
Proceedings of COLING 2012: Technical Papers, pages 781–798,
COLING 2012, Mumbai, December 2012.

S-restricted monotone alignments: Algorithm, search
space, and applications

Steffen Eger
Goethe University Frankfurt, Grueneburg-Platz 1, 60323 Frankfurt am Main, Germany

steffen.eger@yahoo.com

Abstract
We present a simple and straightforward alignment algorithm for monotone many-to-many
alignments in grapheme-to-phoneme conversion and related fields such as morphology, and
discuss a few noteworthy extensions. Moreover, we specify combinatorial formulas for
monotone many-to-many alignments and decoding in G2P which indicate that exhaustive
enumeration is generally possible, so that some limitations of our approach can easily be
overcome. Finally, we present a decoding scheme, within the monotone many-to-many
alignment paradigm, that relates the decoding problem to restricted integer compositions
and that is, putatively, superior to alternatives suggested in the literature.

Title and Abstract in German

S-beschränkte monotone Alignierungen: Algorithmus,
Suchraum und Anwendungen
Wir präsentieren einen einfachen Alignment-Algorithmus für monotone ‘many-to-
many’ Alignierungen im Bereich Graphem-zu-Phonem-Konversion und verwandten
Gebieten wie z.B. Morphologie, und besprechen sinnvolle Erweiterungen. Darüber
hinaus geben wir kombinatorische Formeln im Bereich der monotonen ‘many-to-many’
Alignierungen und im Bereich des Decoding in G2P an, die suggerieren, dass vollständige
Enumeration hier im Allgemeinen möglich ist, sodass ein paar Einschränkungen unseres
Ansatzes leicht behoben werden können. Schließlich präsentieren wir ein Decoding-Schema,
innerhalb des Paradigmas von ‘many-to-many’ Alignierungen, dass das Decoding-Problem
mit beschränkten Zahlenkompositionen in Beziehung setzt und das in der Literatur
vorgeschlagenen Alternativen vermeintlich überlegen ist.

Keywords: many-to-many alignments, monotone alignments, string transduction, restricted
integer compositions, grapheme-to-phoneme conversion.

Keywords in German: many-to-many Alignierungen, monotone Alignierungen, String-
Überführungen, beschränkte Zahlenkompositionen, Graphem-zu-Phonem-Konversion.

781

1 Introduction
Grapheme-to-phoneme conversion (G2P) is the problem of transducing, or converting, a
grapheme, or letter, string x over an alphabet Σx into a phoneme string y over an alphabet
Σy. A crucial first step thereby is finding alignments between grapheme and phoneme
strings in training data. The classic alignment paradigm has assumed alignments that were

(i) one-to-one or one-to-zero; i.e. one grapheme character is mapped to at most one
phoneme character; this assumption has probably been a relic of both the traditional
assumptions in machine translation (cf. (Brown et al., 1990)) and in biological
sequence alignment (cf. (Needleman and Wunsch, 1970)). In the field of G2P such
alignment models are also called ε-scattering models (cf. (Black et al., 1998)).

(ii) monotone, i.e., the order between characters in grapheme and phoneme strings is
preserved.

It is clear that, despite its benefits, the classical alignment paradigm has a couple of
limitations; in particular, it may be unable to explain certain grapheme-phoneme sequence
pairs, a.o. those where the length of the phoneme string is greater than the length of the
grapheme string such as in

exact igzækt

where x has length 5 and y has length 6. In the same context, even if an input pair
can be explained, the one-to-one or one-to-zero assumption may lead to alignments that,
linguistically, seem nonsensical, such as

p h o e n i x
f – i: n i k s

where the reader may verify that, no matter where the ε is inserted, some associations will
always appear unmotivated. Moreover, monotonicity appears in some cases violated as well,
such as in the following,

centre sent@r

where it seems, linguistically, that the letter character r corresponds to phonemic r and
graphemic word final e corresponds to @.

Fortunately, better alignment models have been suggested to overcome these problems. For
example, (Jiampojamarn et al., 2007) and (Jiampojamarn and Kondrak, 2010) suggest ‘many-
to-many’ alignment models that address issue (i) above. Similar ideas were already present
in (Baldwin and Tanaka, 1999), (Galescu and Allen, 2001) and (Taylor, 2005). (Bisani and
Ney, 2008) likewise propose many-to-many alignment models; more precisely, their idea is
to segment grapheme-phoneme pairs into non-overlapping parts (‘co-segmentation’), calling
each segment a graphone, as in

ph oe n i x
f i: n i ks

which consists of five graphones.

