
Proceedings of COLING 2012: Technical Papers, pages 1535–1552,
COLING 2012, Mumbai, December 2012.

Learning Compositional Semantics for Open Domain
Semantic Parsing

Phong LE and Wil lem ZU I DEMA
Institute for Logic, Language and Computation

University of Amsterdam, the Netherlands
{p.le,zuidema}@uva.nl

Abstract
This paper introduces a new approach to learning compositional semantics for open domain
semantic parsing. Our approach is called Dependency-based Semantic Composition using Graphs
(DeSCoG) and deviates from existing approaches in several ways. First, we remove the need
of the lambda calculus by using a graph-based variant of Discourse Representation Structures
to represent semantic building blocks and defining new combinatory operations for our graph
structures. Second, we propose a probability model to approximate probability distributions
over possible semantic compositions. And third, we use a variant of alignment algorithms from
machine translation to learn a lexicon. On the Groningen Meaning Bank (a recently released,
large-scale, domain-general, semantically annotated corpus; Basile et al. (2012)), where we
preprocess sentences with an existing dependency parser, we achieve results significantly better
than the baseline. On Geoquery we obtain performance comparable to semantic parsers that
were developed specifically for that domain.

Title and Abstract in Vietnamese

Học Tổng hợp Ngữ nghĩa cho Phân tích Ngữ nghĩa Miền
Mở

Bài báo này giới thiệu một phương pháp mới cho học tổng hợp ngữ nghĩa trong phân
tích ngữ nghĩa miền mở. Phương pháp của chúng tôi được gọi là Dependency-based Semantic
Composition using Graphs (DeSCoG) và khác biệt với các phương pháp có sẵn trên nhiều
phương diện. Trước tiên, chúng tôi loại bỏ sự cần thiết của phép tính lambda bằng cách dùng
một biến thể dựa trên đồ thị cho Discourse Representation Structure để miêu tả các khối ngữ
nghĩa và định nghĩa các phép kết hợp cho những đồ thị này. Thứ hai, chúng tôi đề xuất một mô
hình xác suất để xấp xỉ những phân bố xác suất trên các ngữ nghĩa tổng hợp có thể có. Và thứ
ba, chúng tôi dùng một biến thể của các thuật toán gióng hàng từ dịch máy để học tập từ vựng.
Thực nghiệm trên Groningen Meaning Bank (một ngữ liệu vừa được công bố, lớn, tổng quát, và
đã được gán nhãn ngữ nghĩa; Basile et al. (2012)), với các câu được tiền xử lý bằng một bộ
phân tích phụ thuộc có sẵn, chúng tôi đạt được kết quả tốt hơn rất nhiều so với phương pháp
cơ sở. Đối với Geoquery, chúng tôi có được kết quả tương đương với các bộ phân tích ngữ nghĩa
được phát triển cho chính lĩnh vực đó.

KEYWORDS: semantics, parsing, dependency structure, graph.

KEYWORDS IN VIETNAMESE: ngữ nghĩa, phân tích, cấu trúc phụ thuộc, đồ thị .

1535

1 Introduction

Semantic parsing is the task of translating natural language sentences to formal meaning
representations. The dominant approach for solving this task has been, since Montague (1970),
to handcraft a semantic lexicon, using a logic to represent meanings and the lambda calculus to
regulate meaning combination. Semantic parsing has until recently thus remained relatively
immune to the wave of corpus-based, probabilistic approaches that have revolutionized neigh-
boring fields, such as syntactic parsing (Petrov, 2009; Clark and Curran, 2007; Sangati and
Zuidema, 2011), speech recognition (Rabiner, 1989) and machine translation (Koehn et al.,
2007; Mylonakis and Sima’an, 2011).

However, an increasingly popular line of work has emerged in the last few years on using
probabilistic and corpus-based methods for semantics as well. Much of this work makes use
of the semantically annotated Geoquery corpus, that provides representations of queries to a
geographic information system in both a natural language and a meaning representation (MR)
language. For instance, the query Which states border Arizona? is manually translated into
answer(A,(state(A),const(B,stateid(arizona)),next_to(A,B))). Although the
corpus is small and the domain restricted, some interesting results have been obtained in trying
to learn the mapping from natural to formal language. For instance, Zettlemoyer and Collins
(2005); Kwiatkowski et al. (2010, 2011) approached the problem with structural learning,
Wong (2007) with machine translation, Kate and Mooney (2006) with a kernel method, and so
on. Their approaches are supervised in the sense that a set of (sentence, MR) pairs is needed
for training. Other work has also addressed learning with less supervision: Clarke et al. (2010);
Liang et al. (2011) use the “world’s response” (the answer to the query), while Goldwasser
et al. (2011) even need no supervision at all.

These studies (and related ones using the CLang domain (Chen et al., 2003), where the input
comes from natural language instruction) have started filling a glaring gap in statistical natural
language processing. However, surveying this literature, we find some major difficulties in
applying these techniques to real NLP applications in less restricted domains. First, many of the
used MR languages lack expressiveness. For example, FUNQL, used in the Geoquery domain,
and CLang are not designed to express tense (i.e., they make no distinction between is, will be
and has been) or to handle possibility (e.g. can) nor necessity (e.g. must). Moreover, scalability
is a big problem because of the explosion of the number of concepts as well as the number of
syntactic structures in open-domain texts. For instance, in Geoquery, learning in many of the
current approaches succeeds because a small number of constructions like What is the..., How
many states have... and A borders B dominate the corpus.

