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ABSTRACT
Traditional general readability methods tend to underperform in domain-specific document
retrieval because they fail to effectively differentiate the reading difficulty of the individual
domain-specific terms and the semantic associations between the textual units in a document.
On the other hand, recently proposed domain-specific readability methods have relied upon an
external knowledge base which may be unavailable in some domains. We develop a novel un-
supervised framework for computing domain-specific document readability. Our model does
not require an ontology or a knowledge base to capture domain-specific terms in a document.
The sequential flow of terms in a document is modeled as a connected sequence of n-gram
fragments in the latent concept space. We investigate an automatic sequential n-gram deter-
mination scheme that aids in capturing appropriate n-gram fragments which are semantically
associated with the document’s theme and cohesive with the context. The domain-specific
readability cost of a document is computed based on n-gram cohesion and n-gram specificity
guided by the latent concepts. The cost can be employed to re-rank the search results gener-
ated from an information retrieval (IR) engine. The experimental results demonstrate that our
framework achieves significant improvement in ranking documents against the state-of-the-art
unsupervised comparative methods.

KEYWORDS: Term Sequence, LSI, IR, Domain-specific Readability, Ranking, Dynamic program-
ming.
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1 Introduction

Readability assessment is an important issue in NLP (Tanaka-Ishii et al., 2010). Traditional
general readability methods (Dubay, 2004) have been applied to several problem tasks such as
matching books with grade levels (Collins-Thompson and Callan, 2005; Fry, 1969). However,
the problem of readability has not been well explored in Information Retrieval (IR) (Kim et al.,
2012). Recently researchers have started looking at the problem in IR and several motivations
for incorporating readability in an IR system have already been clearly laid out in (Kim et al.,
2012; Tan et al., 2012; Nakatani et al., 2009; Yan et al., 2006; Collins-Thompson et al., 2011;
Jameel et al., 2011; Zhao and Kan, 2010; Kumaran et al., 2005). What has lacked is a thor-
ough investigation into the problem of reading difficulty in domain-specific IR because tra-
ditional unsupervised general readability formulae tend to underperform in domain-specific
document retrieval (Yan et al., 2006; Jameel et al., 2011). Domain-specific IR is important be-
cause many people are searching for information outside their domain of expertise (Bhavnani,
2002; Yan et al., 2006).

The most affected group who regularly experience difficulties in retrieving documents based
on readability are children (Collins-Thompson et al., 2011) and other users who are not do-
main experts (Yan et al., 2006). Hence, most of them will look for domain-specific documents
which they can easily comprehend (Bhavnani, 2002). Domain experts employ complex search
strategies such as usage of jargon and complex phrases to successfully retrieve documents
based on their reading level (White et al., 2009). Moreover, domain experts know their target
destinations such as the ACM Digital Library or Google Scholar using which they can success-
fully retrieve a document satisfying both relevance and their reading level (White et al., 2009).
In contrast, non-domain experts face immense difficulties in formulating a query due to less
exposure to the domain-specific terminologies (Vakkari et al., 2003; Paek and Chandrasekar,
2005).

Works which have looked into the problem of domain-specific readability (Yan et al., 2006;
Zhao and Kan, 2010) have remained constrained to certain domains only, for instance, the
Medical domain because of the required reliance on some knowledge bases to find domain-
specific terms in a document. To circumvent this limitation, we propose a novel unsupervised
framework for computing domain-specific document readability. The main factor that makes
our work superior compared with the existing domain-specific readability methods is that our
method does not require an external ontology or lexicon of domain-specific terms. We have
previously proposed two terrain models (Jameel et al., 2011, 2012) in Latent Semantic Index-
ing (LSI) (Berry et al., 1995) to predict the technical difficulty of documents in domain-specific
IR using heuristic methods based on conceptual hops between the unigrams and the evalua-
tion is done on one domain only. In this paper, we present an n-gram sequence determination
based method which captures appropriate n-gram fragments which are semantically linked
with the document automatically while traversing forward following the term sequence in the
document. We test the ranking effectiveness of our model on more than one domain. One
application of our method is in domain-specific vertical search engines.

Our contributions are as follows: 1) We develop a novel framework to capture suitable n-
gram fragments in a domain-specific document by optimizing n-gram fragment sequence con-
nections and taking into account n-gram fragment specificity and cohesion. 2) Our method
does not require a domain-specific knowledge base. 3) We conduct extensive experiments on
domain-specific document collections in order to show the readability ranking performance.
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2 Related Work

Unsupervised heuristic readability methods: Much research has been done in measur-
ing the reading level of text (Qumsiyeh and Ng, 2011). A detailed description about im-
portant heuristic readability methods such as Dale-Chall (Dale and Chall, 1948), Automated
Readability Index (ARI) (Senter and Smith, 1967), SMOG (McLaughlin, 1969), Coleman-Liau
(Coleman and Liau, 1975) etc, can be found in (Dubay, 2004). These methods compute the
vocabulary difficulty of a textual discourse. Their readability prediction is based on comput-
ing the number of syllables in a term, number of characters etc, which are the surface level
features of text. Heuristic readability methods consist of two components linearly combined
into a single formula. The components are - syntactic and semantic. These methods have long
been in existence and still remain a dominant tool for computing the reading difficulty of tradi-
tional documents. In fact, many popular word processing packages use them today. However,
readability methods tend to perform poorly on domain-specific texts (Yan et al., 2006) and
web pages (Collins-Thompson and Callan, 2005). There are other shortcomings (Bruce et al.,
1981) which undermine their importance. In (Nakatani et al., 2009) the authors described
an unsupervised method to re-rank the search results of a web search engine in descending
order of their comprehensibility using the Japanese Wikipedia but they failed to address the
shortcomings in the readability formulae.