782

The purpose of the present paper is to introduce a simple, flexible and general monotone
many-to-many alignment algorithm (in Section 3) that competes with the approach suggested
in (Jiampojamarn et al., 2007).1 Thereby, our algorithm is an intuitive and straightforward
generalization of the classical Needleman-Wunsch algorithm for (biological or linguistic)
sequence alignment. Moreover, we explore valuable extensions of the presented framework,
likewise in Section 3, which may be useful e.g. to detect latent classes in alignments, similar
to what has been done in e.g. (Dreyer et al., 2008). We also mention limitations of our
procedure, in Section 4, and discuss the naive brute-force approach, exhaustive enumeration,
as an alternative; furthermore, by specifying the search space for monotone many-to-many
alignments, we indicate that exhaustive enumeration appears generally a feasible option in
G2P and related fields. Next, in Section 6.1 we briefly mention how we perform training
for string transductions in the monotone many-to-many alignment case. Then, a second
contribution of this work is to suggest an alternative decoding procedure when transducing
strings x into strings y, within the monotone many-to-many alignment paradigm (in Section
6.2). We thereby relate the decoding problem to restricted integer compositions, a field in
mathematical combinatorics that has received increased attention in the last few years (cf.
(Heubach and Mansour, 2004), (Malandro, 2012), (Eger, 2012a)). Finally, we demonstrate
the superiority of our approach by applying it to several data sets in Section 7.

It must be mentioned, generally, that we take G2P only as an (important) sample application
of monotone many-to-many alignments, but that they clearly apply to other fields of natural
language processing as well, such as transliteration, morphology/lemmatization, etc. and
we thus also incorporate experiments on morphology data. Moreover, as indicated, we
do not question the premise of monotonicity in the current work, but take it as a crucial
assumption of our approach, leading to efficient algorithms. Still, ‘local non-monotonicities’
as exemplified above can certainly be adequately addressed within our framework, as should
become clear from our illustrations below (e.g. with higher-order ‘steps’).

2 S-restricted monotone paths and alignments

phh oh eh nh ih xh
f

i:

n
i

k

s

phhh oh eh nh ih xh
f

i:

n
i

k

s

Figure 1: Monotone paths in two-dimensional lattices corresponding to the monotone
alignments between x = phoenix and y = fi:niks given in Section 1. In the left lattice, we
have arbitrarily (but suggestively) colored each step in either red or blue.
Denote by Z the set of integers, by N the set of non-negative integers, and by R the set
of real numbers. Consider the two-dimensional lattice Z2. In Z2, we call an ordered list
of pairs (α0, β0) = (0, 0), . . . , (αk, βk) = (m,n) a path from (0, 0) to (m,n), and we call

1The many-to-many alignment algorithm designed in (Jiampojamarn et al., 2007) is an extension of
a one-to-one stochastic transducer devised in (Ristad and Yianilos, 1998). Moreover, (Brill and Moore,
2000) learn the weighted edit distance between string pairs where edit operations may encompass arbitrary
subsequences of strings, a setting also closely related to our problem of monotone many-to-many alignments.

783

(ai, bi) := (αi, βi) − (αi−1, βi−1), i = 1, . . . , k, steps. Moreover, we call a path λ in the
lattice Z2 from (0, 0) to (m,n) monotone if all steps (a, b) are non-negative, i.e. a ≥ 0,
b ≥ 0, and we call the monotone path λ S-restricted for a subset S of N2 if all steps lie
within S, i.e. (a, b) ∈ S.
Note that S-restricted monotone paths define S-restricted monotone alignments, between
strings x and y. For example, the two paths in Figure 1 correspond to the two monotone
alignments between x = phoenix and y = fi:niks illustrated above. Thus, we identify
S-restricted monotone paths with S-restricted monotone alignments in the sequel.
Moreover, note that the set and number of S-restricted monotone paths allow simple
recursions. To illustrate, the number TS(m,n) of S-restricted monotone paths from (0, 0)
to (m,n) satisifies

TS(m,n) =
∑

(a,b)∈S
TS(m− a, n− b), (1)

with initial condition TS(0, 0) = 1 and TS(m,n) = 0 if m < 0 or n < 0. As will be seen in
the next section, under certain assumptions, optimal monotone alignments (or, equivalently,
paths) can be found via a very similar recursion.