Hence, the challenge of developing corpus-based, probabilistic techniques for open-domain
semantic parsing remains unsolved. Approaches to this challenge face two major obstacles.
First, sentences in open-domain texts are more complicated than those in domain-dependent
texts, i.e. they are longer and contain more linguistic phenomena as well as syntactic structures.
Second, large, standardized semantic corpora are not available (Bos, 2011). Wide coverage
semantic parsers therefore continue to rely on hand-written rules (Bos, 2008; Allen et al., 2008),
or try to use unsupervised techniques (Poon and Domingos, 2009). Alshawi et al. (2011) is
based on so-called “natural logical forms” (derived directly from dependency structures) with
limited applicability.

In this paper, we present an ambitious attempt to bridge the gap between hand-built approaches
for open-domain semantic parsing and learning methods for domain-dependent semantic

1536

parsing. Crucial to the success of our approach, named DeSCoG (Dependency-based Semantic
Composition using Graphs), is that we make maximum use of the information provided by
the syntactic structure of a sentence, and that we abandon the lambda calculus in favor of a
more flexible graph-based representation. The syntactic structure comes in because we use a
state-of-the-art syntactic dependency parser to drive semantic composition. There are several
reasons to do that. First, dependency structures encode predicate-argument relations which
are strongly related to semantics (Covington, 2001). Second, the total complexity is reduced
significantly compared with parsing syntax and semantic simultaneously (Poon and Domingos,
2009). Finally, according to Ge (2010), prior knowledge of syntax is particularly helpful when
sentences are long and complex.

We abandon the lambda calculus, like Liang et al. (2011), but unlike many approaches (Bos,
2008; Zettlemoyer and Collins, 2005; Kwiatkowski et al., 2010; Wong, 2007; Ge and Mooney,
2009; Baral et al., 2011). Although the lambda calculus is undeniably an elegant tool for
semantic composition in a bottom-up manner, it makes the learning of a lexicon difficult. This
is because of the notorious λ-inverse problem, which is to find h and g such that f = F(h, g)
where f and F are given (Kwiatkowski et al., 2010). Zettlemoyer and Collins (2005, 2007)
solved the λ-inverse problem via generating all candidates in predefined templates which
correspond to categories. That solution, however, works only in domains containing sentences
with simple syntactic structures such as Geoquery. To open-domain texts, because there are
more than 300 frequent categories (in the WSJ corpus) (Bos, 2005), this method needs a
huge effort to build a set of templates. Kwiatkowski et al. (2010) used restricted higher-order
unification to carry out the λ-inverse. To adapt this method to open-domain semantic parsing,
we need loosened restriction, which leads to higher complexity in learning a lexicon. Deviating
from those approaches, DeSCoG represents semantics by graphs, which provide a way to flexibly
break and combine components. At the same time, the formalism we use is very expressive: the
graphs we obtain for complete sentences are equivalent to Discourse Representation Structure
(DRS) introduced by Kamp (1981) and the formalism of choice in the hand-built Boxer system
(Bos, 2008).

The paper is structured as follows. Section 2 gives a brief introduction to DRS and how to
use graphs to replace the traditional box-like representations. Section 3 presents our semantic
composition method, which is based on dependency structures and a probabilistic parsing
model. We will describe the learning in Section 4, and finally, give experimental results on both
the Groningen Meaning Bank (GMB) and Geoquery in Section 5.

2 Meaning Representation with Semantic Graphs

2.1 Discourse Representation Structure

Discourse Representation Theory (DRT), which was introduced by Kamp (1981), is a theoretical
framework that can handle a wide range of linguistic phenomena such as tense and anaphora,
within and across sentences. It uses Discourse Representation Structures (DRS) to represent
a mental representation of the hearer as the discourse unfolds (Geurts and Beaver, 2011).
The traditional representation for DRS is a box-like structure which contains two components:
(i) discourse referents (e.g. x , y, z) representing entities in the discourse, and (ii) discourse
conditions (e.g. man(x),love(y, x)) representing the information about the discourse referents
which is encoded in the discourse. For instance, Figure 1a shows a DRS representing the
meaning of the discourse Mary loves a man. He is John.

1537

x,y,z

mary(x)
man(y)

love(x,y)
john(z)
y = z

(a) A sample DRS. (b) DRS for the sentence It is not clear .
(c) Semantic graph for the DRS shown
in Figure 1b.

Figure 1: Sample DRSs and semantic graph. Note that because our parser resolves presupposi-
tions by local accommodation (see Section 5.1), the α-operator is treated as the mer ge-operator.

Because the pronoun he can only link back to the indefinite a man, y and z must represent the
same entity. This is called pronoun resolution. In DRT, pronoun resolution has to satisfy the
accessibility constraint, which says that “if y is the discourse referent introduced by a pronoun,
and x is a previously introduced discourse referent, then we are only allowed to add the
condition y = x if x is in the universe of a DRS that is accessible from the DRS whose universe
contains y” (Blackburn and Bos, 2000). Here, a DRS B1 is immediately accessible from another
DRS B2 if (i) B1 contains a condition of one of the forms: ¬B2, B2 ∨ B, B2⇒ B, for some DRS
B; or (ii) B1⇒ B2 is a condition in some DRS B. B1 is accessible from B2 if B1 is immediately
accessible from B2 or there is some DRS B such that B1 is accessible from B which is immediately
accessible from B2.

Bos (2009) then developed Partial DRS which is a combination of the classic DRS, modal
logic, type theory, and lambda calculus. It is used by Boxer (Bos, 2008), a state-of-the-art
wide-coverage hand-built open-domain semantic parser.

