
Proceedings of COLING 2012: Technical Papers, pages 1681–1698,
COLING 2012, Mumbai, December 2012.

A Separately Passive-Aggressive Training Algorithm for Joint
POS Tagging and Dependency Parsing

Zhenghua Li1, Min Zhang2, Wanxiang Che1, Ting Liu1∗
(1) Research Center for Social Computing and Information Retrieval,

Harbin Institute of Technology, China
(2) Institute for Infocomm Research, Singapore

{lzh,car,tliu}@ir.hit.edu.cn, mzhang@i2r.a-star.edu.sg

ABSTRACT
Recent study shows that parsing accuracy can be largely improved by the joint optimization
of part-of-speech (POS) tagging and dependency parsing. However, the POS tagging task
does not benefit much from the joint framework. We argue that the fundamental reason
behind is because the POS features are overwhelmed by the syntactic features during the
joint optimization, and the joint models only prefer such POS tags that are favourable solely
from the parsing viewpoint. To solve this issue, we propose a separately passive-aggressive
learning algorithm (SPA), which is designed to separately update the POS features weights
and the syntactic feature weights under the joint optimization framework. The proposed SPA
is able to take advantage of previous joint optimization strategies to significantly improve
the parsing accuracy, but also overcome their shortages to significantly boost the tagging
accuracy by effectively solving the syntax-insensitive POS ambiguity issues. Experiments on
the Chinese Penn Treebank 5.1 (CTB5) and the English Penn Treebank (PTB) demonstrate
the effectiveness of our proposed methodology and empirically verify our observations as
discussed above. We achieve the best tagging and parsing accuracies on both datasets, 94.60%
in tagging accuracy and 81.67% in parsing accuracy on CTB5, and 97.62% and 93.52% on
PTB.

KEYWORDS: Part-of-speech Tagging, Dependency Parsing, Joint Models, Separately Passive-
aggressive Algorithm.

∗Corresponding author

1681

1 Introduction

Given an input sentence of n words, denoted by x = w1...wn, part-of-speech (POS) tagging
aims to find an optimal tag sequence t = t1...tn, where t i ∈ T (1 ≤ i ≤ n) and T is a
predefined tag set. POS tags are designed to represent word classes so that words of the same
POS tag play a similar role in syntactic structures. The size of T is usually much less than
the vocabulary size. Typically, POS tagging is treated as a sequence labeling problem, and
has been previously addressed by machine learning algorithms, such as maximum-entropy
(Ratnaparkhi, 1996), conditional random fields (CRF) (Lafferty et al., 2001) and perceptron
(Collins, 2002). Figure 1 gives an example sentence from Penn Chinese Treebank 5.1 (CTB5).
The lowest three rows present the n-best POS tags for each word, produced by a state-of-
the-art CRF model. Looking at the 1-best POS tags, we can see that the CRF model makes
four errors, i.e. de/DEC→DEG, ouwen/NR→NN, xiaoli/VV→NN, and liwupudui/NR→NN.
In fact, (DEC,DEG) and (NN,VV) ambiguities, which usually require long-distance syntactic
knowledge to resolve, are very difficult for the sequential labeling models.

�1 á2 193 �4 �5 '�6 °(7 H�8)if�9 �10

gang man 19 sui de ouwen xianzai xiaoli liwupudui .

just turned 19 years old who Owen now plays for Liverpool .

AD VV CD M DEG NN NT NN NN PU

JJ DEC NR JJ VV VV

AD JJ NR

ROOT

VMOD

NMOD

AMOD

VMOD

DEP

SUB

VMOD VMOD

P

Figure 1: An example from CTB5. The Pinyin transcriptions and English translations are
presented in the two rows below the Chinese sentence. We prune out the implausible POS tags
according to the marginal probabilities (see Section 4.1) and list the top three candidate POS
tags in the lowest three rows (incorrect POS tags in grey color and correct ones in black color).

Dependency Parsing maps a natural language sentence into a structural dependency tree con-
forming to a predefined dependency grammar, as depicted in Figure 1. A dependency tree is
denoted by d = {(h, m, l) : 1 ≤ h ≤ n, 1 ≤ m ≤ n, l ∈ L}, where (h, m, l) means a dependency
from the head word (also called father) wh to the modifier (also called child or dependent) wm
with a dependency label l, and L is the label set. Dependency labels are used to indicate
the syntactic or semantic relation between the two words. For instance, the dependency (8, 6,
SUB) in Figure 1 means ouwen is the subject of xiaoli.

Data-driven dependency parsing models make heavy use of POS tags to compose supporting
features, since it leads to severe data sparseness problem if only lexical features are used.
However, POS tagging errors significantly degrade the parsing accuracy by about 6% (see Table
4 where, for example, due to the error of xiaoli/VV→NN, our pipelined parsing model fails to
recognize xiaoli as the predicate of the sentence and returns a fully unreasonable structure).

Recently, there has been increasing interest in joint modeling of Chinese POS tagging and

1682

dependency parsing (Li et al., 2011; Hatori et al., 2011; Bohnet and Nivre, 2012), motivated
by the intuition that the two individual tasks should help each other. Their work demonstrates
that the joint models can substantially boost the parsing accuracy. In contrast, the tagging
subtask does not benefit much from the joint framework. (Li et al., 2011) show that the graph-
based joint models lead to large decrease in the tagging accuracy, whereas (Hatori et al., 2011)
and (Bohnet and Nivre, 2012) find small gains in the tagging accuracy with transition-based
joint models (see Table 4). This is contradictory to the intuition that better syntactic structure
should help POS disambiguation. The detailed error analysis in (Li et al., 2011) show that
their joint models are helpful in resolving syntax-sensitive POS ambiguities like {VV,NN} and
{DEC,DEG}, but become very weak in disambiguating {NN,NR} and {NN,JJ} which usually
play similar roles in syntactic trees.