Why readability methods underperform on domain-specific documents? Consider a short sen-
tence, “In its simplest form, a star network consists of one central switch, hub or computer,
which acts as a conduit to transmit messages.” The Flesch reading ease score for this sentence
is 62.11, which according to the score is not a difficult sentence. However, the sentence carries
a deep technical meaning which requires domain-specific knowledge for proper comprehen-
sion. Terms such as “star”, “network”, and “switch” are domain-specific terms in this example
but the readability formula has detected them as easy due to the surface level features.

Domain-Specific Readability Methods: To address the shortcomings inherent in the heuris-
tic readability methods, (Yan et al., 2006) proposed concept based readability ranking method
where they have used a domain-specific ontology to capture the domain-specific terms in a doc-
ument. Their method has a serious drawback in that it requires an ontology for every domain.
The authors have only shown the application of their method in one domain. (Kim et al., 2012)
described concept readability method in the medical domain. They have used average term
and concept familiarity scores from the OAC CHV knowledge base to compute the difficulty
of terms and concepts. (Zhao and Kan, 2010) presented domain-specific iterative readability
method based on grade levels. Their method is influenced by two popular web link structure
based algorithms which are HITS (Kleinberg, 1999) and SALSA (Lempel and Moran, 2001). A
limitation of their approach is that they need some seed concepts to initialize their algorithm.
This can sometimes be cumbersome as one has to search for a lexicon for every domain. In
(Nakatani et al., 2010) the authors used Wikipedia to build a list of some technical terms. In
contrast, our proposed framework in this paper does not require an ontology or seed concepts,
which can be regarded as a major innovation. The two heuristic terrain models proposed in
(Jameel et al., 2011, 2012) computed the technical difficulty of text documents and re-ranked
the results obtained from a general purpose IR system. A limitation of the terrain models
is that they cannot capture n-grams such as random access memory etc. Moreover, they lack
a solid theoretical foundation. In this paper, we introduce a principled approach to n-gram
fragment determination scheme where we first find the best n-gram sequence in a document
automatically. Domain-specific readability cost model is then developed for a document based

1311



Random access memory is a form of computer data storage.
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s1 s2 s3
s4

Figure 1: A sentence with four n-gram fragments (s1, s2, s3, s4). This sample sentence has been
taken from one of the Wikipedia documents in our Science test collection. The fragmented
sentence has been obtained using Equation 5.

on a new formulation of cohesion and specificity.

Supervised Methods for Readability: Although our proposed framework is completely unsu-
pervised, some supervised methods for computing the reading difficulty of text have been
proposed as well (François and Miltsakaki, 2012). Supervised learning approach for read-
ability can be considered as a classification problem. In (Liu et al., 2004), the authors have
used Support Vector Machines (SVM) (Vapnik, 1995) for recognizing the reading levels of
texts from user queries. They have used syntactic and vocabulary based features to train the
classifier. Language modeling has been applied to readability (Collins-Thompson and Callan,
2005) where the authors described a smoothed unigram model for computing the readability
of text documents such as web pages. In (Si and Callan, 2001), the authors also used unigram
language model to predict readability. Topic familiarity is different from traditional general
readability (Kumaran et al., 2005), where the authors studied re-ranking of a search engine
result based on familiarity. They also studied the importance of stopwords in their familiar-
ity classifier (FAMCLASS). In (Leroy et al., 2008), classification of health related documents
into three levels, namely, Beginner, Intermediate and Advanced is discussed. The authors
achieved high classification accuracy using their classifier. In (Schwarm and Ostendorf, 2005;
Petersen and Ostendorf, 2009) the authors combined word level features with other textual
features. They have used SVM together with several word level features to classify documents
based on readability. In (Heilman et al., 2008) the authors introduced a k-Nearest Neighbor
classifier based on grammatical features such as sentence length and the patterns of the parse
tree. (Bendersky et al., 2011) used several features including readability to improve relevance
ranking of the web search results.

Readability is a relative measure (Van Oosten and Hoste, 2011). In order to cater to the results
on an individual user basis, recently, methods using query log analysis have been proposed.
Search engine query log mining and building individual user profile classifier can also help to
solve the problem to some extent as done in (Collins-Thompson et al., 2011; Tan et al., 2012;
Kim et al., 2012). But this requires confidential and proprietary query log data with private
user session details (Silverstein et al., 1999). Many users might not want their sessions to be
recorded or used due to privacy concerns (Jones et al., 2007).

Readability has also been studied in computational linguistics (Leroy and Endicott, 2012). In
(Kate et al., 2010) the authors used several linguistic and language model features to build a
classifier to predict readability of texts. Language model features were found out to be im-
portant to their classifier. (Pitler and Nenkova, 2008) used several textual features in their
classifier. Their result shows that word features and average sentence length are strong predic-
tors but the strongest ones are the discourse features. One major limitation of the supervised
methods is that one needs a large amount of expensive annotated data (Kanungo and Orr,
2009). Language modeling approaches cannot capture domain-specific concepts in a domain
(Zhao and Kan, 2010). In contrast, our method does not need any annotated data.
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3 Background and Overview

We tackle the problem of domain-specific readability of text documents. We take as input a
document collection of related documents of a domain. We compute the domain-specific read-
ability of each document in the collection. Given a query, a similarity-based IR system retrieves
documents. We then re-rank the retrieved top-k results automatically based on readability.