2.2 Semantic Graph

Although the box-like representation captures the DRS structure very well, it does not provide
us with a way to freely break and combine components. Therefore, we represent a DRS via
a semantic graph, which is simple and directed (see Figure 1c). There are four node types
corresponding to basic elements of a DRS: referent (ellipse) (e.g. x1), predicate (rectangle)
(e.g. thing(.)), wrapper/box (hexagon) (e.g. w1), and operator (rhombus) (e.g. ¬). A global
wrapper node, named GLOBAL, corresponds to the outermost box of a DRS. An edge is a link

• from a referent node x to a predicate node p (i.e. p has an argument x), or
• from a predicate node p to a wrapper node w (i.e. p belongs to the DRS labelled w), or
• from a wrapper node w to an operator node o (i.e. the DRS labelled w is an argument of

the operator o), or
• from a referent node x to an operator node o (i.e. referent x is an argument of the

operator o).

Thanks to this representation, we can break or combine components simply by removing
or adding links/nodes. From this point, we will call graphs which represent meanings of
words/constituents, and need to be combined with other graphs, partial graphs1.

1A partial semantic graph should be seen as a unsaturated formula or a schema.

1538

3 Semantic Composition

In this section we describe the components of the probabilistic, semantic parser that we will use
in our model. This parser computes the best semantic graph (or DRS) for a natural language
sentence, given a dependency parse of that sentence and a lexicon (which might be handcrafted,
or learned, as explored in section 4).

3.1 Combinatory Operators

By abandoning the lambda calculus, we also loose its method for meaning combination. To
combine partial graphs anyway, we introduce two new combinatory operators. The first (dealing
with argument identity) is binding2, which is to bind a referent node x with another referent
node v, denoted by x ⊲⊳ v. The second (dealing with the box structure in DRS) is wrapping,
which is to link a predicate/operator node p to a wrapper node w, denoted by p⊙ w.

Now that the lambda calculus plays no role in our new semantic representation, λ-inverse is
no longer a problem. Indeed, semantic graphs provide us with maximal freedom in breaking
components. Therefore, learning a semantic lexicon becomes easier. However, because it is very
flexible in combining partial semantic graphs, the search space explodes. As a consequence,
parsing becomes more difficult. In order to efficiently search in such a large space, we need a
mechanism to bias the search. We will, in the following, give details about two key ideas: (i)
partial semantic graphs are combined following the guide of given dependency structures; and
(ii) some combinations are more preferable than others thanks to a probability model.

3.2 Partial Graph Combination with Dependency Structures

In the following, we describe how to combine partial graphs following a dependency structure,
which is given by the C&C parser (Clark and Curran, 2007) (however, the model is general in
the sense that it does not depend on which dependency grammar is used). Given a sentence
S = s1...sn, a set of partial graphs {G i}, and a dependency structure D = {si y s j} where uy v
means word u is a head of word v, the generative process to create a graph G consists of three
steps:

1. for each word si ∈ S, select a partial graph G i to represent its meaning;
2. for each si y s j ∈ D, select a pair of referents (u, v) such that u in G j and v in G i to apply

a binding operation to;
3. for each predicate/operator node f , select a wrapper node w to apply a wrapping

operation to.

An example is given in the following. Given four partial graphs shown in Figure 2b, and a
sentence with its dependency structure in Figure 2a, firstly, we assign a partial graph to each
word: It :- G1

c = G1, is :- G2
c = G4, not :- G3

c = G3, clear :- G4
c = G2. Then, we bind x1 with x2,

x1 with x4, x2 with x4, and p8 with x3. Finally, using the wrapper operation, we link neuter,
temp_included, =, now, : to w1, and clear to w2. The graph in Figure 1c is what we
should achieve.

It is important to note that wrapping operations should not be carried out arbitrarily. For
instance, the node clear (Figure 1c) must not be allowed to link to the wrapper node GLOBAL.
To stipulate that, we introduce a wrapping constraint: for all dependencies si y s j ∈ D, if a

2It works similarly to unification.

1539

It is not clear .

(a) Dependency structure. (b) Set of partial graphs.
Figure 2: Dependency structure and set of partial graphs for the example in Section 3.2

referent node v in G j binds with a referent node u in G i then all the predicate/operator nodes
in G i linked from u must link to wrapper nodes which have access3 to v. The constraint is based
on the observation that in a C&C predicate-argument relation, the argument is always the one
introducing referents.

Even with the dependency structure given, there are typically many choices to make among
the possible partial graphs for each word, and possible binding or wrapping operations for
each dependency. Computing the probabilities of all of these choices, and the most probable
resulting semantic graph, is the task of the probability model.

3.3 Probability Model

The parsing task is to find the most probable semantic graph G∗ such that

G∗ = argmax
G

Pr(G|S) = arg max
G

∑
D

Pr(G|D, S)Pr(D|S) (1)

where the sum is taken over all dependency derivations D for a sentence S. Similar to the model
given by Ge and Mooney (2009), we assume that the dependency parse we obtain from a third
party parser (here C&C) is correct. That is, we assume that the probability distribution over
dependency structure derivations given a sentence S densely locates at the derivation DS yielded
by the used syntactic dependency parser, i.e. Pr(D|S) = δ(D = DS) where δ(.) is the Kronecker
delta function. As a consequence, the parsing problem becomes: given a sentence S and a
dependency structure D, find the best semantic graph G∗ such that G∗ = argmaxG Pr(G|S, D).