We believe that one possible reason is that the graph-based joint models of (Li et al., 2011) is
dominated by the syntactic features. Looking deeper into their joint models, we find that on
average, the score corresponding to the POS features only is 1/50 of the score of the syntactic
features in a returned joint result. In other words, the POS features have little impact on
determining the best joint result. Therefore, the joint models prefer such POS tags that are
more helpful and discriminative solely from the parsing viewpoint.

To address this issue, this paper proposes a variant of the passive-aggressive (PA) online train-
ing algorithm (Crammer et al., 2003), which we name as separately passive-aggressive algo-
rithm (SPA). SPA separately updates the POS feature weights and the syntactic feature weights
and naturally raises the weights of the POS features under the joint optimization framework.
As a result, SPA can make better use of the discriminative power of the POS features in resolv-
ing the syntax-insensitive POS ambiguities, leading to a large tagging accuracy improvement.
On the other hand, the improved tagging accuracy can further help parsing. Specifically, we
make the following contributions.

• We propose a separately passive-aggressive training algorithm for joint POS tagging and
dependency parsing. Empirically, we compare SPA with averaged perceptron (AP) and
PA from the perspective of the model score, showing that SPA is more suitable for the
joint models. Experimental results demonstrate that SPA outperforms AP and PA in both
the tagging and parsing accuracies. More importantly, SPA significantly improve both
the tagging and parsing accuracies over the pipelined baselines.
• We present the first feature-rich graph-based joint model for POS tagging and labeled

dependency parsing. We conduct experiments on two versions of CTB5 and achieve the
best tagging and parsing accuracies on both datasets. Especially, our joint model trained
with SPA achieves a tagging accuracy of 94.7%, largely outperforming the 93.9% of the
baseline CRF model.
• We also conduct experiments on PTB to find out the effect of joint modeling on English.

Thanks to relatively richer morphologies, English POS tagging achieves much higher
accuracy than Chinese (97% vs. 94%). Therefore, English dependency parsing suffers
less error propagation problem than Chinese. Nevertheless, we still find significant gains
from the joint model. The tagging accuracy and the parsing accuracy increase by about
0.5% and 0.4% respectively. Our joint model achieves the best tagging and parsing
accuracies on this dataset as well.
• We present the first work that conducts extensive studies on the effect of labeled de-

pendency parsing. We find that dependency labels consistently improve the unlabeled
parsing accuracy. Especially, the unlabeled attachment score (UAS) can be boosted by

1683

0.6-0.7% on the two Chinese datasets.

2 Related work

This work is most closely related to (Li et al., 2011) who present the first work on joint models
for Chinese POS tagging and unlabeled dependency parsing. Similar to us, their joint models
are based on graph-based dependency parsing. They find that the joint models largely outper-
form the pipeline models in the parsing accuracy but lead to substantial tagging accuracy drop.
Compared with their work, we propose a better training algorithm for the joint models that
can improve both tagging and parsing accuracies. In addition, our joint model adopts richer
features and handles labeled dependency parsing.

(Hatori et al., 2011) propose the first transition-based joint model for Chinese POS tagging
and unlabeled dependency parsing and gain large improvement in the parsing accuracy. How-
ever, their joint models only slightly improve the tagging accuracy over a sequential tagging
model. (Bohnet and Nivre, 2012) propose a transition-based joint model which can handle la-
beled non-projective dependency parsing. They conduct experiments on a variety of languages
including Chinese, English, Czech, and German. Similarly, their joint model largely improves
the parsing accuracy but only slightly increases the tagging accuracy. Differently, we are the
first work on joint POS tagging and dependency parsing that achieves large improvement in
the tagging accuracy.

(Smith and Eisner, 2008) apply loopy belief propagation (LBP) to dependency parsing and
points out that LBP can naturally represent POS tags as latent variables so that the POS tags
can be inferred jointly with the parse. (Lee et al., 2011) extend the LBP based approach of
(Smith and Eisner, 2008) and study joint morphological disambiguation and dependency pars-
ing for morphologically-rich languages including Latin, Czech, Ancient Greek, and Hungarian.
For these languages, morphological analysis requires the disambiguation of POS tags, gender,
case, etc. They show that the joint model can well capture the interaction between morphology
and syntax and achieve gains on both subtasks. (Rush et al., 2010) propose dual decomposi-
tion (DD) for integrating different NLP subtasks at the test phase. They experiment with two
cases, one integrating a phrase-structure parser and a dependency parser, and the other inte-
grating a phrase-structure parser and a POS tagger. Both cases show that DD can help the
individual subtasks. (Auli and Lopez, 2011) conduct an extensive comparison of LBP and DD
for joint CCG supertagging and parsing. They show that LBP and DD achieves similar parsing
accuracy improvement but has largely different convergence characteristics. Moreover, their
work focuses on integrating two separately-trained sub-models, and they find that training the
integrated model on LBP leads to large improvement drops compared with separately-trained
models.