3 An algorithm for S-restricted monotone alignments
Let two strings x ∈ Σ∗x and y ∈ Σ∗y be given. Moreover, assume that a set S of allowable
steps is specified together with a real-valued similarity function sim : Σ∗x ×Σ∗y → R between
characters of Σx and Σy. Finally, assume that the score or value of an S-restricted monotone
path λ = (α0, β0), . . . , (αk, βk) is defined additively linear in the similarity of the substrings
of x and y corresponding to the steps (a, b) taken, i.e.

score(λ) =
k∑

i=1
sim(xαi

αi−1+1, y
βi

βi−1+1), (2)

where by xαi
αi−1+1 we denote the subsequence xαi−1+1 . . . xαi

of x and analogously for y.
Then it is not difficult to see that the problem of finding the path (alignment) with maximal
score can be solved efficiently using a very similar (dynamic programming) recursion as in
Equation (1), which we outline in Algorithm 1. Moreover, this algorithm is obviously a
straightforward generalization of the classical Needleman-Wunsch algorithm, which specifies
S as {(0, 1), (1, 0), (1, 1)}.
Note, too, that in Algorithm 1 we include two additional quantities, not present in the
original sequence alignment approach, namely, firstly, the ‘quality’ q of a step (a, b), weighted
by a factor γ ∈ R. This quantity may be of practical importance in many situations. For
example, if we specify sim as log-probability (see below), then Algorithm 1 has a ‘built-in’
tendency to substitute ‘smaller’, individually more likely steps (a, b) by larger, less likely
steps because in the latter case fewer negative numbers are added; if sim assigns strictly
positive values, this relationship is reversed. We can counteract these biases by factoring in
the per se quality of a given step. Also note that if q is added linearly, as we have specified,
then the dynamic programming recursion is not violated.
Secondly, we specify a function L :

(
Σ∗x × Σ∗y

)
× colors → R, where colors is a finite set

of ‘colors’, that encodes the following idea. Assume that each step (a, b) ∈ S appears in

784

C, C ∈ N, different ‘colors’, or states. Then, when taking step (a, b) with color c ∈ colors
(which we denote by the symbol (a, b)c in Algorithm 1), we assess the ‘goodness’ of this
decision by the ‘likelihood’ L that the current subsequences of x and y selected by the
step (a, b) ‘belong to’/‘are of’ color (or state) c. As will be seen below, this allows to
very conveniently identify (or postulate) ‘latent classes’ for character subsequences, while
increasing the algorithm’s running time only by a constant factor.

To summarize our generalizations over the traditional sequence alignment approach, (i) we
allow arbitrary non-negative steps S corresponding to S-restricted monotone alignments,
(ii) we include a goodness measure q that evaluates the ‘quality’ of a given step (a, b) ∈ S
taken, and (iii) we color each step in C different colors and assess the goodness of color c
for the subsequences of x and y selected by the current step (a, b) as the ‘likelihood’ L that
these subsequences are of color c. Finally, we define the score of a monotone path as an
additive linear combination of all three components discussed so that an efficient dynamic
programming recursion applies. Note that the algorithm’s running time is O(C|S|mn) and
is thus linear in the number of colors, the size of S, and the string lengths m and n.2

Algorithm 1 Generalized Needleman-Wunsch (GNW)
1: procedure GNW(x1 . . . xm, y1 . . . yn; S, sim, q, L)
2: Mij ← −∞ for all (i, j) ∈ Z2 such that i < 0 or j < 0
3: M00 ← 0
4: for i = 0 . . .m do
5: for j = 0 . . . n do
6: if (i, j) 6= (0, 0) then
7: Mij ← max

(a,b)c∈S
{Mi−a,j−b + sim(xi

i−a+1, y
j
j−b+1) + γq(a, b) +

χL
(
(xi

i−a+1, y
j
j−b+1), c

)
}

8: end if
9: end for
10: end for
11: return Mmn . Mmn holds value of path with maximal score
12: end procedure

Algorithm 2 (Hard) EM Training
1: procedure EM({(xi,yi) | i = 1, . . . , N}; S, T , ˆsim0, q̂0, L̂0)
2: t← 0
3: while t < T do
4: for i = 1 . . . N do
5: (xa

i ,ya
i)← GNW(xi,yi;S, ˆsimt, q̂t, L̂t)

. (xa
i ,ya

i) denotes the alignment between xi and yi

6: end for
7: ˆsimt+1, q̂t+1, L̂t+1 ← f({xa

i ,ya
i | i = 1, . . . , N})

. The function f extracts (count) updates from the aligned data
8: t← t+ 1
9: end while
10: end procedure

2But also note the dependence of the running time on the definition of sim, q and L.