Let Gc = {G1
c , ..., Gn

c } be a set of assigned partial graphs, B = {u ⊲⊳ v} be a set of binding
operations, and W = { f ⊙̂ko} be a set of in-wrapper relations, then we denote G = (Gc , B, W)S,D,
which means G is yielded by applying B, W on Gc following the dependency-structure D. We
can now factorize Pr(G|S, D) as follows:

Pr(G|S, D) = Pr(Gc , B, W |S, D) = Pr(Gc |S, D)Pr(B|Gc , S, D)Pr(W |Gc , B, S, D) (2)

Under some independence assumptions,

Pr(Gc |S, D) =
n∏

i=1

Prl(G
i
c |si , POS(si), POS(Dep(si))) (3)

Pr(B|Gc , S, D) =
∏

u⊲⊳v∈B

Prb
�
u ⊲⊳ v|Gc(u), Gc(v), POS(s(u)), POS(s(v))

�
(4)

3Because a wrapper node corresponds to a box of a DRS, the definition of accessibility is also applicable in this case.

1540

where Gc(x) is the partial graph containing node x and s(x) is the word of which the partial
graph is Gc(x); POS(.) is the function to get part-of-speech tags; and Dep(s) is the function to
get the list of the dependents of s. For the third component of Equation 2,

Pr(W |Gc , B, S, D) = Z ×ψ(W)×
∏

f ⊙̂ko∈W

Prw
�

f ⊙̂ko|Gc(f), Gc(o), POS(path(s(f), s(o)))
�

(5)

where Z is the normalizing factor. ψ(W) is the indicator function that returns 1 if W satisfies the
wrapping constraint and 0 otherwise. We use the notation f ⊙̂ko for the in-wrapper relation4

where there is a directed path from f to the k-th wrapper of the operator node o (i.e., f
links to the k-th wrapper of an operator node o, or there is an operator node o′ such that f
links to one of o’s wrappers and o′⊙̂ko). f ⊙̂0o then means that there are no directed paths
from f to o (e.g. in Figure 1c, clear ⊙̂1〈¬〉 and neuter ⊙̂0〈:〉). Finally, path(si , s j) is the
shortest path from si to s j on the graph representing the dependency structure D. For instance,
path(I t, not) = I t ↑ is ↑ not (Fig. 2a).

Given this probability model, we can use standard techniques for finding the best semantic
graph5 G∗, given a sentence S and its dependency structure D:

G∗ = arg max
G=(Gc ,B,W)S,D

Pr(Gc |S, D)Pr(B|Gc , S, D)Pr(W |Gc , B, S, D) (6)

Solving this optimization problem required using beam search, integer linear programming and
some additional heuristics, as detailed in the appendix.

4 Learning

In this section we describe how to obtain a lexicon of partial graphs and estimate the parameters
which are used in the parsing model. The learning algorithm is presented with combinations
of sentences, their dependency parses and their complete semantic graphs, i.e., with a set of
triples (S, D, G).

Given a sentence S and its semantic graph G, we need to split G into partial graphs correspond-
ing to individual words. It turns out that the task is similar to the word-to-word alignment
problem in machine translation. Here, English is the source language, the set of all semantic
graphs is the target language, and a “word” in the target language is a connected partial
graph. Hence, our problem is word-to-graph alignment. In Figure 3 we give a more complicated
example sentence and its dependency graph (where verbs are split up in stems and tags with
tense/aspect information, as explained below). In Figure 4 we give an example of an alignment
with a semantic graph for this sentence .

For each triple (S, D, G), let V be the node set of G, VF be the predicate/operator node set of G,
an alignment A be a set of pairs (u, w) where u ∈ V , and s ∈ S. An alignment is feasible if all of
the following constraints are satisfied

4In the box representation of a DRS, f ⊙̂ko means the predicate/operator f locates in the k-th box of the operator o
(directly or indirectly), and f ⊙̂0o means f does not locate in any box of o.

5Are the resulting DRSs valid? Although we have not provided a formal proof, we are confident they are well-formed
because of the following two reasons. First, the definition of ‘link’ ensures that elements of a DRS (referents, predicates,
boxes, etc.) are in proper relationships (e.g. it is impossible that a predicate is an argument for another predicate).
Second, the wrapping constraint guarantees that the accessibility constraint is not violated. A rigorous proof of this
statement is part of our future work.

1541

It VBZ be not clear if the hostage-takers VBD make any demands .

Figure 3: Dependency structure after extracting tenses out of verbs.

Figure 4: Semantic graph with the correct alignment for the sentence given in Figure 3.

1. for each u ∈ V , if u is a predicate or operator node, there is one and only one s ∈ S such
that (u, s) ∈ A; otherwise, for each predicate/operator node f that u links to, if (f , s) ∈ A,
then (u, s) ∈ A;

2. for each s ∈ S, let V A
s be the set of nodes associated with word s, V A

s must be connected
on G regardless of direction;

3. for each sy s′ ∈ D, there are u′ ∈ Vs′ and u ∈ Vs such that u′ is a predicate node. If u is a
predicate node, there is a referent node x linking to both u, u′; else if u is an operator
node, there is a wrapper node w linking to u such that u′ links to w.

Let Λ(S, D, G) be the set of all feasible alignments. The alignment phase is given as follows. First,
a word-to-word alignment application6 is used to estimate the probabilities Pr(node|word).
Then, for each triple (S, D, G), the best alignment A∗ is defined as7

A∗ = arg max
A∈Λ(S,D,G)

Pr(VF |S = s1...sn, A) (7)

where

Pr(VF |S = s1...sn, A)∝
∏
s∈S

Pr(VF ∩ V A
s |s)∝
∏
s∈S

�
Prn(|VF ∩ V A

s ||s)
∏

f ∈VF∩V A
s

Pr f (f |s)
�

(8)

Considering solving Equation 7 as searching an A in the alignment space to minimize the
objective function g(A) =− log

�
Pr(V A

F |SA, A)
�
, we use the A-star algorithm with the future cost

6We used GIZA++ (Och and Ney, 2003) with the default parameters.
7Note that we use only VF , the set of predicate and operator nodes, because the other types of nodes are determined

by them.