3.1 Overview

We address the problem of domain-specific document readability based on an automatic
scheme for finding appropriate n-grams in the Latent Semantic Indexing (LSI) (Berry et al.,
1995) latent concept space. As in the previous domain-specific readability approaches, the
task lies in an effective capturing of domain-specific terms in the document and their individ-
ual specificity scores or scopes (e.g. document scope in (Yan et al., 2006)). In the LSI latent
space, n-gram fragments which are central to a document, mainly the domain-specific terms,
come close to their document vectors because the semantic fabric of the n-gram fragments in-
clines best with the technical content of the document (Bellegarda, 2000; Jameel et al., 2011).
Common n-grams will not be coherently linked with the document semantics. They can be
considered as non-central in that technical storyline (Bellegarda, 2000). N-grams which are
semantically similar in meaning will cluster close to each other in the latent space forming a
word cloud of semantically related terms (Berry et al., 1995).

We denote the sequence of unigrams in a document d as (t1, t2, · · · , tW ). In Figure 1, an or-
dered sequence of terms (t1, t2, · · · , t10) is shown. Using our proposed methods, the sequence
of unigrams can be formed into a sequence comprising of n-gram fragments such as “random
access memory” or a connective such as “is a”, which are examples of n-gram fragments of
order 3 and 2 respectively. An example of a sequence of variable length n-gram fragments is
also shown in Figure 1, which is composed of S = (s1, s2, s3, s4). The sequential flow of terms
in a document is modeled as a sequence of n-gram fragments. In this paper, we investigate
an automatic sequential n-gram determination scheme that aids in capturing the appropriate
n-grams which are semantically associated with the document’s theme and cohesive with the
context. Cost expended during n-gram formation step can be regarded as a reading difficulty
cost of a document. Our proposed n-gram sequence cost optimization linearly combines the
effect of both cohesion and specificity, which play a dominant role in determining the domain-
specific readability of a document. Some domain-specific readability methods have similar
consideration of cohesion and term’s domain-specific importance such as (Jameel et al., 2011,
2012; Yan et al., 2006), but they have some serious limitations as mentioned in Section 2.

The first step of our framework is to generate all n-gram fragments (i.e. unigrams, bi-grams,
tri-grams etc.) in a document with a predefined maximum value of n, and subsequently we con-
struct a weighted n-gram fragment-document matrix using the product of normalized n-gram
frequency and inverse n-gram document frequency (formulae given in (Salton and Buckley,
1988)), where rows are represented by n-gram fragments and columns by documents. Then
we perform LSI and obtain a low-dimensional representation of the original vector space. The
main computation in LSI is Singular Value Decomposition (SVD) (Golub and Reinsch, 1970).
Computing the SVD of a matrix is generally computationally expensive both in space and time
(Berry et al., 1995). But with the fast development of better algorithms to compute the SVD,
such concerns have been addressed (Wang et al., 2011; Zha et al., 1998).

In (Yan et al., 2006) the authors introduced two components in determining the overall
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domain-specific readability of a document which are “document scope” and “document co-
hesion”. The hypothesis is that readability of a document will not only depend on the reading
difficulty of the individual terms but also on how the terms in the document are related to one
another in the document. Hence a document comprising of many domain-specific terms will
be difficult to read and also if the terms are not related to each other (low cohesion) in the
same document then the reader will face difficulties in relating different concepts of a domain
(Yan et al., 2006). However, the computation of document scope and cohesion in (Yan et al.,
2006) is accomplished using an ontology tree which requires an ontology for every domain.
Our proposed computation of document scope is different as that in (Yan et al., 2006). We
introduce “n-gram specificity” which is able to capture document scope more effectively. As
stated earlier, an n-gram fragment which is coherently linked with the technical storyline of a
document will be close (Bellegarda, 2000; Jameel et al., 2011, 2012) to the document in the
LSI latent space and thus will be more specific to that technical storyline. We use the notion of
closeness of an n-gram vector to the document vector in the LSI latent space to compute the
n-gram specificity.

Psychologists have studied various aspects which lead a reader to comprehend particular piece
of discourse (Graesser et al., 1997). An important aspect in text comprehension is cohesion
between texts. Cohesion is the property of text in which the units are semantically related to
each other and describe one theme. Cohesion is important because the interpretation of one el-
ement of text depends on that of another. Texts frequently exhibit varying degrees of cohesion
in different sections and hence the start of the text will not be cohesive with the end of the same
text (Halliday and Hasan, 1976). Our work is inspired by this observation and we maintain the
term order in the document in order to compute cohesion between the n-gram fragments in
sequence. Text cohesion has been discussed in (Yan et al., 2006; Ferstl and von Cramon, 2001;
Morris and Hirst, 2006; Moe, 1979; Graesser et al., 2004) which establish relation between
cohesion and comprehension. Accurate comprehension of technical texts requires accurate
identification of the technical meaning of the terms and connections between the terms with
the surrounding parts of the text (Freebody and Anderson, 1983). Describing too many diffi-
cult non-cohesive terms in sequence will make the reading path of the reader troublesome and
thus will affect discourse comprehension (McNamara et al., 1996).