785

As to the similarity measure sim employed in Algorithm 1, a popular choice is to specify it
as the (logarithm of the) joint probability of the pair (u,v) ∈ Σ∗x × Σ∗y, but a multitude
of alternatives is conceivable here such as the χ2 similarity, pointwise mutual information,
etc. (see for instance the overview in (Hoang et al., 2009)). Also note that sim(u,v) is
usually initially unknown but can be iteratively estimated via application of Algorithm 1
and count estimates in an EM-like fashion (cf. (Dempster et al., 1977)), see Algorithm 2.3
As concerns q and L, we can likewise estimate them iteratively from data, specifying their
abstract forms via any well-defined (goodness) measures. The associated coefficients γ and
χ can be optimized on a development set or set exogenously.

4 Exhaustive enumeration and alignments
In the last section, we have specified a polynomial time algorithm for solving the monotonic
S-restricted string alignment problem, under the following restriction; namely, we defined
the score of an alignment additively linear in the similarities of the involved subsequences.
This, however, entails an independence assumption between successive aligned substrings
that oftentimes does not seem justified in linguistic applications. If, on the contrary, we
specified the score, score(λ), of an alignment λ between strings x and y as e.g.

score(λ) =
k∑

i=1
log Pr

(
(xαi
αi−1+1, y

βi

βi−1+1) | (xαi−1
αi−2+1, y

βi−1
βi−2+1)

)

(using joint probability as similarity measure) — this would correspond to a ‘bigram scoring
model’ — then Algorithm 1 would not apply.
To address this issue, we suggest exhaustive enumeration as a possibly noteworthy alternative
— enumerate all S-restricted monotone alignments between strings x and y, score each of
them individually, taking the one with maximal score. This brute-force approach is, despite
its simplicity, the most general approach conceivable and works under all specifications
of scoring functions. Its practical applicability relies on the sizes of the search spaces for
S-restricted monotone alignments and on the lengths of the strings x and y involved.
We note the following here. By Equation (1), for the choice S =
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1)}, a seemingly reasonable specification in the context of
G2P (see next section), the number TS(n, n) of S-restricted monotone alignments is given
as (for explicit formulae for specific S, cf. (Eger, 2012b))

1, 1, 3, 7, 16, 39, 95, 233, 572, 1406, 3479, 8647

for n = 1, 2, . . . , 12 and e.g. TS(15, 15) = 134, 913. Moreover, for the distribution of letter
string and phoneme string lengths we estimate Poisson distributions (cf. (Wimmer et al.,
1994)) with parameters µ ∈ R as listed in Table 4 for the German Celex (Baayen et al.,
1996), French Brulex (Content et al., 1990) and English Celex datasets, as used in Section 7.
As the table and the above numbers show, there are on average only a few hundred or few
thousand possible monotone many-to-many alignments between grapheme and phoneme
string pairs, for which exhaustive enumeration appears, thus, quite feasible; moreover,
given enough data, it usually does not harm much to exclude a few string pairs, for which
alignment numbers are too large.

3The variant of EM that we describe is sometimes called hard EM while e.g. (Jiampojamarn et al.,
2007) present a soft EM version; but see the discussion in (Samdani et al., 2012).

786

Dataset µG µP P[G>15] P[P >15]

German-Celex 9.98 8.67 4.80% 1.62%
French-Brulex 8.49 6.71 1.36% 0.15%
English-Celex 8.21 7.39 1.03% 0.40%

Table 1: Avg. grapheme and phoneme string lengths in resp. data set, and probabilities
that lengths exceed 15.

