9 if context then query.addContextQuery(context(mi)) // add context attributes to the query terms

2.10 C∗i = search Wiki using query and inlink prior pin
2.11 if maxc∗j ∈C∗i sL(c∗j)≤ τ then

2.12 C∗i = search Wiki using query without inlink prior
2.13 if C∗i 6= ; then {C∗i } ∪C∗i else {C∗i } ∪ c0 // add C∗i to concept set {C∗i } or add c0 if the search yields no results
2.14 for i = 1, . . . , k do
2.15 for c∗i j ∈ C∗i do
2.16 compute cross coherence(c∗i j ,{C∗l }kl=1) according to Eq. 4 and set other features (c.f. Sec. 4.2)

2.17 ĉi = arg maxc∗i j∈C∗i
SVM rank(c∗i j) // step 5: rank candidates by trained SVM for final concept prediction

2.18 return M= {(m1, ĉ1), . . . , (mk , ĉk)}

corpus #documents #Wikipedia concepts (unique) #c0 #c ∈Wiki #c̃0 /∈Wiki �|M| per doc.

MSNBC 20 658 (279) 97 640 18 37.75
ACE 36 257 (185) 49 254 3 8.5
AQUAINT 50 727 (572) 0 702 25 14.54
CoNLLb 228 4363 (1527) 0 4317 46 19.13
IITB 104 11185 (3755) 0 9439 1746 107.54

Table 1: Benchmark corpora with number of documents, the number of (unique) Wikipedia
concepts and nil-concepts c0, the number of linkable concepts c ∈Wiki, the number of Wikipedia
concepts c̃0 missing in Wiki and the average number of mentions per document.

some inconsistencies in the CoNLL training corpus that are presumably due to inter-annotator
disagreement (20%) or candidate selection: while the phrase "European Union" is linked to the
appropriate Wikipedia concept, it’s acronym "EU" is linked to c0. While Hoffart et al. neglected
nil-concepts for evaluation on CoNLLb, these inconsistencies might be harmful for the SVM
training of our approach. Moreover, CoNLLb contains many news articles about sport events.
These are often not truly natural language texts, but more table-like. These variations make it
challenging to apply the same system to different corpora.

For all corpora we proceed as follows: given the input mention, we first check if the ground truth
concept is linkable, i.e. contained in our index. If this is not the case, but the mention is linked
to some c 6= c0, we change the ground truth to c̃0 which is always considered during evaluation.
Since we also resolve redirects, the number of distinct concepts in Tab. 1 may differ from
the one published in the respective paper. Note that the overall number of mentions remains
unchanged. The procedure is the same for concepts that do no longer exist in Wikipedia.
For a consistent set of named entity tags, we run the Apache OpenNLP NER6 on all corpora.

6http://opennlp.apache.org/

2252

6 Performance Measures for Wikification

In the following, we discuss different Wikification evaluation techniques. While in many areas
performance measures are defined by the task at hand and used thoroughly by most authors, this
is not the case in the field of concept disambiguation or Wikification. Consequently, published
results are often hard to comparable.

Following Milne and Witten (2008), Ratinov et al. used Bag-of-Titles (BOT) evaluation which
compares the predicted set of titles (i.e. concepts) with the ground truth set of concepts,
ignoring duplicates in either set, and further utilizes standard Precision, Recall, and F1. For
discussion, we take the example from Ratinov et al. (2011). Let the ground truth be t ruth =
{("China", People’s Rep. of China), ("Taiwan", Taiwan), ("Jiangsu", Jiangsu}, with t ruthBOT =
{People’s Rep. of China, Taiwan, Jiangsu}. Assume the system predicts {("China", People’s Rep. of
China), ("China", History of China), ("Taiwan", c0), ("Jiangsu", Jiangsu)}, with associated BOT
predBOT = {People’s Rep. of China, History of China, Jiangsu}. According to Ratinov et al., both
Precision and Recall for predBOT are 0.66. Consequently, the nil prediction c0 for Taiwan is not
counted as a false positive, since we already observe History of China as a false positive, with
two true positives from People’s Rep. of China and Jiangsu resulting in P = 0.66.