One may argue why we have used a conceptual model instead of the original high-dimensional
vector space? An obvious bottleneck in the original vector space is the curse of dimensionality
as one has to deal with the space which will be enormous. The high dimensionality would
lead to huge computational cost. Moreover, obtaining the n-gram fragment and document
semantic relationships directly from the vector space is not possible (Berry et al., 1995) un-
less additional techniques such as LSI (Deerwester et al., 1990) or the method described in
(Yamamoto and Church, 2001) is applied. LSI also handles issues related to data sparsity.

4 Sequential N-gram Connection Model (SNCM)

We present our model that establishes sequential n-gram connections in the document and
eventually a cost is expended in order to make such a connection of n-grams in sequence.
The aggregated cost expended in the document can be regarded as a document’s domain-
specific readability cost. If the textual units are not cohesive, then the reader faces cognitive
difficulties in comprehension. In addition, if the individual textual units are difficult, then the
reader expends cognitive load in figuring out the inherent meaning of the textual unit while
reading the text (Yan et al., 2006). This phenomenon can be captured in a cost computation
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model described below.

Let s be an n-gram fragment. Let d be the document where this n-gram fragment occurs. Let
this fragment be represented as a vector in the LSI latent space as �s and the document vector
as �d. We compute the n-gram specificity, ϑ(�s, �d), using the following formula:

ϑ(�s, �d) = cosine_sim(�s, �d) (1)

where cosine_sim(�s, �d) is the cosine similarity (formula given in (Bellegarda, 2000)) between
the n-gram vector �s and the document vector �d in the latent space. An n-gram fragment will
obtain a high cosine similarity if it is close to the document vector in the LSI latent space and a
low cosine similarity value if it is not close. Therefore, what we expect is that domain-specific
n-grams will obtain a high cosine similarity (Jameel et al., 2012) value compared with com-
mon/general n-gram fragments. In (Park et al., 2002), they named a domain-specific term
extraction scheme as Degree of Domain-specificity. However, their method deals with a com-
pletely different problem task.

Suppose T = (t1, t2, · · · , tW ) is the term sequence and S = (s1, s2, · · · , sK ) is one particular
n-gram fragmented sequence of T , W is the total number of terms in the document d, K is
the number of n-grams in S. We denote n-gram cohesion, η(�si , �si+1), between the two n-grams
si and si+1 at positions i and i + 1 in sequence whose vectors are represented as �si and �si+1
respectively for a particular document as:

η(�si , �si+1) = cosine_sim(�si , �si+1) (2)
When the cosine similarity between the two consecutive n-grams is high, the n-gram fragments
are cohesive. The reason is that in the latent concept space n-gram fragments which appear un-
der similar storylines and similar semantic meaning will cluster close to each other (Berry et al.,
1995; Jameel et al., 2011, 2012). Hence the closer they are, the more semantically related they
tend to become. A reader will be able to semantically relate those n-gram fragments (which are
cohesive) easily (Halliday and Hasan, 1976) and will comprehend a piece of textual discourse
well. A document tends to be semantically readable if the constituent terms are simple (i.e. low
specificity values) with reference to the document vector in the LSI latent space. Therefore,
we hypothesize that specificity values will be directly proportional to the document’s over-
all domain-specific reading difficulty. In fact, in order to compute document generality and
readability, (Yan et al., 2006, 2011) have made a similar hypothesis and have evaluated their
hypothesis through experiments. We also hypothesize that cohesion is inversely related to the
document domain-specific readability. Again, this assumption is in line with the assumptions
made in (Yan et al., 2006, 2011).

4.1 Our First Model (SNCM1)

Our framework works towards determining a least cost n-gram connected sequence in the
document where at each forward transition sequential n-gram cohesion is minimized. The
sequence of terms consisting of variable n-gram fragments is considered while traversing for-
ward. For a particular document, suppose the term sequence T and its n-gram fragmented
sequence S are defined in a similar manner as above. The cost of the n-gram fragment se-
quence S, C (d)1 (S), can be written as:

C (d)1 (S) =
K∑

k=1

�
1

η( �sk−1, �sk) + 1

�
(3)

1 is added in the denominator to handle the cases where the n-gram vectors are orthogonal
to each other. Our goal is to minimize this cost, C (d)1 (S). The rationale for such minimization
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formulation is to fit the most cohesive n-gram fragment in sequence which matches with the
sequential storyline of the document. We achieve this using the following optimization scheme
given in Equation 4.

min
S

C (d)1 (S) (4)

This scheme ensures that an n-gram will be the least cost match at that position if it cohesively
fits in that sequential discourse. We now describe a dynamic programming method to find the
optimal cost. We define C (d)1 (Ti) as the optimal cost from the beginning until the term ti in
the document. Since the accumulated cost is the sum of the local costs, it can be decomposed
in the same way as its predecessors and the local cost accumulated with the n-gram itself. To
obtain the optimal path cost, we have to select the predecessor with the minimum total cost.
Another issue is that we need to set a maximum bound for the number of terms in an n-gram.
In principle, this bound could be set to any number m. Let �SX be a unigram composed of ti , �SY
be a bigram composed of (ti−1, ti) and �SZ be an m-gram composed of (ti−m+1, · · · , ti). �SX−1,
�SY−1 and �SZ−1 represent the particular n-gram (where n may be from 1 to m) in the optimal

sequential path that appears just before �SX , �SY and �SZ respectively. The optimal cost for all the
terms from t1 until position ti , (denoted as C (d)1 (Ti)) can be written as:

C (d)1 (Ti) =minimum
�

C (d)1 (Ti−1) +
1

η( �SX−1, �SX ) + 1
,

C (d)1 (Ti−2) +
1

η( �SY−1, �SY ) + 1
,

· · · ,
· · · ,

C (d)1 (Ti−m) +
1

η( �SZ−1, �SZ) + 1

�
(5)

The final reading difficulty of a document will not only depend on cohesion but also speci-
ficity. Therefore, to compute the final readability cost of a text document, we linearly combine
specificity values of the n-grams formed during sequential linear n-gram determination scheme
using Equation 5. The overall document domain-specific readability cost, E(d)1 , is given in Equa-
tion 6 where α (0 ≤ α ≤ 1) is a parameter controlling the relative contribution of cohesion
and specificity. A higher cost indicates that the document is difficult to read and a low cost
is indicative of the ease in reading the document. We shall use the cost values to re-rank the
search results obtained from a general purpose IR system.

E(d)1 =
αC (d)1 (TW ) + (1−α)

∑K
i=1 ϑ(�si , �d)

W
(6)

where W is the total number of terms in the document and it removes the document length
bias. Note that W in the denominator is more suitable than K because the reading difficulty of
a document is not dependent on the number of n-gram fragments formed.

4.2 An Extended Model: SNCM2

We now modify our previous model in Equation 3 further and extend to the case where we
combine the effect of both cohesion and specificity. In this model, we linearly combine the
effect of specificity along with cohesion during n-gram fragment determination phase. We
design the cost, C (d)2 (S), of an n-gram fragment sequence formation S as:
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C (d)2 (S) =
K∑

k=1

�
βϑ(�sk, �d) + (1− β) 1

η( �sk−1, �sk) + 1

�
(7)

β (0≤ β ≤ 1) is a parameter controlling the relative weights of the two components. Our goal
is to minimize the total cost C (d)2 (S) as follows:

min
S

C (d)2 (S) (8)
We can apply similar dynamic programming methodology. Let the optimal cost for all the terms
from t1 until position ti be C (d)2 (Ti).

C (d)2 (Ti) =minimum�
C (d)2 (Ti−1) + βϑ( �SX , �d) + (1− β) 1

η( �SX−1, �SX + 1)
,

C (d)2 (Ti−2) +βϑ( �SY , �d) + (1− β) 1

η( �SY−1, �SY + 1)
,

· · · ,
· · · ,

C (d)2 (Ti−m) +βϑ( �SZ , �d) + (1−β) 1

η( �SZ−1, �SZ + 1)

�
(9)

The overall document domain-specific readability cost E(d)2 is given in Equation 10. We rank
the documents based on an optimal cost obtained at the end of the n-gram sequence formation.

E(d)2 =
C (d)2 (TW )

W
(10)

Intuitive Justification: Specificity helps us in finding an n-gram fragment which matches with
the technical storyline of the entire document. Cohesion on the other hand helps in finding the
best linked n-gram fragments in the sequential discourse based on the context. In Equation 9
our objective is to find a least cost n-gram fragment that is a best match in the n-gram sequence
which considers both components, namely, cohesion and specificity simultaneously in the doc-
ument. The intuition behind adopting this strategy is to find n-gram fragments in a document
which are semantically linked with the document’s thematic structure and are cohesive with
the context. However, in Equation 5 we are minimizing only cohesion between the n-gram
fragments in sequence. This strategy may help us find cohesive n-grams with the context but
the n-grams may not be thematically linked with the technical storyline of the document be-
cause of the absence of specificity during n-gram sequence determination phase. A closer look
at the two variants of our model paints some interesting pictures. When β = 0 and α = 1
the two variants (����� and �����) behave equivalently. Note that the cost expended to fit
a specific n-gram fragment will be more in comparison to an n-gram fragment which is com-
mon/general. The longer the contextual history m, the better n-gram fragment prediction will
be. However, longer contextual histories shall bring about additional computational burden
especially for large datasets as ours.

5 Empirical Evaluation

5.0.1 Experimental Setup

Testbed Data: Current IR evaluation test sets such as TREC, and CLEF cannot be used in
our experiments due to lack of readability annotations. Currently, they only contain relevance
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judgments. So we chose two popular domains 1) Psychology, and 2) Science and subsequently
we crawled a large number of web pages in these domains. We enlist some of the important
resources from where we crawled the majority of the web pages as enlisting every crawled
resource would be too long. Psychology web pages were crawled from: 1) Wikipedia, 2)
Psychology.com, 3) Psychology Today 4) Simple English Wikipedia. Science web pages were
crawled from: 1) ScienceDaily, 2) ScienceForKids, 4) Simple English Wikipedia 5) Wikipedia,
6) About.com and some more related web resources. We also included Computer Science doc-
uments in the Science domain. The reason for choosing these online resources was mainly due
to their popularity and high quality content. By crawling web pages from different resources
available online we are able to collect domain-specific documents which match diverse gen-
res and audience. In all, our test collection includes 170,000 documents in Psychology with
154,512 n-grams in the vocabulary, and 300,000 documents in Science consisting of 490,770
n-grams in the vocabulary. No term stemming was performed as we wish to keep the original
words. In fact, traditional unsupervised readability methods do not consider stemmed terms.
We prepared two sets of document collection, one with stopwords1 kept and another with stop-
words removed. The objective is to study the role of stopwords in domain-specific readability
(Refer Section 2). Note that we conduct experiments in each domain separately.