3 Pipeline POS tagging and dependency parsing

The pipeline method treats POS tagging and dependency parsing as two cascaded problems.
First, an optimal POS tag sequence t̂ is determined.

t̂= arg max
t

Scorepos(x, t) (1)

Then, an optimal dependency tree d̂ is determined based on x and t̂.

d̂= arg max
d

Scoresyn(x, t̂,d) (2)

1684

h m

(a) single dependency

h s

(b) adjacent sibling

m h m

(c) outermost grandchild

g

l
l

l

Figure 2: Three types of scoring subtrees used in our parsing and joint models.

Feature category Atomic features incorporated
Dependency features fdep(x, t, h, m, l) l , wh, wm, th, tm, th±1, tm±1, t b, dir(h, m), dist(h, m)
Sibling features fsib(x, t, h, m, l , s) l , wh, ws, wm, th, tm, ts, th±1, tm±1, ts±1, dir(h, m), dist(h, m)
Grandchild features fgrd(x, t, h, m, l , g) l , wh, wm, wg , th, tm, t g , th±1, tm±1, t g±1, dir(h, m), dir(m, g)

Table 1: Brief illustration of the syntactic features. b is an index between h and m. dir(i, j)
and dist(i, j) denote the direction and distance of the dependency (i, j). Please refer to Table
4 of (Bohnet, 2010) for the complete feature list.

CRF-based POS tagging. We adopt the first-order CRF to build our baseline POS tagger. As a
conditional log-linear probabilistic model, CRF defines the probability of a tag sequence as

P(t|x) = exp(Scorepos(x, t))/
∑

t′
exp(Scorepos(x, t′))

Scorepos(x, t) =wpos · fpos(x, t) =
∑

1≤i≤n

wpu · fpu(x, t i) +wpb · fpb(x, t i−1, t i)
(3)

where fpos/pu/pb(.) refers to the feature vectors and wpos/pu/pb is the corresponding weight vec-
tors. We call fpu(x, t i) the POS unigram features, and fpb(x, t i−1, t i) the POS bigram features.
For Chinese, we adopt the features proposed by (Zhang and Clark, 2008a). They use Chinese
characters contained in a word to compose rich features, which turns out to be helpful for
low-frequency words. For English, we adopt the features of (Ratnaparkhi, 1996) which exploit
suffixes and prefixes to improve tagging performance over rare words.

Second-order graph-based dependency parsing. The graph-based approach views depen-
dency parsing as finding a highest scoring tree in a directed graph (McDonald et al., 2005;
Carreras, 2007; Koo and Collins, 2010). We adopt the second-order model of (Carreras, 2007)
since previous studies show that it leads to best parsing accuracy on a variety of languages
(Koo and Collins, 2010; Bohnet, 2010). The score of a dependency tree is factored into scores
of the three kinds of subtrees in Figure 2.

Scoresyn(x, t,d) =wsyn · fsyn(x, t,d)

=
∑

{(h,m,l)}⊆d

wdep · fdep(x, t,h, m, l)

+
∑

{(h,m,l),(h,s)}⊆d

wsib · fsib(x, t,h, m, l, s)

+
∑

{(h,m,l),(m,g)}⊆d

wgrd · fgrd(x, t,h, m, l, g)

(4)

For syntactic features, we adopt those of (Bohnet, 2010) which include three categories cor-
responding to the three types of scoring subtrees. We summarize the atomic features used in

1685

each feature category in Table 1. For unlabeled parsing and joint models, the label l is omitted.
Compared with the syntactic features used in (Li et al., 2011), this feature set explores more
context POS tags including ts±1, t g±1. In addition, for Chinese, we use the last character of each
word as its lemma, and duplicate each word-related feature by replacing words with lemmas
(Che et al., 2012). Experiments on CTB5 show that these lemma-related features can improve
our baseline parsing models by 0.3-0.4% in UAS. For English, we use coarse-grained POS tags
to duplicate all the feature that depend on POS tags (Koo and Collins, 2010), resulting in a
0.4% UAS gain on PTB.

4 Joint POS tagging and dependency parsing

In the joint framework, we aim to simultaneously solve the two problems.

(̂t, d̂) = arg max
t,d

Scorejoint(x, t,d) (5)

The score of a tagged dependency tree is the combination of the POS score and the syntactic
score that are previously defined in the pipeline models.

Scorejoint(x, t,d) = Scorepos(x, t) + Scoresyn(x, t,d)

=wpos · fpos(x, t) +wsyn · fsyn(x, t,d)

=wpos⊕syn · fpos⊕syn(x, t,d) =wjoint · fjoint(x, t,d)

(6)

where ⊕ denotes vector concatenation. Note that our joint model incorporates the same POS
and syntactic features with the pipeline models. Under the joint model, the weights of POS
and syntactic features, denoted by wpos⊕syn or wjoint, are simultaneously learned. Therefore,
they can interact with each other to determine an optimal joint result.

4.1 Decoding

Similar to (Li et al., 2011), we extend the parsing algorithm of (Carreras, 2007) using the idea
of (Eisner, 2000) and propose a dynamic programming (DP) based decoding algorithm for
our joint model. Figure 3 illustrates the basic DP structures and operations. The key idea is
to augment the basic DP structures in the parsing algorithm (namely spans) with a few POS
tags. A span means a partially built structure spanning a sub-sentence. For example, the left-
side span in Figure 3(a), which is called an incomplete span and is denoted by I(h,m,l)(th,tm),
represents a partial tree spanning wh...wm with wh being tagged as th and wm as tm. The
left-side span in Figure 3(b) is a complete span and is denoted by C (e)(te)

(h,m)(th,tm)
.