The first remarkable point is the ignorance of duplicate concepts which obscures both erroneous
as well as correct predictions: if a concept appears 5 times in the ground truth annotation,
and the disambiguation model fails to resolve it correctly, the number of false negatives is
only 1 in BOT, whereas it would be 5 if all instances were considered. Analogously this holds
for the number of true positives. Second, nil predictions are not counted as false positives,
which renders Precision less comparable. In our implementation of BOT, we assume that the
sequential input order is taken into account.

The performance measure used by Hoffart et al. (2011b) is Mean Average Precision (MAP)
which is defined as MAP = 1

m

∑m
i=1 p@ i

m
, where p@ i

m
is the Precision at a specific Recall level.

Here, the model output is ranked according to the model’s confidence s, i.e. mention-concept
pairs with high model confidence are ranked at leading positions, pairs with low confidence at
late positions. Consider the following prediction {s(m3, c3) = 0.9, s(m2, c2) = 0.8, s(m1, c1) =
0.2}, that is sorted by some confidence s instead of order of appearance. If c1 is an incorrect
prediction, the associated Precision values are {p@1 = 1

1
, p@2 = 2

2
, p@3 = 2

3
}. According to

the above definition, the MAP of this example is 1+1+2/3
3

= 8
9
. If in contrast, we followed the

sequential input order, the MAP would be 0+1/2+2/3
3

= 7
9
. Note that the interpretation of Recall

differs from that in BOT since it is related to the position in the output list and not the number
of false negatives. In terms of BOT, the performance result for this example is P = R= 2

3
.

Assuming that incorrect predictions have in general a low confidence, MAP shuffles erroneous
predictions to the end of the ranked output list. Then the sum is dominated by correct predictions
(high confidence) at the top of the ranking, which are propagated through the whole list. This
is of great importance, if the number of mentions in a document is especially large. In our
implementation of MAP, the model confidence is represented by the SVM’s prediction, i.e. the
instance’s hyperplane offset.

The most crucial difference between current systems is the treatment of covered and uncovered
concepts. Hoffart et al. decided to ignore nil-concepts during evaluation and hence roughly
20% of the mentions. To compare our method with AIDA, we follow this restriction when
applying our method on CoNLLb and ignore nil-concepts for this corpus as well. Using the

2253

search coverage no bestFit bestFit via NGD bestFit via ∆topicsNGD bestFit via ∆cosNGD bestFit via cos(ci , c j)

mention (exp.) 87.69/94.55 86.83/94.70 88.12/95.58 88.96/95.94 86.73/94.44
+type 86.10/94.32 88.79/95.60 88.22/95.96 89.53/95.98 88.46/95.73
+context 86.43/94.30 89.50/96.10 89.30/96.60 89.95/96.54 89.20/96.45
+topics 87.59/95.16 89.47/96.46 89.50/96.48 89.95/96.81 89.60/96.67

� cross coherence 0.381 0.179 0.104 0.215

Table 2: F1BOT/MAP of our system on MSNBC for different configurations (all values in %).

search coverage no bestFit bestFit via NGD bestFit via ∆topicsNGD bestFit via ∆cosNGD bestFit via cos(ci , c j)

mention (exp.) 84.46/92.74 86.18/93.23 87.91/94.02 87.02/93.01 86.70/92.95
+type 83.30/91.62 87.23/93.43 87.75/93.51 87.18/93.21 87.23/93.10
+context 86.49/93.28 86.76/92.98 88.40/93.80 88.85/94.12 87.75/93.54
+topics 86.50/91.16 86.97/91.25 88.44/94.67 89.01/94.33 88.24/93.68

� cross coherence 0.354 0.139 0.096 0.211

Table 3: F1BOT/MAP of our system on ACE for different configurations (all values in %).