5 Choice of S

Choice of the set of steps S is a question of model selection, cf. (Zucchini, 2000). Several
approaches are conceivable here. First, for a given domain of application one might specify
a possibly ‘large’ set of steps Ω capturing a preferably comprehensive class of alignment
phenomena in the domain. This may not be the best option because it may provide
Algorithm 1 with too many ‘degrees of freedom’, allowing it to settle in unfavorable local
optima, and thus may lead to suboptimal alignments (we find appropriate step restriction
to have dramatic effects on alignment quality, which we investigate more thoroughly in
subsequent research). A better, but potentially very costly, alternative is to exhaustively
enumerate all possible subsets S of Ω, apply Algorithm 1 and/or Algorithm 2, and evaluate
the quality of the resulting alignments with any choice of suitable measures such as alignment
entropy (cf. (Pervouchine et al., 2009)), average log-likelihood, Akaike’s information criterion
(Akaike, 1974) or the like. Another possibility would be to use a comprehensive Ω, but to
penalize unlikely steps, which could be achieved by setting γ in Algorithm 1 to a ‘large’
real number and then, in subsequent runs, employ the remaining steps S ⊆ Ω; we outline
this approach in Section 7.

Sometimes, specific knowledge about a particular domain of application may be helpful, too.
For example, in the field of G2P, we would expect most associations in alignments to be of
the type M -to-1, i.e. one or several graphemes encode a single phoneme. This is because it
seems reasonable to assume that the number of phonetic units used in language communities
typically exceeds the number of units in alphabetic writing systems — 26 in the case of
the Latin alphabet — so that one or several letters must be employed to represent a single
phoneme. There may be 1-to-N or even M -to-N relationships but we would consider these
exceptions. In the current work, we choose S = {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2)} for G2P
data sets, and for the morphology data sets we either adopt from (Eger, 2012b) or use a
comprehensive Ω with ‘largest’ step (2, 2).

6 Decoding
Decoding is the process of generating ŷ ∈ Σ∗y given x ∈ Σ∗x. Below, we explain how we
perform this process, within the S-restricted monotone many-to-many alignment framework.

6.1 Training a string transduction model
We first generate monotone many-to-many alignments between string pairs with one of the
procedures outlined in Sections 3 and 4. Then, we train a linear chain conditional random
field (CRF; see (Lafferty et al., 2001)) as a graphical model for string transduction on the
aligned data. The choice of CRFs is arbitrary; any transduction procedure tr would do, but
we decide for CRFs because they generally have good generalization properties. In all cases,
we use window sizes of three or four to predict y string elements from x string elements.

787

6.2 Segmentation
Our overall decoding procedure is as follows. Given an input string x, we exhaustively
generate all possible segmentations of x, feed the segmented strings to the CRF for
transduction and evaluate each individual resulting sequence of ‘graphones’ with an n-gram
model learned on the aligned data, taking the y string corresponding to the graphone
sequence with maximal probability as the most likely transduced string for x. We illustrate in
Algorithm 3. As to the size of the search space that this procedure entails, any segmentation

Algorithm 3 Decoding
1: procedure decode(x = x1 . . . xm; k̂, α, β, tr)
2: Z ← ∅
3: for s ∈ C (m, k̂, α, β) do . C (m, k̂, α, β) : the set of all integer compositions of m with k̂

parts, each between α and β
4: ŷ← tr(s)
5: zŷ ← ngramScore(x, ŷ)
6: Z ← Z ∪ {zŷ}
7: end for
8: zŷ∗ ← maxzŷ Z
9: return ŷ∗
10: end procedure

of a string x of length m with k parts uniquely corresponds to an integer composition (a
way of writing m as a sum of non-negative integers) of the integer m with k parts, as in,

ph oe n i x
7 = 2 + 2 + 1 + 1 + 1

It is a simple exercise to show that there are
(
m−1
k−1

)
integer compositions of m with k

parts, where by
(
m
k

)
we denote the respective binomial coefficient. Furthermore, if we put

restrictions on the maximal size of parts — e.g. in G2P a reasonable upper bound l on the
size of parts would probably be 4 — we have that there are

(
k

m−k
)
l
integer compositions of

m with k parts, each between α = 1 and β = l, where by
(
k
m

)
l+1 we denote the respective

polynomial coefficient (Comtet, 1974). To avoid having to enumerate segmentations for all
possible numbers k of segment parts of a given input string x of length m — these would
range between 1 and m, entailing

∑m
k=1

(
m−1
k−1

)
= 2m−1 possible segmentations in total in

the case without upper bound4 — we additionally train a ‘number of parts’ prediction
model with which to estimate k as k̂; we call this in short predictor model.

To illustrate the number of possible segmentations with a concrete example, if x has length
m = 15, a rather large string size given the values in Table 4, there are

2472, 2598, 1902, 990, 364, 91, 14, 1

possible segmentations of x with k = 8, 9, 10, 11, 12, 13, 14, 15 parts, each between 1 and 4.