The decoding algorithm works in a bottom-up fashion and combines two smaller spans into
a larger one at each step. During combination, the newly-introduced features are incorpo-
rated and the score of the span is computed accordingly. For example, the operation in
Figure 3(a) introduces five feature sets, i.e. fdep(x, th, tm,h, m, l), fsib(x, th, tm, ts,h, m, l, s),
fgrd(x, th, tm, t g ,h, m, l, g), fpu(x, tm), and fpb(x, t r , t r+1). And the operation in Figure 3(b) in-
troduces one feature set fgrd(x, th, tm, t g ,h, m, l, g).1 Note that in the above syntactic feature
functions, several context POS tags are not encoded in the DP structures and therefore are not
provided in the parameter lists, including th±1, tm±1, tb, ts±1, t g±1. For those, we use the most

1 (Li et al., 2011) adopt a complex strategy to incorporate the POS features in their joint decoding algorithm. The
way illustrated here is much easier and its correctness can be easily proved.

1686

(h, th) (s, ts) (r, tr)(h, th) (m, tm)

l

(r+1, tr+1) (g, tg) (m, tm)

(h, th) (m, tm)(h, th) (e, te)

l

(g, tg) (e, te)(m, tm) (m, tm)

(a)

(b)

Figure 3: An illustration of the dynamic programming based decoding algorithm for our joint
model. We omit the creation of right-headed spans for brevity.

likely POS tags provided by the baseline CRF tagging model following (Li et al., 2011). They
find that this approximation substantially improves the efficiency of their joint models without
accuracy loss. The time complexity of the algorithm is O(|L |n4q5), and the space complexity
is O(|L |n2q2 + n3q3) where q is the tag number of each word (≤ |T |).
POS tag pruning. Since the time complexity is high in terms of q, we follow (Li et al., 2011)
and prune out the lower-probability POS tags for each word based on their marginal probabil-
ities provided by our baseline CRF model. After pruning, each word has 1.4 candidate POS
tags on average and the oracle tagging accuracy is 99.27% on CTB5. On PTB, each word has
1.2 candidate POS tags and the oracle is 99.71%.

Dependency pruning. The parsing time grows quickly with n. Therefore, we train a
CRF-based first-order dependency parser to eliminate the unlikely dependencies following
(Charniak and Johnson, 2005; Petrov and Klein, 2007; Koo and Collins, 2010). After pruning,
31.3% of the dependencies are left and the oracle dependency accuracy (UAS) is 99.77% on
CTB5. On PTB, 28.9% of the dependencies are retained and the oracle UAS is 99.91%.

5 A separately passive-aggressive training algorithm

Online training has proven successful in several structured classification problems such as POS
tagging (Collins, 2002) and parsing (McDonald et al., 2005; Zhang and Clark, 2011). Algo-
rithm 1 shows the generic framework of online training when applied to our joint task. Online
training iteratively traverses the entire training dataset and use one instance to update the fea-
ture weights at each time. First, the best result for the instance is found based on the current
feature weights (line 6). Then, the feature weights are updated by comparing the best result
and the gold-standard reference (line 7).

According to the update criterion, three different online training algorithms are widely
used in parsing community, i.e. averaged perceptron (AP) (Collins, 2002), passive-aggressive
algorithm (PA) (Crammer et al., 2003), and margin infused relaxed algorithm (MIRA)
(Crammer and Singer, 2001). Previous work mostly adopts AP to train their joint models
(Li et al., 2011; Hatori et al., 2011; Bohnet and Nivre, 2012). We compare AP and PA for our
joint models and find similar accuracy in both tagging and parsing. Then we propose a variant
of PA named as separately passive-aggressive algorithm (SPA) to improve the tagging accuracy.
For the sake of conciseness, we do not make comparison with MIRA, since our preliminary
results show that MIRA achieves similar performance to AP and PA.

1687

Algorithm 1 Generic online training for joint POS tagging and dependency parsing

1. Input: Training Data D= {(x(j), t(j),d(j))}Nj=1
2. Output: wjoint (≡wpos⊕syn)

3. Initialization: w(0)joint = 0;v= 0; k = 0
4. for i = 1 to I do // iterations
5. for j = 1 to N do // traverse the samples
6. (̂t, d̂) = arg maxt,d w(k)joint · fjoint(x(j), t,d) // decode based on current feature weights.

7. w(k+1)
joint = update w(k)joint with (x(j), t(j), t̂,d(j), d̂) // update weights according to some criterion.

8. v= v+w(k+1)
joint

9. k = k+ 1
10. end for
11. end for
12. wjoint = v/(I × N) // average the weights

All algorithms adopt the update direction of the distance between the reference feature vector
fjoint(x(j), t(j),d(j)) and the feature vector of the best result fjoint(x(j), t̂, d̂). However, different
strategies are adopted to determine the update step. AP uses a constant update step of 1.

AP

n
w(k+1)

joint =w(k)joint+ fjoint(x
(j), t(j),d(j))− fjoint(x

(j), t̂, d̂) (7)

PA computes the update step τjoint by considering the loss of the best result, the score distance,
and the feature vector distance.

PA

τjoint =

Scorejoint(x(j), t̂, d̂)− Scorejoint(x(j), t(j),d(j)) +ρpos(t(j), t̂) +ρsyn(d(j), d̂)

‖fjoint(x(j), t(j),d(j))− fjoint(x(j), t̂, d̂)‖2
w(k+1)

joint =w(k)joint+τjoint(fjoint(x
(j), t(j),d(j))− fjoint(x

(j), t̂, d̂))

(8)

where ρpos(t(j), t̂) is the incorrect POS tag number in t̂ according to t(j), and ρsyn(d(j), d̂) is the
dependency error number in d̂ according to d(j). Following (Johansson and Nugues, 2008),
ρsyn(d(j), d̂) increases by 1 for an incorrect dependency and by 0.5 for a correct dependency
with a wrong label. Theoretically, Eq. 8 computes the smallest update that makes the correct
hypothesis outscores the returned highest-scoring hypothesis by the overall error.