AIDA online version that treats nil-concepts, we can evaluate this system on the other corpora.
Kulkarni et al. also used a different evaluation scheme (KULF1) that is comparable to BOT but
takes incorrect nil predictions into account. For more details, we refer to the respective paper.

7 Evaluation

As most alternative approaches rely on different versions of large-scale knowledge bases, it is
practically not feasible to re-implement every competitor system. GLOW is publicly available,
but we decided against using it, since we could not reproduce the results published in (Ratinov
et al., 2011) and assumed that there was a crucial difference we could not solve7. Hence we
compare our system to the figures reported by Ratinov et al. (2011) both for GLOW as well as
the M&W system (Milne and Witten, 2008). For comparison with AIDA, we used the online
interface AIDAweb which was kindly provided to us by the authors8 and run on all corpora. To
give a unified view, we report the results for our system in all performance measures outlined
in the previous section.
We ran initial experiments on all corpora to evaluate the effect of the mention expansion
described in Sec. 3.2 and found that it increased F1BOT on all corpora by about 2%, when
only the mention’s name was considered in the search. We report the effect of different search
coverages and show that in many cases results can be improved when we extend searches
relying only the expanded mention name by additional type and context information. For all
coverages, we show the effect of bestFit configurations: weighting NGD with ∆topics, ∆cos and
replacing NGD by the cosine distance over article texts. The influence of the topic feature
computed from the Hellinger distance (Eq. 5) of (topics(mi), topics(c)) is reported as well since
it is computationally the most expensive SVM feature.

Tables 2 to 6 show the results obtained for the different configurations of our system. The
corresponding performance figures of of GLOW, M&W and AIDAweb are given in the text. For
MSNBC (Tab. 2), the best configuration of our system (complete coverage, topics, bestFit
candidate via ∆cosNGD) achieves a F1BOT of 89.95%, which is 15% higher than that of GLOW
(74.88%) and 20% higher than for M&W (68.49%). Also, the MAP of our system is with 96.81%
more than 25% higher than that of AIDAweb (69.52%). We found that the same configuration

7Thanks to Lev-Arie Ratinov for his useful comments on this.
8We use the most current version of July 30th, 2012.

2254

search coverage no bestFit bestFit via NGD bestFit via ∆topicsNGD bestFit via ∆cosNGD bestFit via cos(ci , c j)

mention (exp.) 84.77/94.50 84.71/94.83 85.07/94.47 85.45/94.65 84.53/94.65
+type 84.41/94.69 84.93/94.87 85.61/95.02 85.43/94.73 84.41/94.57
+context 84.81/92.92 84.50/93.83 84.19/94.10 84.59/93.70 82.95/93.36
+topics 86.81/91.97 84.46/91.97 84.33/93.87 84.94/93.53 83.20/93.55

� cross coherence 0.31 0.119 0.07 0.161

Table 4: F1BOT/MAP of our system on AQUAINT for different configurations (all values in %).

search coverage no bestFit bestFit via NGD bestFit via ∆topicsNGD bestFit via ∆cosNGD bestFit via cos(ci , c j)

mention (exp.) 84.89 85.03 85.71 85.75 85.12
+type 85.36 86.72 88.13 87.26 87.44
+context 86.04 88.23 89.25 88.70 88.80
+topics 87.56 88.65 89.32 89.13 89.12

� cross coherence 0.402 0.208 0.134 0.262

Table 5: MAP of our system on CoNLLb for different configurations (all values in %).