1542

Level Prl (G|...)
1 Prl (G|s, POS(s), POS(Dep(s)))
2 Prl (G|s, POS(s))

Level Prb(u ⊲⊳ v|...)
1 Prb(u ⊲⊳ v|G(u), G(v), POS(s(u)), POS(s(v)))
2 Prb(u ⊲⊳ v|G(u), G(v))
3 Uu,v(u ⊲⊳ v|G(u), G(v))

Level Prw(f ⊙̂ko|...)
1 Prw(f ⊙̂ko|G(f), G(o), POS(path(s(o), s(v))))
2 Prw(f ⊙̂ko|G(f), G(o), POS(s(u)), POS(s(v)))
3 Uk(f ⊙̂ko|G(f), G(o), POS(s(u)), POS(s(v)))

Table 1: Multilevel back-off for the parameter estimation. Uu,v(u ⊲⊳ v|G(u), G(v)) and
Uk(f ⊙̂ko|G(f), G(o), POS(s(u)), POS(s(v))) are respectively the uniform distributions over
u, v and over k.

function h(A) = minA′{− log
�

Pr(VF \ V A
F |S \ SA, A′)
�}, where V A

F = {u|∃s, (u, s) ∈ A} ∩ VF and
SA = {s|∃u, (u, s) ∈ A}. It is worth noting that, because the future cost is smaller than the real
cost, the optimal solution (if it exists) is guaranteed to be found.

When a lexicon of partial graphs is obtained, the parameters which are used in the parsing model
are estimated via relative frequencies. To avoid the problem of sparse data, two techniques are
used (see Jurafsky and Martin, 2009, Section 4.5 and Section 4.7): (i) Good-Turing technique,
and (ii) multilevel back-off which is shown in Table 1.

Implementation The word-to-graph alignment method has a drawback: large partial graphs
are not preferred because the probabilities of some nodes in a large partial graph given the best
matched word tend to be small. Unfortunately, verbs with tenses have complex DRSs, which
lead to large partial graphs (e.g. G4 in Figure 2b represents the meaning of the verb is). To
avoid this phenomenon, tense/aspect information is extracted from verbs (e.g. Figure 3).

We apply some heuristics to make the word-to-graph alignment more efficient. Operator nodes
are only allowed to align to functional words (e.g. be, will, could), and predicate nodes related
to tenses (e.g. temp_included, temp_before) are only allowed to align to tense words
(e.g. VBZ, VBN). Because the A-star algorithm will search the whole solution space in the worst
case, the alignment process spends a lot of time on difficult sentences. Therefore, sentences
with lengths larger than MAX_LENGT H are ignored and the time for processing a sentence is
not allowed to exceed MAX_T I M E8.

5 Experimental Results

In this section, we will show experimental results on the two corpora: Groningen Meaning Bank
(GMB), an open-domain corpus, and Geoquery, a popular domain-dependent corpus.

5.1 Groningen Meaning Bank

The Groningen Meaning Bank (GMB) corpus (Basile et al., 2012) has been developed at the
University of Groningen for the tasks related to deep semantic representation. The current
version 1.1 contains 2000 documents with 9418 sentences from many public sources: Voice
of America, fables, CIA World Factbook, and MASC Full. Each sentence is annotated with

8In our experiments, we set MAX_LENGT H = 25, MAX_T I M E = 5sec.

1543

(a) Recall (b) Precision (c) F-score
Figure 5: Recall, precision, and f-score curves comparing the four parsers on GMB.

a CCG parse tree with a Partial DRS at each tree node representing the meaning of the
corresponding constituent. Although GMB covers many linguistic phenomena, such as anaphora
and presupposition, we leave them aside. For instance, DeSCoG does not resolve anaphora
whereas it resolves presuppositions by local accommodation.

Evaluation Method Our evaluation method is similar to the one introduced by Allen et al.
(2008), which is based on partial credit assignment. Let G and T be semantic graphs for a
gold-standard DRS and a test DRS respectively. Given an one-to-one alignment between G’s
nodes and T ’s nodes such that it results their maximum common subgraph, then

• a predicate node p in T is counted if it and all referent nodes linking to it are aligned,
• an operator node o in T is counted if it and all wrapper and referent nodes linking to it

are aligned,
• count one for a predicate/operator node f in T if the wrapper node linked from f is

aligned and the operator node that it links to is counted and f itself is also counted.

Intuitively, the last counting assigns credit to a component in the test DRS if its position is
correct w.r.t the gold-standard DRS. Let Ω(G, T) be the number of counts, then recall= Ω(G,T)

Ω(G,G)
,

precision= Ω(G,T)
Ω(T,T)

, and f-score= 2Ω(G,T)
Ω(G,G)+Ω(T,T)

.

Settings We split GMB into two parts: 7642 examples in the sections from 0 to 79 for training
(GMB.0-79), and the rest, 1776 examples, for testing (GMB.80-99). Because DeSCoG, to our
knowledge, is the first working on this corpus, we created the following three parsers for the
comparison purpose. FulSuP (Fully Supervised Parser) is a probabilistic semantic parser using
the supervised semantic lexicon directly extracted from the GMB and some manually created
semantic combinatory rules. This parser is actually a probabilistic interpretation of Boxer, the
core builder of GMB. DeSCoG+ is DeSCoG with the help from an “oracle” for the alignment
process: the information about which predicate/operator nodes’ labels are aligned with which
words is known beforehand thanks to the semantic lexicon given by GMB. DeSCoG[ran]
(baseline) is DeSCoG with random parameters. It is important to point out that the four
parsers use different forms of supervision. FulSuP, as its name recalls, uses most supervision
form; DeSCoG+ needs a set of (sentence, MRs) pairs and an oracle for training. DeSCoG and
DeSCoG[ran] learn from only (S, D, G) triples.