We can see that AP and PA use the same update step for the POS features fpos(.) and syntactic
features fsyn(.). Therefore, the weights of the POS features and the syntactic features are of
the same scale after training is completed. We argue that this is problematic since the number
of the syntactic features are much larger than the number of the POS features. We find that
in fjoint(x(j), t̂, d̂), fsyn(x(j), t̂, d̂) contains more than 3,000 non-zero features, whereas fpos(x(j), t̂)
only has less than 200 non-zero features on average. As a result, the model is dominated by
the syntactic features and the POS features would play a very limited role in determining the
best joint result. Actually, we find that the POS features contribute a very small part to the
score of the best joint results when trained with AP or PA (see Figure 5).

After several empirical trials, we find that we can raise the score contributed by the POS
features by increasing the update step of the POS features. Furthermore, we find that we
can elegantly achieve this goal by slightly modifying the update formulas of PA. We name the
proposed training algorithm as the separately passive-aggressive algorithm (SPA). SPA separately

1688

computes two update steps for the POS features and the syntactic features.

SPA

τpos =
Scorepos(x(j), t̂)− Scorepos(x(j), t(j)) +ρpos(t(j), t̂)

‖fpos(x(j), t(j))− fpos(x(j), t̂)‖2

τsyn =
Scoresyn(x(j), t̂, d̂)− Scoresyn(x(j), t(j),d(j)) +ρsyn(d(j), d̂)

‖fsyn(x(j), t(j),d(j))− fsyn(x(j), t̂, d̂)‖2
w(k+1)

pos = w(k)pos+ τpos(fpos(x
(j), t(j))− fpos(x

(j), t̂))

w(k+1)
syn = w(k)syn+τsyn(fsyn(x

(j), t(j),d(j))− fsyn(x
(j), t̂, d̂))

(9)

Analogous to PA, Eq. 9 separately finds the smallest update to the POS feature weights that
makes the POS score of the correct hypothesis higher than the POS score of the returned
highest-scoring hypothesis by the POS error, and the smallest update to the syntactic feature
weights that makes the syntactic score of the correct hypothesis higher than the syntactic
score of the returned highest-scoring one by the syntactic error. Note that Eq. 9 sometimes
leads to negative τpos or τsyn, because the correct hypothesis already has a POS or syntactic
subscore larger than the 1-best one but the deficiency is entirely confined to the other subscore.
However, such cases are rare. We just set the update step to zero when it is negative.

Since fpos(.) contains much less non-zero features than fsyn(.), ‖fpos(x(j), t(j))− fpos(x(j), t̂)‖2 is
much smaller than ‖fsyn(x(j), t(j),d(j)) − fsyn(x(j), t̂, d̂)‖2. Therefore, τpos is much larger than
τsyn. Our experiments show that τpos is about 10 times larger than τsyn on average. This
means that the POS features are updated in much larger step than the syntactic features. As a
result, the POS features play a more important role in the joint models. We find that the POS
score becomes much closer to the syntactic score in the best joint results (see Figure 5).

As discussed in Section 1, (Li et al., 2011) find that their joint models trained with AP are good
at resolving syntax-sensitive POS ambiguities like {VV,NN}, whereas their baseline sequential
POS tagging model does well in disambiguating the syntax-insensitive ones like {NN,NR}. We
believe that it is because the discriminative power of the POS features in resolving such syntax-
insensitive POS ambiguities are suppressed in the joint models when trained with AP or PA.
Compared with AP and PA, SPA raises the weight of the POS features and can better utilize
the disambiguation power of both the POS and syntactic features, leading to large tagging
accuracy boost. On the other hand, better tagging results can further help parsing.

6 Experiments
Data. We conduct experiments on CTB5 (Xue et al., 2005). Following the standard prac-
tice, we adopt the data split of (Duan et al., 2007; Zhang and Clark, 2008b; Huang and Sagae,
2010) and adopt Penn2Malt2 for constituent-to-dependency conversion with the head-finding
rules of (Zhang and Clark, 2008b).

We also evaluate our models on another version of CTB5 used in (Bohnet and Nivre, 2012)
to compare with their joint model. We thank Bernd Bohnet for sharing their dataset. We
refer to their dataset as CTB5-Bohnet. We carefully compare CTB5 with CTB5-Bohnet and
find that except for the mismatch of about 30 sentence, the datasets differ in both dependency
structures and dependency labels. After discussions with Bernd Bohnet, we find out that they
adopt Yue Zhang’s constituent-to-dependency conversion tool3 whereas we use Penn2Malt for

2http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
3http://sourceforge.net/projects/zpar/files/0.3/

1689

Corpus Train Dev Test
CTB5 16,091 803 1,910
CTB5-Bohnet 16,069 803 1,905
PTB 39,832 1,346 2,416

Table 2: Data used in this work (in sentence number).