also yields the best result on ACE (Tab. 3). On this corpus, our system achieves a F1BOT of
89.01%, which outperforms GLOW (77.25%) and M&W (72.67%) by more than 12%. Also, the
MAP of our system is with 94.33% about 9% higher than that of AIDAweb (86.14%).
For AQUAINT (Tab. 4), the best configuration of our system is complete search coverage and
using the topic feature in SVM ranking. Here, bestFit candidate generation did not increase
performance. We argue that this is due to the rather low average cross coherence over the
ground truth concepts. Without the usage of collective information, our system achieves a
F1BOT of 86.81%, which outperforms GLOW (83.94%) and M&W (83.61%) by 3%. Note that
even the slightly worse results using collective search are higher. Also, the MAP of our system is
with 91.97% about 30% higher than that of AIDAweb (58.61%). For all of the above corpora, we
found that not using the SVM for candidate re-ranking and nil-concept detection reduces the
F1BOT of our system between 5 and 10%, which shows the usefulness of a supervised classifier.
For CoNLLb (Tab. 5), the best configuration of our system is the complete search coverage, the
topic feature in SVM ranking, and bestFit candidate generation via ∆topicsNGD. This corpus has
the highest avg. cross coherence over the ground truth concepts. Our system achieves a MAP of
89.32% (with corresponding F1BOT= 82.16%), which is only slightly better than the figures
published for AIDA (89.05%) but about 4% higher than that of AIDAweb (85.66%). Without
SVM application, the MAP of our system would be reduced to 86.70%. This indicates the
necessity of features that are not graspable by Wiki but available in SVM candidate re-ranking.
We found that on IITB (Tab. 6), the best results can be achieved when we use only name and
type based queries in combination with bestFit candidate selection via ∆topicsNGD. Although we
found that this corpus has the lowest avg. cross coherence over the ground truth concepts, the
collective search increases performance. We argue that this result is due to the very high number
of mentions per document, which has a diminishing effect on the avg. cross coherence. Our
system achieves a KULF1 of 75.26%, which is 5% better than the result published by Kulkarni
et al. (2009) (69.69%). Note that the performance of AIDAweb on IITB is only MAP=43.62%,
whereas the corresponding MAP of our system is 90%. We are aware that the performance
reported by Han et al. (2011) is with KULF1=78.95% about 4% higher than that of our system.
Still, even though our system was not tuned on specific data sets, we achieve a high performance
on all of the 5 different benchmark corpora. We argue that this makes our system the most
stable compared to other approaches both in terms of generalizability and applicability.

2255

search coverage no bestFit bestFit via NGD bestFit via ∆topicsNGD bestFit via ∆cosNGD bestFit via cos(ci , c j)

mention (exp.) 73.81/89.92 74.74/89.91 75.26/89.95 74.68/89.67 73.89/89.32
+type 73.96/89.93 74.90/89.94 75.10/90.00 74.85/89.68 74.08/89.40
+context 72.57/88.01 69.07/85.69 69.81/85.59 68.54/86.23 69.29/86.14
+topics 71.10/87.26 68.74/85.41 69.41/86.31 68.35/86.10 69.13/85.83

� cross coherence 0.224 0.087 0.041 0.112

Table 6: KULF1/MAP on IITB for different method configurations (all values in %).

To summarize, we observe for all corpora a positive correlation between the avg. cross coherence
of ground truth concepts and the effect of the collective search. The influence of confidence
sorting in MAP becomes obvious on MSNBC and ACE: while F1BOT differs only by 1%, the
associated MAP value can differ by 4%. This can be the case, when the average number of
mentions per document differs (8.5 on ACE and 37.75 on MSNBC).

The concept-mention probability p(c|m) is a very strong feature as often the name is sufficient
for disambiguation. This is most obvious on IITB, where the incorporation of context features
even decreased performance. We also found that this prior-like attribute can mislead the
SVM re-ranking on CoNLLb. This corpus contains many sport statistics that, for instance,
mention countries participating in a match. As an example, even though the bestFit Japan
National Football Team is correct due to high cross coherence, the SVM re-ranked the output
to Japan, since the concept-mention probability p(Japan|"Japan") = 0.97 is much higher than
p(Japan National Football Team|"Japan") = 0.0063. While Hoffart et al. (2011b) thus did not
always use this feature, we could not find an appropriate threshold for our system.