We used Zettair2 to conduct document retrieval and obtained a ranked list using Okapi BM25
(Robertson et al., 1996) ranking function. BM25 retrieves documents based on relevance and
the retrieved list contained a mix of easy readable and difficult to read documents. We then
selected top-k documents retrieved from the ranked list where k = 10 for evaluation purpose.
Selecting a higher value of k would lead to a huge cognitive load on the human subjects (which
we describe later in the text) during annotation. Therefore, we keep this number as low as
possible. Also, a previous study has found that users generally look at the first page of the
search results containing the top ten documents (Silverstein et al., 1999).

Domain-specific information needs: Topics are queries posed to an IR system. We strictly
followed topic development guidelines laid out in “INEX 2009 Topic Development Guide-
lines”3. We had asked two undergraduate students possessing beginner level knowledge in
both Science and Psychology to generate domain-specific topics which represent real informa-
tion needs. They generated 110 topics in Psychology and 150 topics in Science. We enlist
some sample information needs in two domains here: Science: 1) “x-ray machine”, 2) “acid
and alkali” 3) “why the sky is blue”, Psychology: 1) “depression”, 2) “bad dreams”, 3) “school
of Psychology”.

Annotations and metrics: To obtain the ground truth of domain-specific readability of the
documents for evaluation purpose, two human annotators who were undergraduate students
having varied background were invited. They had basic knowledge about Science and Psy-
chology. They were asked to rate the documents based on relative domain-specific readability
judgment of the documents. For the judgment, the selection was among “very low domain-
specific readability” (i.e. difficult to read), “reasonably low domain-specific readability”, “aver-
age domain-specific readability”, “reasonably high domain-specific readability” and “very high
domain-specific readability”. These options were further translated to integer gains ranging
from 4 to 0. A simple readable document obtained a score of 4 whereas the most difficult
obtained a score of 0. In the beginning we acquainted them with the main aim of the study

1http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
2http://www.seg.rmit.edu.au/zettair/
3http://www.inex.otago.ac.nz/tracks/adhoc/gtd.asp
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and showed them some sample documents from our test collection so that they could get an
idea about the relative difficulty levels of the documents in the collection. Overall, the anno-
tators annotated 983 documents in Psychology and 1442 documents in Science. In order to
ascertain whether the manual annotation that we collected was feasible and reproducible, we
assessed the inter-annotator agreement by computing the Cohen’s Kappa coefficient. We found
that there was an acceptable agreement between the annotators (approximately 0.8) in both
Psychology and Science domains.

The evaluation metric is NDCG (same formula as in (Cai et al., 2011)) which is widely used
for IR ranking effectiveness measurement. We computed the NDCG@i for each annotator and
aggregated the final NDCG by taking the average. NDCG is well suited for our task because
it is defined by an explicit position discount factor and it can leverage the judgments in terms
of multiple ordered categories. NDCG@i scores will directly correlate with the readability an-
notation of the documents given by humans. Such scores can measure the quality of difficulty
ranking of documents based on readability judgments provided by humans. If NDCG is high,
it means the ranking function correlates better with the human judgments.

Result re-ranking scheme: We automatically re-rank the search results obtained from an
IR system from simple to difficult readable documents using our proposed model as well as
comparative methods. The reason is that domain experts normally employ complex search
strategies to successfully retrieve documents based on their reading level (refer Section 2).
They can find their material of interest easily but non-experts face difficulty in locating their
content as they have to sift through the ranked list carefully to locate a document which can
match their domain-specific reading level. In addition, previous related approaches have also
followed similar re-ranking scheme (i.e. re-ranking from simple to advanced without integrat-
ing the readability scores in the initial retrieval score) such as (Yan et al., 2006; Nakatani et al.,
2009; Kumaran et al., 2005) and in (Yan et al., 2011), the authors re-rank the top-k documents
obtained from a baseline IR system based on decreasing specificity.

Comparative methods: We chose popular unsupervised general readability methods as our
comparative models. They are ARI: Automated Readability Index, Coleman-Liau (denoted as
C-L in the tables in our results), Flesch Reading Ease formula, Fog, LIX and SMOG. More details
about these readability methods can be found in (Dubay, 2004). Our model does not have a
syntactic component. Hence, it would be more appropriate to compare with the semantic
components of the general readability methods (similar scheme also adopted in (Yan et al.,
2006; Collins-Thompson and Callan, 2005). More details about the semantic components can
be found in (Yan et al., 2006; Collins-Thompson and Callan, 2005; Dubay, 2004). For each
readability formula; it computes a readability score for every document. Then the documents
are re-ranked in descending order of the readability score. In addition, we also chose some
recent unsupervised comparative methods described in (Collins-Thompson and Callan, 2005)
such as Mean Log Frequency (denoted as ���) and %UNK. We also compare our method with
��� described in Jameel et al., (Jameel et al., 2011). We denote their method as ���.