82.9

83.1

83.3

94.6

94.7

94.8

81.1

81.3

81.5

81.7

81.9

82.1

82.3

82.5

82.7

82.9

83.1

83.3

U
A

S

94

94.1

94.2

94.3

94.4

94.5

94.6

94.7

94.8

P
O

S
 A

cc
u

ra
cy

80.5

80.7

80.9

81.1

81.3

1 3 5 7 9 11 13 15 17 19

Iteration Number

SPA PA AP

93.8

93.9

94

94.1

1 3 5 7 9 11 13 15 17 19

Iteration Number

SPA PA AP

Figure 4: Training curves of UAS and POS tagging accuracy of the unlabeled joint model using
SPA/PA/AP on the CTB5 development dataset.

CTB5, although the head-finding rules are the same.

For English, we adopt PTB (sec 02-21 for training, sec 24 for development, sec 23 for test) and
convert the original bracketed structures into dependencies using Penn2Malt with its default
head-finding rules. Table 2 summarizes the data sets used in the present work.

Evaluation metrics. We use the standard POS tagging accuracy (POS) to evaluate POS tagging.
For dependency parsing, we use unlabeled attachment score (UAS) and labeled attachment score
(LAS) (all excluding punctuation) (Hajič et al., 2009).

6.1 Experiments on CTB5

6.1.1 Comparison of the three training algorithms

The curves in Figure 4 show the performance of the unlabeled joint model on the development
dataset using SPA/PA/AP after each iteration during training. We can see that the PA outper-
forms AP in both UAS and tagging accuracy. SPA achieves a slightly higher peak UAS than
PA, and substantially outperforms both PA and AP in tagging accuracy. In addition, Figure 4
empirically indicates that SPA can converge as fast as AP and PA. We leave the theoretic proof
of the convergence of SPA in the future work.

To better understand the reason behind the improvement in tagging accuracy, we try to analyze
the two-part model scores, i.e. the POS score Scorepos(.) and the syntactic score Scoresyn(.).
After each iteration, we parse the development dataset using the current weights, and then
compute and average each part of the model score. Figure 5 shows the results. For PA and AP,
the scale of the POS score is about 1/50 (101.7 = 50) of the syntactic score, which means the
POS features play an insignificant role in determining the joint result. Obviously, SPA can raise
the weight of the POS features, as the POS score is about 1/8 (100.9 = 8) of the syntactic score.

1690

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19

lo
g
1
0
(S

c
o

r
e
)

Iteration Number

SPA

pos

syn

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19

Iteration Number

AP

pos

syn

0

1

2

3

4

5

6

7

8

9

10

1 4 7 10 13 16 19

Iteration Number

PA

pos

syn

Figure 5: Model score analysis on the CTB5 development dataset. “pos” and “syn” refer to
Scorepos(.) and Scoresyn(.) (see Eq. 6).

UAS POS
SPA 81.21 94.51
PA 80.98 94.18
AP 80.94 94.17

pipeline 80.22 93.88

Table 3: Performance of three training algorithms on the CTB5 test dataset.

As a result, the POS features can make more contributions, and the discriminative power of
the syntactic features in resolving the syntax-sensitive ambiguities and the power of the POS
features in the syntax-insensitive POS ambiguities can be better balanced. We believe this is
the reason behind the improvement in tagging accuracy.

Table 3 reports the results of our unlabeled joint model trained with SPA/PA/AP on the CTB5
test dataset. We adopt the parameters which lead to the best parsing accuracy on the develop-
ment dataset as shown in Figure 4. We also present the performance of our pipelined unlabeled
parsing model trained with PA. Different to (Li et al., 2011), our joint models trained with AP
or PA both outperform our baseline POS tagging model by about 0.3%. We believe that this
may be due to the richer syntactic features incorporated in our joint models. Moreover, SPA
can outperform both PA and AP in tagging accuracy by more than 0.3%, which is an error re-
duction of 5%. Meanwhile, SPA also improves UAS by about 0.2% since better tagging results
help parsing. This again demonstrates the effectiveness of the proposed SPA.

6.1.2 Main results

Table 4 shows the final results on the CTB5 test set. Three sets of results are presented. For
“gold POS” and “pipeline”, we train the parsing models with PA. For “joint” models, we adopt
SPA. For each case, we train our models with two different settings, one labeled and one
unlabeled, to study the effect of dependency labels. We can see that we achieve best results on
all three cases. Specifically, a few interesting conclusions can be drawn.

• Labeling the dependencies during parsing improves UAS by 0.6%/0.5% in the pipeline
and joint cases and by 0.2% when using gold-standard POS tags. Dependency labels also
slightly help POS tagging in the joint case.
• Compared with the pipeline models, the joint models with SPA can largely improve POS

1691

Models LAS UAS POS

joint

Ours (labeled) 79.01 81.67 94.60
Ours (unlabeled) — 81.21 94.51
(Li et al., 2011) — 80.74 93.08

(Hatori et al., 2011) — 81.33 93.94

pipeline

Ours (labeled) 77.80 80.82
93.88

Ours (unlabeled) — 80.22
(Li et al., 2011) — 79.29 93.51

(Hatori et al., 2011) — 78.04 93.82

gold POS

Ours (labeled) 85.36 86.76

100.0

Ours (unlabeled) — 86.55
(Li et al., 2011) — 86.18

(Hatori et al., 2011) — 85.96
(Zhang and Nivre, 2011) 84.4 86.0
(Huang and Sagae, 2010) — 85.20

Table 4: Final results on the CTB5 test dataset.

0

50

100

150

200

250

300

350

400

450

500

A
b

s
o

lu
t
e

 E
r
r
o

r
 N

u
m

b
e

r

POS Error Patterns

pipeline

Li et al. (2011)

joint (SPA)

Figure 6: Statistics for different POS error patterns on the CTB5 test dataset.

tagging accuracy by 0.6-0.7%, which is an error reduction of 10%.
• Our joint models largely outperforms their pipeline counterparts by 0.9-1.0% in UAS and

1.2% in LAS.