Especially for CoNLLb we found that our system suffered from annotation scheme differences.
While our system links mentions like "British" to concepts such as English language or British
people, the ground truth concept in CoNLLb is always United Kingdom. An investigation showed
that these annotations are often correct but in general depend on the gusto of the annotator.
Also, we observed for IITB that many ground truth concepts are disambiguation pages. These
are not contained in our index and thus treated as c̃0. For example, we observed a document on
sports mentioning the word "fitness" which was linked to the disambiguation page Fitness by
the IITB annotators. While our system predicted the suitable concept Physical Fitness, this was
still treated as an error since we relinked the disambiguation page Fitness to c̃0.

Conclusion

In this paper we described a novel algorithm for concept disambiguation through concept
assignment to Wikipedia articles. We exploit the coherence of Wikipedia concepts and take
into account a variety of features to perform the assignment. The algorithm also estimates if a
concept is not covered by Wikipedia. It turned out that the collective search is more efficient, if
the average coherence between the concepts is higher.

We analyzed different evaluation criteria and discussed their relative strengths and weaknesses.
We evaluated various configurations of our approach on five benchmark corpora and compared
the results to four competitor systems. For some benchmark data sets our system is dramatically
better than the other approaches, while for other corpora the differences are not so pronounced.
We observed that these benchmark corpora are not error free, which can limit their usability.
Except for one case our system always has better performance figures than the competitor
systems and therefore can be considered as a stable alternative ready for practical application.
In future work we will consider the assignment of concepts not described in Wikipedia.

2256

References

Blei, D. and Lafferty, J. (2009). Topic models. In Srivastava, A. and Saham, M., editors, Text
Mining: Theory and Applications. Taylor and Francis.

Bunescu, R. C. and Pasca, M. (2006). Using encyclopedic knowledge for named entity
disambiguation. In Proceedings of EACL, pages 9–16.

Cucerzan, S. (2007). Large-scale named entity disambiguation based on wikipedia data. In
Proc. 2007 Joint Conference on EMNLP and CoNLL, pages 708–716.

Han, X., Sun, L., and Zhao, J. (2011). Collective entity linking in web text: a graph-based
method. In Proceedings of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval (SIGIR ’11), pages 765–774. ACM.

Hatcher, E., Gospodnetic, O., and McCandless, M. (2010). Lucene in Action. Manning, 2nd
revised edition edition.

Hoffart, J., Suchanek, F. M., Berberich, K., Kelham, E. L., de Melo, G., and Weikum, G. (2011a).
Yago2: Exploring and querying world knowledge in time, space, context, and many languages.
In Demo paper in the proceedings of the 20th International World Wide Web Conference (WWW
2011).

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater,
S., and Weikum, G. (2011b). Robust disambiguation of named entities in text. In Conference
on Empirical Methods in Natural Language Processing, pages 782–792.

Kulkarni, S., Singh, A., Ramakrishnan, G., and Chakrabarti, S. (2009). Collective annotation
of wikipedia entities in web text. In 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Milne, D. N. and Witten, I. H. (2008). Learning to link with wikipedia. In Proceedings of the
ACM Conference on Information and Knowledge Management (CIKM’2008), pages 509–518.

Pilz, A. and Paass, G. (2011). From names to entities using thematic context distance. In
Proceedings of 20th ACM Conference on Information and Knowledge Management (CIKM),
Glasgow, UK.

Ratinov, L.-A., Roth, D., Downey, D., and Anderson, M. (2011). Local and global algorithms
for disambiguation to wikipedia. In ACL, pages 1375–1384.

Schuetze, H. (1998). Automatic word sense discrimination. Computational Linguistics - Special
issue on word sense disambiguation, 24:97–123.

Song, D. and Heflin, J. (2011). Automatically generating data linkages using a domain-
independent candidate selection approach. In Proceedings of International Semantic Web
Conference (ISWC), pages 649–664.

Suchanek, F., Kasneci, G., and Weikum, G. (2008). Yago - a large ontology from wikipedia and
wordnet. Elsevier Journal of Web Semantics, 6(3):203–217.

2257