Results Figure 5 shows the performance of DeSCoG compared to the other three parsers. The
results clearly reflect the advantage of using the given semantic lexicon for training in FulSuP
and DeSCoG+. The fact that FulSuP achieves the best performance (f-score 92.1% with the full

1544

training dataset) is not surprising at all because its model is a probabilistic interpretation of
the Boxer’s model, which is the core builder of GMB. At the other end, DeSCoG[ran] performs
remarkably poorly with an f-score of 16.3%. The result discloses the effectiveness of the
parameter estimation, which helps DeSCoG gain the f-score 63.1%, which is significantly better
than DeSCoG[ran].

DeSCoG+ performs better than DeSCoG. An interesting point here is that the distance between
their performances is proportional to the training data size. This suggests that the alignment
process of DeSCoG insufficiently exploited new structures in the added data. This suspicion is
supported by the recall curve of DeSCoG: the recall is nearly unchanged after the training data
size reaches 5000. DeSCoG+, on the other hand, overcomes this obstacle thanks to the help of
the oracle.

Analysing the Alignment Phase

As discussed above, the quality of the alignment process strongly affects the final performance
of DeSCoG. Therefore, in this section, we will look into it in some more details. First of all,
because sentences longer than MAX_LENGT H = 25 are ignored and the time for processing
one sentence is not allowed to exceed MAX_T I M E = 5sec, it is clear that not all the sentences
and their semantic graphs in the training dataset are successfully aligned. We found that, for
the GMB.0-79, the alignment phase succeeded 5725 times, which is 74.9%.

To see when the alignment phase is wrong, let’s consider an alignment result. Figure 3, 4 show
the dependency structure and the semantic graph with the correct alignment for the sentence It
is not clear if the hostage-takers made any demands. The alignment algorithm correctly aligned
all of the words except any and if (Figure 6). Because Pr(→ |any) = 0.69> Pr(→ |i f) = 0.48,
both the operator node→’s were aligned with the word any, and, consequently, no nodes were
with the word if.

Theoretically, incorrect alignments could be tolerated thanks to the probability model presented
in Section 3.3. For instance, if any and if do not appear together so frequently, the above fault
will not have a strong effect. That is why DeSCoG+ does not perform significantly better than
DeSCoG. However, the fact that the recall of DeSCoG is nearly unchanged when the training
data size is over 5000 suggests that there are some structures that the alignment phase missed
even when more training data were used.

5.2 Geoquery

Geoquery is a corpus which is used in the Geoquery domain, a natural language interface to
a U.S geography database (Zelle and Mooney, 1996). The database contains 800 facts (e.g.
names, areas, and populations), which are represented as Prolog assertions. The corpus is a
collection of 880 English queries and their manually annotated MRs in a first-order Prolog
language augmented with meta-predicates and Functional Query Language (FUNQL).

Although our purpose is learning open-domain semantic parsing, we found two reasons to
test DeSCoG on Geoquery. First, because there are many existing semantic parsers working
on this corpus, the comparison is more reliable than the previous. Second, because of many
differences between Geoquery and GMB, we want to investigate the flexibility of DeSCoG. In our
experiments, 10-fold cross validation was used. A test MR is correct if it and the gold-standard
MR receive the same answer. Let nc , nD, nP be respectively the number of correct MRs, the test

1545

Figure 6: The alignment phase correctly aligned all the words except any and if. The correct
one is given in Figure 4.

Which rivers do not run through Texas

det

nsubj

aux

neg prep pobj

(a) Dependency structure. (b) Semantic graph.
Figure 7: Dependency structure and semantic graph for the query which rivers do not run
through Texas ?, which has the MR
answer(A,(river(A),not((traverse(A,B),const(B,stateid(Texas)))))).

data size, and the number of completed MRs, then recal l = nc/nD, precision = nc/nP , and
f score = 2nc/(nD + nP).

We made the following changes in DeSCoG. Firstly, semantic graphs are now for representing
Prolog-based first-order forms. This is easily done by using operator nodes to represent
metapredicates such as answer and largest (see Figure 7). Secondly, the Stanford parser9

(De Marneffe et al., 2006) was used to syntactically parse English sentences, because it better
deals with questions. Finally, the wrapping constraint was removed.

DeSCoG was compared with the following alternatives: SCISSOR (Ge and Mooney, 2005), an
integrated syntactic-semantic parser; KRISP (Kate and Mooney, 2006), a SVM-based parser
using string kernels; WASP (Wong and Mooney, 2006) and λ-WASP (Wong, 2007), two parsers
based on synchronous grammars; Z&C0510 (Zettlemoyer and Collins, 2005), a parser using
structural learning with CCG grammars; and SYN0 (Ge and Mooney, 2009), a parser using an
existing syntactic parser. Among those systems, SYN0 is the closest to DeSCoG: both of them
use existing syntactic parsers and a Prolog-based first-order language as their MR languages.
Table 2 shows the experimental results.

9http://nlp.stanford.edu/software/corenlp.shtml
10The results were reported on 600 training examples and 280 testing examples.