6.1.3 Analysis

Figure 6 compares different models on a number of high-frequency POS error patterns. An er-
ror pattern X→Y means that the focus word, whose true tag is X, is assigned a tag Y. We thank
the authors of (Li et al., 2011) for sharing their results. The joint model of (Li et al., 2011) re-
duces errors for syntax-sensitive ambiguities such as {(DEC,DEG} and {NN,VV}, but largely
increases errors for syntax-insensitive ambiguities like {NN,NR}, {NN,JJ}, and {VV,VA},
which can explain its low tagging accuracy. Compared with (Li et al., 2011), our joint model
trained with SPA does much better in resolving the syntax-insensitive ambiguities and achieves
similar performance to the baseline CRF-based tagging model on those patterns. In summary,
we can conclude that our joint model trained with SPA performs similarly to the baseline CRF-

1692

Models LAS UAS POS

joint
Ours (labeled) 80.18 83.14 94.71

Ours (unlabeled) — 82.37 94.65
(Bohnet and Nivre, 2012) 77.91 81.42 93.24

pipeline
Ours (labeled) 79.01 82.07

93.89
Ours (unlabeled) — 81.38

(Bohnet and Nivre, 2012) 76.79 80.33 92.81

Table 5: Final results on the CTB5-Bohnet test dataset.
Models LAS UAS POS

joint

Ours (labeled) 92.44 93.52 97.62
Ours (unlabeled) — 93.12 97.62

(Bohnet and Nivre, 2012) 92.44 93.38 97.33
(Bohnet and Nivre, 2012) † 92.68 93.67 97.42

pipeline

Ours (labeled) 92.00 93.14
97.16

Ours (unlabeled) — 92.85
(Bohnet and Nivre, 2012) 91.71 92.79 97.28
(Zhang and Nivre, 2011) — 92.9 —

(Martins et al., 2010) — 93.26 —
(Koo and Collins, 2010) — 93.04 —

(Huang and Sagae, 2010) — 92.1 —
(Koo et al., 2008) † — 93.16 —

(Carreras et al., 2008) † — 93.5 —
(Suzuki et al., 2009) † — 93.79 —

Table 6: Final results on the PTB test dataset. Results marked by † use additional resources
and are therefore not directly comparable to the others.

based tagging model on the syntax-insensitive ambiguities and meanwhile similarly to the joint
model of (Li et al., 2011) on the syntax-sensitive ambiguities. This demonstrates that SPA can
better balance the discriminative power of both the POS and syntactic features.

6.2 Experiments on CTB5-Bohnet

We conduct experiments on CTB5-Bohnet to make comparison with the recent results of
(Bohnet and Nivre, 2012). Table 5 presents the results. We can see that our pipeline and
joint models largely outperform those of (Bohnet and Nivre, 2012). Moreover, the parsing ac-
curacies on this dataset are much higher than those on CTB5 due to the different conversion
strategy. We will study the reasons in the future work. Again, we find that labeled parsing can
largely improve UAS.

6.3 Experiments on PTB

To find out the effect of the joint models on English, we conduct experiments on PTB. Table
6 shows the results. Several state-of-the-art results are also presented. The pipeline models
on English suffer from less error propagation problem than that on Chinese, as the POS tag-

1693

0

20

40

60

80

100

120

140

160

A
b

s
o

lu
t
e

 E
r
r
o

r
 N

u
m

b
e

r

POS Error Patterns

pipeline

joint (SPA)

Figure 7: Statistics for different POS error patterns on the PTB test dataset.

ging accuracy on English is much higher (97% vs. 94%). However, we still find that our joint
models can obtain a 0.3-0.4% gain in UAS, a 0.4% gain in LAS, and a 0.5% gain in tagging
accuracy. Similar to the findings on the Chinese datasets, we demonstrate that labeled pars-
ing can boost UAS by 0.3-0.4% on English. Our labeled joint model outperforms the one of
(Bohnet and Nivre, 2012) by 0.1% in UAS and 0.3% in tagging accuracy. Actually, our labeled
joint model achieves the best parsing and tagging accuracy on PTB.

We compare the POS tagging results of the unlabeled joint model and the baseline tagging
model. Figure 7 shows a few high-frequency error patterns. We can see that the joint model
can help resolve a variety of POS ambiguities. For example, the error number of RB→IN
(adverbs wrongly tagged as prepositions or subordinating conjunctions) are reduced from 142
to 98, which is a 31% error reduction. Also, the ambiguous pair {VBD, VBN} (verbs of past
tense, verbs of past participle) are much better disambiguated by the joint model.

Conclusions

This paper presents a separately passive-aggressive training algorithm (SPA) for joint POS
tagging and labeled dependency parsing models. We show that SPA can more properly learn
the feature weights than the averaged perceptron (AP) and the passive aggressive algorithm
(PA) and can better balance the discriminative power of the POS feature in resolving the syntax-
insensitive POS ambiguities and the power of the syntactic features in resolving the syntax-
sensitive ambiguities, leading to large tagging accuracy improvement. On the other hand,
better POS tagging can further help parsing.

For future work, we are interested in studying SPA from the theoretic perspective and try
to provide more insights and justifications of its effectiveness in training the joint models.
Besides, although this paper focuses on graph-based joint models, we believe that SPA can also
be applied to transition-based joint models (Hatori et al., 2011; Bohnet and Nivre, 2012).