For the sake of completeness, we note that our above discussion presumed that there are
no ‘empty’ parts in integer compositions, that is, that all parts in the integer composition

4In the case of upper bounds, (Malandro, 2012) provides asymptotics for the number of restricted integer
compositions, which are beyond the scope of the present work, however.

788

2PKE. abbrechet, entgegentretet, zuziehet
z. abzubrechen, entgegenzutreten, zuzuziehen
rP. redet, reibt, treibt, verbindet
pA. geredet, gerieben, getrieben, verbunden

Table 2: String pairs in morphology data sets 2PKE and rP (omitting 2PIE and 13SIA for
space reasons) discussed by (Dreyer et al., 2008). Changes from one form to the other are
in bold (information not given in training). Adapted from (Dreyer et al., 2008).

are integers between 1 and the upper bound l. When converting graphemes to phonemes,
we find it unlikely that a sound would be uttered without there being a corresponding
letter that gives rise to this sound,5 i.e. our assumption seems justified. In the general
monotone alignment case, however, the zero case would have to be included, e.g. when
converting phonemes to graphemes, or in the morphology data sets discussed below, where
e.g. segmentations as in

∅ m a c h t
5 = 0 + 1 + 1 + 1 + 1 + 1

seem justified to convert German third person verb form macht into participle form
gemacht. Analogously as above, we find that there are

(
k
m

)
l+1 integer compositions of

m with k parts, each between 0 and l. To illustrate again, when m = 15, there are
37080, 142749, 831204, 2268332, . . . possible segmentations of x with k = 8, 9, 10, 11, . . .
parts, each between 0 and 4. Obviously, these numbers are much larger than those where all
parts are ≥ 1, which is problematic not only from the point of view of computing resources
but may also affect accuracy results because more alternatives are provided from which
to select. Luckily, as illustrated below, it should usually be possible to specify modeling
choices where zero parts do not occur.

7 Experiments
We conduct our experiments on three G2P data sets, the German Celex (G-Celex) and
French Brulex data set (F-Brulex) taken from the Pascal challenge (van den Bosch et al.,
2006), and the English Celex dataset (E-Celex); and on the four German morphology data
sets discussed in (Dreyer et al., 2008), which we refer to, in accordance with the named
authors, as rP, 2PKE, 13SIA and 2PIE, respectively. Both for the G2P and the morphology
data, we hold monotonicity, by and large, a legitimate assumption so that our approach
would appear justified. As to the morphology data sets, we illustrate in Table 7 a few string
pair relationships that they contain, as indicated by (Dreyer et al., 2008).

7.1 Alignments
We generate alignments for our data sets using Algorithms 1 and 2 and, as a comparison,
we implement an exhaustive search bigram scoring model as indicated in Section 4 in an
EM-like fashion similar as in Algorithm 2, employing the CMU SLM toolkit (Clarkson and
Rosenfeld, 1997) with Witten-Bell smoothing as n-gram model. For Algorithm 1, which
we also refer to as unigram model in the following, we choose steps S as shown in Table

5As an exception might be considered e.g. extra terminal vowel sounds like in Italian sport, pronounced
as s p o r t @. As pointed out by a reviewer, other such exceptions might include short vowels in Arabic or
Hebrew script that are generally not graphemically represented.

789

E-Celex {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2)}
rP {(0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}

2PKE {(0, 2), (1, 1), (2, 1), (2, 2)}
13SIA {(1, 1), (1, 2), (2, 1), (2, 2)}
2PIE {(1, 1), (1, 2)}

Table 3: Data set and choice of S. For all three G2P data sets, we select the same S,
exemplarily shown for E-Celex. The choice of S for rP and 2PKE is taken from (Eger,
2012b). For 13SIA and 2PIE we use comprehensive Ω’s with largest step (2, 2) but the
algorithm ends up using just the outlined set of steps.

Perplexity H(L |P)
2PKE-Uni 7.002± 0.04 0.094± 0.001
2PKE-Bi 6.865± 0.02 0.141± 0.003
rP-Uni 9.848± 0.09 0.092± 0.003
rP-Bi 9.796± 0.05 0.107± 0.006

Brulex-Uni 22.488± 0.35 0.706± 0.002
Brulex-Bi 22.215± 0.21 0.725± 0.003

Table 4: Conditional entropy vs. n-gram perplexity (n = 2) of alignments for different
data sets. In bold: Statistically best results. K = 300 throughout.