1546

Recall Precision Fscore

DeSCoG 74.89 87.40 80.66
SYN0 78.98 81.76 80.35

λWASP 86.59 91.95 89.19
Z&C05 79.29 96.25 86.95

SCISSOR 72.3 91.5 80.77
WASP 74.8 87.2 80.5
KRISP 71.7 93.3 81.1

Table 2: The results for DeSCoG and the alternatives on the Geoquery corpus.

Which/WDT states/VBZ border/NN Arizona/NN ?

nsubj nn

dobj

Figure 8: A sentence with its incorrect syntactic parse.

The results show that DeSCoG performs equivalently to SYN0, SCISSOR, WASP, and KRISP,
but worse than λWASP and Z&C05. According to Wong (2007), SCISSOR, WASP, and KRISP
perform worse than λWASP and Z&C05 because they use a different MR language, FUNQL.
However, because FUNQL is variable-free, it is clear that those parsers cannot be widely used
(e.g. they are not able to work on GMB). DeSCoG, on the other hand, is flexible. Although it
was mainly designed for GMB (i.e. using a DRS language, the C&C parser), it achieved equal
performance with many other parsers.

As mentioned above, DeSCoG and SYN0 use existing syntactic parsers and the same MR
language with λWASP. So why do they perform worse than λWASP and Z&C05? Firstly,
syntactic parsers are not really helpful when sentences are short. This is because sentence
structures could be easily learned just from (sentence, MR) pairs in this case (Ge, 2010).
Secondly, incorrect syntactic parses could lead to incorrect (or incomplete) MRs. For example,
with the incorrect syntactic parse shown in Figure 8, it is very difficult to build the correct
MR answer(A,(state(B),next_to(A,B),const(B,stateid(arizona)) because one
of the two words state and Arizona has to receive the meaning next_to(A,B), which is very
unlikely. On the other hand, parsers which learn parsing syntax and semantics simultaneously
could easily overcome this problem when they recognize that the word border should be a head
of two dependents. This is thanks to the high frequency of the appearance of the structure
A border B in the Geoquery corpus, and that the word border likely matches the meaning
next_to(A,B).

Conclusion

This paper introduced a new learning approach, DeSCoG, mainly for open-domain semantic
parsing. Our approach, on the one hand, is different from others which use lambda calculus. In
those approaches, learning semantic lexicon requires huge effort because they face the λ-inverse
problem. In our approach, this problem is avoided thanks to the usage of semantic graphs,
which provides maximal freedom for breaking and combining MRs. In order to bias the search
in a very large parse space, we used the prior knowledge of syntax encoded in dependency
structures and a probability model. The former provides a skeleton for semantic composition
whereas the latter tells the parser which combinations are more preferable.

On the other hand, DeSCoG has common points with some approaches. First, the idea of

1547

flexible semantic composition is also proposed by Clarke et al. (2010); Liang et al. (2011)
where lambda forms and semantic composition rules are removed. Second, the use of existing
syntactic parsers in DeSCoG is inspired by Ge and Mooney (2009). Finally, UPS (Poon and
Domingos, 2009), Alshawi et al. (2011), and DeSCoG use dependency structures as the prior
knowledge of syntax for semantic composition.

We tested DeSCoG on the two corpora, GMB for open-domain semantic parsing and Geoquery
for domain-dependent semantic parsing. DeSCoG achieved the f-score 63.1% on GMB. The fact
that this f-score is significantly higher than the f-score of the random parser (16.3%) reflects
that our proposed parsing model works for open-domain semantic parsing. Moreover, DeSCoG
performed on Geoquery equally to many existing parsers: SYN0, SCISSOR, WASP, and KRISP.

Appendix: Search heuristics

We will describe a method for finding the best semantic graph G∗ in Equation 6 given a sentence
S and its dependency structure D. The problem is indeed searching within an enormous
semantic graph space. The search is biased by the dependency structure D and the probability
model given above. Here, we use the beam search strategy to cut off branches which could lead
to solutions with low probabilities. To reduce the total complexity, we divide the search into two
stages. First, the search, with the goal to maximize Pr(Gc |S, D)Pr(B|Gc , S, D), will output a list
of N -best (Gc , B)’s. Then, the search will look for the best W for each of those N -best (Gc , B)’s.

Stage 1 The goal of this stage is to find N -best (Gc , B)’s. The search processes one word at a
time with the order: (i) from left to right, and (ii) all the dependents of the word were already
processed. And, each word is processed only one time (i.e. no backtracking required). For
example, given the sentence in Figure 2a, It is processed first, then clear and is; not is processed
last. When processing a word (e.g. is), the search will considers all the candidate partial graphs
for the meaning of this word, then use the binding operator to combine them with the available
parses yielded after processing the prior words (it, clear). When there are no words left, it will
remove all but N -best candidates with the highest Pr(Gc |S, D)Pr(B|Gc , S, D).

Stage 2 After finding the set of N -best (Gc , B)’s, the search will look for the most probable
W ∗ for each (Gc , B), i.e. solve W ∗ = arg maxW Prw(W |Gc , B, S, D) where Prw(W |Gc , B, S, D) is
given by Equation 5. Because the normalizing factor Z is the same for given Gc , B, the task is to
maximize the third component under the wrapping constraint, which is encoded in ψ(W). It is
worth noting that this is indeed a linear optimization problem where the logarithm of the third
component, i.e.

∑
f ⊙̂ko∈W log Prw
�

f ⊙̂ko|Gc(f), Gc(o), POS(path(s(f), s(o)))
�
, is the objective

function. Therefore, we solve it by making use of Integer Linear Programming11. In order to
calculate Z for each Gc , B, we need to take the sum over all feasible W ’s, which is intractable.
Therefore, Z is approximated on M -best W ’s Z ≅

�∑M
i=1 eF(Wi)
�−1. Together, this give us a set

of triples (Gc , B, W) with their probabilities.