In addition, we compare our method by manually collecting an extensive list of domain-specific
concepts from online resources. The collection process was indeed cumbersome and time con-
suming but it will help us evaluate our method by mimicking the working principle of the re-
cently proposed domain-specific readability methods which rely on some external knowledge-
bases. Overall we collected about 900 domain-specific concepts in Science and about 600 in
Psychology. In this method, we count how many times domain-specific terms occur in the
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(a) Psychology

 NDCG@3 NDCG@5 NDCG@7 NDCG@10 
ARI 0.515 0.548 0.582 0.618 
C-L 0.525 0.553 0.584 0.612 

Flesch 0.449 0.490 0.537 0.579 
Fog 0.513 0.547 0.577 0.612 
LIX 0.516 0.550 0.584 0.619 

SMOG 0.517 0.550 0.579 0.616 
CHM 0.465 0.456 0.473 0.482 

Counts 0.551 0.575 0.603 0.649 
MLF 0.530 0.554 0.581 0.631 

%UNK 0.558 0.585 0.611 0.653 
SNCM1 0.537 0.571 0.602 0.651 
SNCM2 0.581* 0.607* 0.635* 0.680* 

(b) Science

 NDCG@3 NDCG@5 NDCG@7 NDCG@10 
ARI 0.524 0.547 0.562 0.564 
C-L 0.541 0.551 0.572 0.576 

Flesch 0.554 0.560 0.566 0.574 
Fog 0.593 0.508 0.538 0.640 
LIX 0.541 0.562 0.583 0.585 

SMOG 0.584 0.538 0.500 0.523 
CHM 0.400 0.406 0.407 0.412 

Counts 0.595 0.563 0.564 0.627 
MLF 0.557 0.584 0.611 0.657 

%UNK 0.562 0.590 0.619 0.660 
SNCM1 0.617* 0.645* 0.672* 0.713* 
SNCM2 0.602* 0.625* 0.650* 0.702* 

Table 1: Comparison of ���� variants when α = β = 0.5 against the comparative methods in
both domains. * denotes statistically significant results for all comparisons according to paired
t-test (p < 0.05).

Doc1 Specificity Syl  Doc2 Specificity Syl 
earth science 0.74 2 cancer 0.71 2 

earth 0.78 1 in-spite 0.12 2 
any 0.09 1 lung cancer 0.71 3 

mapped 0.51 2 management 0.18 4 

Table 2: N-gram specificity values obtained from two separate documents in our collection
using Equation 1. We compare the specificity values with the number of syllables in the n-
gram (denoted as Syl).
document with respect to the list contained in the lexicon and then divide by the number of
words in the document to remove document length bias. We name this comparative method
as �	
��.

We had set the value for m in Equations 5 and 9 to 3 in our experiments. This could help
capture tri-gram fragments which we believe is a suitable number for large datasets. We
used MATLAB to compute SVD of the matrix using the “svds” function. The number of latent
concepts in LSI were 200 as previous studies have found that 150-200 dimensions give optimal
performance (Dumais, 1995). Our term weighting scheme was the product of normalized n-
gram count and inverse n-gram document frequency (formulae given in (Salton and Buckley,
1988)). Our main models are ����� and ����� with stopwords kept intact. Our objective is
to study the performance of our proposed variants by keeping the entire documents sequence
intact without removal of any of the features as term order plays an important role in our
model. Moreover, general traditional readability methods also work on original texts. We had
set the value of α = β = 0.5 in our experiments, which means that both the components have
equal weights in determining the final readability ranking order.

5.0.2 Results and Analysis

To enlighten the reader more about the specificity values, we show some specificity values
obtained from our experimental dataset in Table 2. The technical storyline of Doc1 revolves
around Earth Science and Doc2 deals with Lung Cancer. Domain-specific terms which we
indicate in bold text have obtained higher specificity values compared to common n-gram
fragments. We can also observe that the domain-specific terms appear simple in terms of the
number of syllables (denoted as Syl). Such n-grams will appear common to any readability
formula which relies on the number of syllables for text readability prediction. Note that for a
readability formula, if the number of syllables is more, the word is difficult.
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(a) Psychology

Method
Name

Queries Improved Average Improvement 

 SNCM1 SNCM2 SNCM1 SNCM2 
ARI 53 59 17.56% 18.06% 
C-L 61 61 22.84% 22.86% 

Flesch 65 65 25.66% 25.66% 
Fog 68 65 20.02% 17.12% 
LIX 60 62 22.05% 24.03% 

SMOG 58 60 23% 23.08% 
CHM 86 88 36% 38% 

Counts 29 40 1.02% 12.05% 
MLF 49 60 2.01% 20.76% 

%UNK 3 32 0 9.34% 

(b) Science

Method
Name

Queries Improved Average Improvement 

 SNCM1 SNCM2 SNCM1 SNCM2 
ARI 95 95 22.34% 22.01% 
C-L 90 91 20.12% 20.36% 

Flesch 92 92 21.56% 21.50% 
Fog 80 80 17.90% 17.90% 
LIX 90 90 20.19% 20.13% 

SMOG 92 92 25.56% 26% 
CHM 121 119 32% 29.99% 

Counts 82 79 19.76% 17.55% 
MLF 83 75 21.45% 19.23% 

%UNK 77 69 17.55% 16.53% 

Table 3: Performance comparison based on queries for ����� and �����.
NDCG@i =0 =0.2 =0.5 =0.8 =1

@3 0.506 0.524 0.537 0.566 0.573
@5 0.545 0.586 0.571 0.583 0.599
@7 0.579 0.605 0.602 0.630 0.627
@10 0.631 0.623 0.651 0.547 0.672

Table 4: Varying α for
����� in Psychology with
stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.496 0.499 0.498 0.537 0.567
@5 0.534 0.525 0.545 0.577 0.587
@7 0.570 0.571 0.574 0.598 0.611
@10 0.624 0.631 0.666 0.640 0.658

Table 5: Varying α for
����� in Psychology with-
out stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.603 0.604 0.617 0.545 0.599
@5 0.631 0.633 0.645 0.630 0.622
@7 0.657 0.646 0.672 0.639 0.647
@10 0.697 0.698 0.713 0.710 0.700

Table 6: Varying α for
����� in Science with stop-
words.