3. As similarity measure sim, we use log prob with Good-Turing smoothing and for q we
likewise use log prob; we outline the choice of L below. Initially, we set γ and χ to zero.
As an alignment quality measure we consider conditional entropy H(L |P) (or H(P |L))
as suggested by (Pervouchine et al., 2009). Conditional entropy measures the average
uncertainty of a (grapheme) substring L given a (phoneme) substring P ; apparently, the
smaller H(L |P) the better the alignment because it produces more consistent associations.

In the following, all results are averages over several runs, 5 in the case of the unigram
model and 2 in the case of the bigram model. Both for the bigram model and the unigram
model, we select K, where K ∈ {50, 100, 300, 500}, training samples randomly in each EM
iteration for alignment and from which to update probability estimates.

In Figure 2, we show learning curves over EM iterations in the case of the unigram and
bigram models, and over training set sizes. We see that performance, as measured by
conditional entropy, increases over iterations both for the bigram model and the unigram
model (in Figure 2), but apparently alignment quality decreases again when too large
training set sizes K are considered in the case of the bigram model (omitted for space
reasons); similar outcomes have been observed when similarity measures other than log prob
are employed in Algorithm 1 for the unigram model, e.g. the χ2 similarity measure (cf.
(Eger, 2012b)). To explain this, we hypothesize that the bigram model (and likewise for
specific similarity measures) is more susceptible to overfitting when it is trained on too large
training sets so that it is more reluctant to escape ‘non-optimal’ local minima. We also see
that, apparently, the unigram model performs frequently better than the bigram model.

The latter results may be partly misleading, however. Conditional entropy, the way
(Pervouchine et al., 2009) have specified it, is a ‘unigram’ assessment model itself and may
therefore be incapable of accounting for certain contextual phenomena. For example, in the
2PKE and rP data, we find alignment possibilities of the following types,

790

– g e b t g e – b t
ge g e b en g e ge b en

where we list the linguistically ‘correct’, due to the prefixal character of ge in German,
alignment on the left and the ‘incorrect’ alignment on the right. By its specification,
Algorithm 1 must assign both these alignments the same score and can hence not distinguish
between them; the same holds true for the conditional entropy measure. To address this
issue, we evaluate alignments by a second method as follows. From the aligned data, we
extract a random sample of size 1000 and train an n-gram graphone model (that can account
for ‘positional associations’) on the residual, assessing its perplexity on the held-out set
of size 1000. Results are shown in Table 4. We see that, in agreement with our visual
impression at least for the morphology data, the alignments produced by the bigram model
seem to be slightly more consistent in that they reduce perplexity of the n-gram graphone
model, whereas conditional entropy proclaims the opposite ranking.

Figure 2: Learning curves over iterations for F-Brulex data, K = 50 and K = 300, for
unigram and bigram models.

7.1.1 Quality q of steps
In Table 5 we report results when experimenting with the coefficient γ of the quality of steps
measure q. Overall, we do not find that increasing γ would generally lead to a performance
increase, as measured by e.g. H(L |P). On the contrary, when choosing as set of steps a
comprehensive Ω as in Table 5, where we choose Ω = {(a, b) | a ≤ 4, b ≤ 4}\{(0, 0)}, for
γ = 0, we find values of 0.278, 0.546, 0.662 for H(L |P) for G-Celex, F-Brulex and E-Celex,
respectively, while corresponding values for γ = 10 are 0.351, 0.833, 1.401. Contrarily,
H(P |L), the putatively more indicative measure for transduction from x to y, has 0.499,
0.417, 0.598 for γ = 0 and 0.378, 0.401, 1.113 for γ = 10, so that, except for the E-Celex
data, γ = 10 apparently leads to improved H(P |L) values in this situation, while γ = 0
seems to lead to better H(L |P) values.
In any case, from a model complexity perspective,6 increasing γ may certainly be beneficial.
For example, Table 5 shows that with γ = 0, Algorithm 1 will select up to 15 different steps
for the given choice Ω, most of which seem linguistically questionable. On the contrary, with
a large γ, Algorithm 1 employs only four resp. five different steps for the G2P data; most

6Taking into model complexity is e.g. in accordance with Occam’s razor or Akaike’s information criterion.