Acknowledgements

We thank Meishan Zhang, for suggesting the easier way to incorporate the POS features dur-
ing joint decoding, and the anonymous reviewers, for their valuable comments which lead to
better understanding of the proposed SPA. This work was supported by National Natural Sci-
ence Foundation of China (NSFC) via grant 61133012, the National “863” Major Projects via
grant 2011AA01A207, and the National “863” Leading Technology Research Project via grant
2012AA011102.

1694

References

Auli, M. and Lopez, A. (2011). A comparison of loopy belief propagation and dual decomposi-
tion for integrated ccg supertagging and parsing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 470–480,
Portland, Oregon, USA. Association for Computational Linguistics.

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradiction. In
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010),
pages 89–97, Beijing, China. Coling 2010 Organizing Committee.

Bohnet, B. and Nivre, J. (2012). A transition-based system for joint part-of-speech tagging
and labeled non-projective dependency parsing. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 1455–1465, Jeju Island, Korea. Association for Computational Linguistics.

Carreras, X. (2007). Experiments with a higher-order projective dependency parser. In Pro-
ceedings of EMNLP/CoNLL, pages 141–150.

Carreras, X., Collins, M., and Koo, T. (2008). Tag, dynamic programming, and the perceptron
for efficient, feature-rich parsing. In CoNLL 2008: Proceedings of the Twelfth Conference on
Computational Natural Language Learning, pages 9–16, Manchester, England. Coling 2008
Organizing Committee.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of ACL-05, pages 173–180.

Che, W., Spitkovsky, V., and Liu, T. (2012). A comparison of chinese parsers for stanford
dependencies. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 11–16, Jeju Island, Korea. Association for Compu-
tational Linguistics.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of EMNLP 2002.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2003). Online passive
aggressive algorithms. In Procedings of NIPS 2003.

Crammer, K. and Singer, Y. (2001). Ultraconservative online algorithms for multiclass prob-
lems. Journal of Machine Learning Research, 3.

Duan, X., Zhao, J., , and Xu, B. (2007). Probabilistic models for action-based Chinese depen-
dency parsing. In Proceedings of ECML/ECPPKDD.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms. In Advances in
Probabilistic and Other Parsing Technologies, pages 29–62.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martí, M. A., Màrquez, L., Meyers, A.,
Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M., Xue, N., and Zhang, Y. (2009).
The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In
Proceedings of CoNLL 2009.

1695

Hatori, J., Matsuzaki, T., Miyao, Y., and Tsujii, J. (2011). Incremental joint pos tagging
and dependency parsing in chinese. In Proceedings of 5th International Joint Conference on
Natural Language Processing, pages 1216–1224, Chiang Mai, Thailand. Asian Federation of
Natural Language Processing.

Huang, L. and Sagae, K. (2010). Dynamic programming for linear-time incremental parsing.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 1077–1086, Uppsala, Sweden. Association for Computational Linguistics.

Johansson, R. and Nugues, P. (2008). Dependency-based semantic role labeling of PropBank.
In EMNLP-2008.

Koo, T., Carreras, X., and Collins, M. (2008). Simple semi-supervised dependency parsing. In
Proceedings of ACL-08: HLT, pages 595–603, Columbus, Ohio. Association for Computational
Linguistics.

Koo, T. and Collins, M. (2010). Efficient third-order dependency parsers. In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pages 1–11, Uppsala,
Sweden. Association for Computational Linguistics.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of ICML 2001, pages 282–
289.

Lee, J., Naradowsky, J., and Smith, D. A. (2011). A discriminative model for joint morpho-
logical disambiguation and dependency parsing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 885–894,
Portland, Oregon, USA. Association for Computational Linguistics.

Li, Z., Zhang, M., Che, W., Liu, T., Chen, W., and Li, H. (2011). Joint models for chinese pos
tagging and dependency parsing. In EMNLP 2011, pages 1180–1191.

Martins, A., Smith, N., Xing, E., Aguiar, P., and Figueiredo, M. (2010). Turbo parsers: Depen-
dency parsing by approximate variational inference. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 34–44, Cambridge, MA. Association
for Computational Linguistics.

McDonald, R., Crammer, K., and Pereira, F. (2005). Online large-margin training of depen-
dency parsers. In Proceedings of ACL 2005, pages 91–98.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing. In Proceedings
of NAACL 2007.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Proceedings
of EMNLP 1996.

Rush, A. M., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1–11.

Smith, D. A. and Eisner, J. (2008). Dependency parsing by belief propagation. In Proceedings
of EMNLP 2008, pages 145–156.

1696

Suzuki, J., Isozaki, H., Carreras, X., and Collins, M. (2009). An empirical study of semi-
supervised structured conditional models for dependency parsing. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing, pages 551–560, Singapore.
Association for Computational Linguistics.

Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. (2005). The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. In Natural Language Engineering, volume 11, pages
207–238.

Zhang, Y. and Clark, S. (2008a). Joint word segmentation and POS tagging using a single
perceptron. In Proceedings of ACL-08: HLT, pages 888–896.

Zhang, Y. and Clark, S. (2008b). A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, pages 562–571, Honolulu, Hawaii. Associ-
ation for Computational Linguistics.

Zhang, Y. and Clark, S. (2011). Syntactic processing using the generalized perceptron and
beam search. Computational Linguistics, 37(1):105́lC151.

Zhang, Y. and Nivre, J. (2011). Transition-based dependency parsing with rich non-local
features. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 188–193, Portland, Oregon, USA. Association
for Computational Linguistics.

1697