The main result of the document ranking performance is given in Table 1. In the Psychology
domain, ����� has performed better than other comparative methods whereas in the Science
domain we notice that SNCM1 has fared better than all other models. We performed a paired
t-test between the ���� variants and the comparative methods. We have obtained statistically
significant improvement with (p < 0.05) for all comparisons. �	
�� did not perform well in
both domains. An obvious reason is that this method demands a longer list of technical terms,
which is extremely time consuming to obtain. Readability methods have failed to give optimal
ranking performance. It is because they fail to capture the inherent semantics of text which our
method can effectively capture. ��� performed rather poorly in both the domains. One reason
could be due to the weak model and incorporation of non-linearity using a heuristic approach.
%UNK has shown some good performance. One reason is due to the use of an elaborate list of
words (over 3000). In Table 3 we present results based on the improvement we have obtained
on query basis. Results show that our models have obtained tangible improvement against the
comparative methods.

Some interesting conclusions can be derived from the results in Tables 4,5,6,7,8,9,10 and 11.
These results highlight the role of the two components, namely, cohesion and specificity in
influencing the overall ranking of the results. Tables 4,5,8 and 9 show the effect of varying
α and β in the Psychology domain. Our discussion will mainly focus on the results when
α = 0, α = 1 and β = 0, β = 1 because these values portray the contribution that the
two components, namely, cohesion and specificity individually make in the overall ranking
of the search results. We notice in the Psychology domain that ranking of the search results
is significantly dominated by cohesion (note the values close to α = 1 and β = 0). This
observation can be reasoned out from the usage of terms across the documents in the collection.
We noticed in the Psychology corpus that the documents are more general than the Science
documents. Science documents contain relatively more domain-specific terms than Psychology
documents. Thus the contribution of specificity will be more uniform across documents in
Psychology than in Science. Hence usage of terminologies will be almost at the same level.

We obtained some interesting results in the Science domain as well. In Tables 6 and 7, we note
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that the gap in the results when α = 0 and α = 1 is not very wide. This means that both the
components have approximately equal role in affecting the final ranking of the search results.
However an interesting conclusion is that cohesion has a slightly more dominant effect than
specificity but the importance of specificity cannot be completely disregarded (we conclude
this when α = β = 0.5). Even for ����� in Tables 10 and 11 the observations remain the
same where we note that both components have almost equal role in affecting the overall
ranking of the results.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.607 0.609 0.598 0.590 0.590
@5 0.633 0.633 0.620 0.606 0.617
@7 0.658 0.659 0.650 0.637 0.642
@10 0.699 0.701 0.698 0.691 0.693

Table 7: Varying α for
����� in Science without
stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.573 0.576 0.581 0.573 0.509
@5 0.599 0.602 0.607 0.598 0.548
@7 0.627 0.630 0.635 0.630 0.582
@10 0.672 0.675 0.680 0.675 0.634

Table 8: Varying β for
����� in Psychology with
stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.567 0.565 0.573 0.574 0.503
@5 0.587 0.585 0.591 0.592 0.542
@7 0.611 0.610 0.615 0.615 0.578
@10 0.658 0.656 0.660 0.661 0.630

Table 9: Varying β for
����� in Psychology with-
out stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.599 0.602 0.602 0.603 0.618
@5 0.622 0.625 0.625 0.628 0.646
@7 0.647 0.649 0.650 0.651 0.670
@10 0.700 0.702 0.702 0.704 0.719

Table 10: Varying β for ����� in Sci-
ence with stopwords.

NDCG@i =0 =0.2 =0.5 =0.8 =1
@3 0.590 0.590 0.594 0.587 0.620
@5 0.617 0.617 0.620 0.615 0.645
@7 0.642 0.642 0.644 0.641 0.670
@10 0.693 0.695 0.697 0.694 0.717

Table 11: Varying β for ����� in Science with-
out stopwords.

We can now infer that cohesion has a more deep seated role compared to specificity in the
two domains but specificity cannot be completely disregarded. We also studied the behavior of
���� variants along with the role of stopwords in the two domains. From the results we note
the stopwords have an important role to play in influencing ranking. This stands consistent
with the prior findings discussed in Section 2.

6 Conclusions and Future Work

We have presented our ���� models where we form a fragmented n-gram sequence in a doc-
ument. We find a least cost path in the n-gram sequence. The cost reflects the domain-specific
readability of a text document. We have shown that general readability methods and other
state-of-the-art unsupervised methods are not effective to determine the readability of a text
document. Experiments in two domains show the superiority of our proposed models. Our
proposed approach is more scalable than recently proposed domain-specific readability meth-
ods because we do not use any external domain-specific ontology to capture domain-specific
terms.

In the future, we would study how the hyperlink structure of the web can aid in determining
the reading difficulty of text documents. The hypothesis is that a general web page would link
with other general web pages (Akamatsu et al., 2011) as well. We would also explore other
features which could help improve readability ranking performance such as a web page layout
and content such as fonts, title fields, line and paragraph breaks, etc.
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