Acknowledgments

We thank Remko Scha for valuable discussions and three anonymous reviewers for helpful
comments.

11Gurobi solver is used. http://www.gurobi.com/

1548

References

Allen, J., Swift, M., and de Beaumont, W. (2008). Deep semantic analysis of text. In Symposium
on Semantics in Systems for Text Processing (STEP), volume 2008.

Alshawi, H., Chang, P. C., and Ringgaard, M. (2011). Deterministic statistical mapping of
sentences to underspecified semantics. Proceedings of the Ninth IWCS, pages 15–24.

Baral, C., Dzifcak, J., Gonzalez, M. A., and Zhou, J. (2011). Using inverse lambda and
generalization to translate english to formal languages. Arxiv preprint arXiv:1108.3843.

Basile, V., Bos, J., Evang, K., and Venhuizen, N. (2012). Developing a large semantically
annotated corpus. In Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC’12).

Blackburn, P. and Bos, J. (2000). Working with discourse representation theory: An advanced
course in computational semantics. Draft available at www. comsem. org.

Bos, J. (2005). Towards wide-coverage semantic interpretation. In Proceedings of Sixth
International Workshop on Computational Semantics IWCS, volume 6, pages 42–53.

Bos, J. (2008). Wide-coverage semantic analysis with boxer. In Semantics in Text Processing.
STEP 2008 Conference Proceedings, volume 1, pages 277–286.

Bos, J. (2009). Towards a large-scale formal semantic lexicon for text processing. In Proceedings
of the Biennal GSCL Conference From Form to Meaning: Processing Texts Automatically, pages
3–14.

Bos, J. (2011). A survey of computational semantics: Representation, inference and knowledge
in wide-coverage text understanding. Language and Linguistics Compass, 5(6):336–366.

Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K.,
Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., and Yin, X.
(2003). Users Manual: RoboCup Soccer Server — for Soccer Server Version 7.07 and Later. The
RoboCup Federation.

Clark, S. and Curran, J. (2007). Wide-coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics, 33(4):493–552.

Clarke, J., Goldwasser, D., Chang, M., and Roth, D. (2010). Driving semantic parsing from
the world’s response. In Proceedings of the Fourteenth Conference on Computational Natural
Language Learning, pages 18–27.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In Proceedings of
the 39th annual ACM southeast conference, pages 95–102.

De Marneffe, M., MacCartney, B., and Manning, C. (2006). Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–454.

Ge, R. (2010). Learning for semantic parsing using statistical syntactic parsing techniques.
Technical report, DTIC Document.

1549

Ge, R. and Mooney, R. (2009). Learning a compositional semantic parser using an existing
syntactic parser. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
2-Volume 2, pages 611–619.

Ge, R. and Mooney, R. J. (2005). A statistical semantic parser that integrates syntax and
semantics. In Proceedings of the Ninth Conference on Computational Natural Language Learning,
pages 9–16.

Geurts, B. and Beaver, D. I. (2011). Discourse representation theory. In Zalta, E. N., editor,
The Stanford Encyclopedia of Philosophy. Fall 2011 edition.

Goldwasser, D., Reichart, R., Clarke, J., and Roth, D. (2011). Confidence driven unsupervised
semantic parsing. In Proc. of the Meeting of Association for Computational Linguistics (ACL),
Portland, OR, USA.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition. Pearson
Prentice Hall.

Kamp, H. (1981). A theory of truth and semantic representation. Formal Semantics, pages
189–222.

Kate, R. and Mooney, R. (2006). Using string-kernels for learning semantic parsers. In
Proceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages 913–920.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: open
source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing proba-
bilistic CCG grammars from logical form with higher-order unification. In Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing, pages 1223–1233.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2011). Lexical gener-
alization in CCG grammar induction for semantic parsing. In Empirical Methods in Natural
Language Processing (EMNLP).

Liang, P., Jordan, M., and Klein, D. (2011). Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 590–599. Association for Computational Lin-
guistics.

Montague, R. (1970). Universal grammar. Theoria, 36(3):373–398.

Mylonakis, M. and Sima’an, K. (2011). Learning hierarchical translation structure with linguis-
tic annotations. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 642–652, Portland, Oregon, USA. Association
for Computational Linguistics.

1550

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models.
Computational linguistics, 29(1):19–51.

Petrov, S. (2009). Coarse-to-Fine Natural Language Processing. PhD thesis, University of
California at Berkeley.

Poon, H. and Domingos, P. (2009). Unsupervised semantic parsing. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, pages
1–10.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286.

Sangati, F. and Zuidema, W. (2011). Accurate parsing with compact tree-substitution grammars:
Double-dop. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 84–95, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Wong, Y. W. (2007). Learning for semantic parsing and natural language generation using
statistical machine translation techniques. ProQuest.

Wong, Y. W. and Mooney, R. J. (2006). Learning for semantic parsing with statistical machine
translation. In Proceedings of the main conference on Human Language Technology Conference of
the North American Chapter of the Association of Computational Linguistics, pages 439–446.

Zelle, J. M. and Mooney, R. J. (1996). Learning to parse database queries using inductive
logic programming. In Proceedings of the National Conference on Artificial Intelligence, pages
1050–1055.

Zettlemoyer, L. and Collins, M. (2005). Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. In Proc. of UAI, volume 5.

Zettlemoyer, L. S. and Collins, M. (2007). Online learning of relaxed CCG grammars for parsing
to logical form. In In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL-2007).

1551