791

importantly, among these are (1, 1), (2, 1) and (3, 1), all of which are in accordance with
linguistic reasoning as e.g. outlined in Section 5. Thus, we can think of q as a ‘regularization
term’ that prevents the algorithm from ‘overfitting’ the data.

(1, 1) (2, 1) (3, 1) (4, 1) (1, 2) (1, 0) (2, 3) (3, 2) (3, 3) (4, 2) (4, 3) (4, 4) (2, 2) (0, 1) (1, 3)
G-Celex 86.50 11.61 1.77 - 0.10 - - - - - - - - - -

86.14 8.17 1.63 0.02 0.00 2.56 0.10 0.04 0.01 0.09 0.91 0.28 - - -
F-Brulex 78.85 15.08 5.85 - - - 0.20 - - - - - - - -

75.64 13.80 2.52 0.36 0.07 5.07 0.29 0.10 0.02 0.38 1.01 0.68 - - -
E-Celex 88.87 6.58 3.05 - - - - - - - - - - 1.29 0.18

75.54 8.45 0.75 0.04 1.48 4.57 0.41 0.03 0.16 0.44 2.03 3.03 0.00 2.87 0.12

Table 5: Steps and their frequency masses in percent for different data sets for γ = 10
(top rows) and γ = 0 (bottom rows), averaged over two runs. We include only steps whose
average occurrence exceeds 10.

7.1.2 Colors

We briefly discuss here a possibility to detect latent classes via the concept of colored paths.
Assume that a corpus of colored alignments is available and let each color be represented by
the contexts (graphones to the left and right) of its members; moreover, define the ‘likelihood’
L that the pair px,y := (xαi

αi−1+1, y
βi

βi−1+1) is of color c as the (document) similarity (in an
information retrieval sense) of px,y’s contexts with color c, which we can e.g. implement
via the cosine similarity of the context vectors associated with px,y and c. For number of
colors C = 2, we then find, under this specification, the following kinds of alignments when
running Algorithms 1 and 2 with γ = 0 and χ = 1,

a nn u al
& n jU l

ph o n e me
f @U n i m

where we use bold font to distinguish the two color classes, and use original E-Celex
notation for phonemic characters. It is clear that the algorithm has detected some kind
of consonant/vowel distinction on a phonemic level here. We find similar kinds of latent
classes for the other G2P data sets, and for the morphology data, the algorithm learns (less
interestingly) to detect word endings and starts, under this specification.

7.2 Transductions
We report results of experiments on transducing x strings to y strings for the G2P data
and the morphology data sets. We exclude E-Celex because training the CRF with our
parametrizations (e.g. all features in window size of four) did regularly not terminate, due
to the large size of the data set (> 60,000 string pairs). Likewise for computing resources
reasons,7 we do not use ten-fold cross-validation but, as in (Jiampojamarn et al., 2008),
train on the first 9 folds given by the Pascal challenge, testing on the last. Moreover, for
the G2P data, we use an ε-scattering model with steps S = {(1, 0), (1, 1)} as a predictor
model from which to infer the number of parts k̂ for decoding and then apply Algorithm
3.8 For alignments, we use in all cases Algorithms 1 and 2 with γ = 0 and χ = 0. As
reference for the G2P data, we give word accuracy rates as announced by (Bisani and Ney,

7E.g. a single run of the CRF on the G-Celex data takes longer than 24 hours on a standard PC.
8We train the ε-scattering model on data where all multi-character phonemes such as ks are merged to a

single character, as obtained from the alignments as given by Algorithms 1 and 2.

792

CRF-3 CRF-4 CRF-4∗ DSE-F DSE-FL Mos3 Mos15 M-M+HMM BN MeR+A∗
F-Brulex 93.7 94.6 90.9 93.7 86.7
G-Celex 91.1 92.6 89.8 90.2

2PKE 79.8 80.9 74.7 87.4 67.1 82.8
rP 74.1 77.2 69.9 84.9 67.6 70.8

13SIA 85.6 86.5 82.8 87.5 73.9 85.3
2PIE 94.6 94.2 88.7 93.4 92.0 94.0

Table 6: Data sets and word accuracy rates in percent. DSE-F: (Dreyer et al., 2008) using ‘pure’
alignments and features. DSE-FL: (Dreyer et al., 2008) using alignments, features and latent
classes. Mos3, Mos15: Moses system with window sizes of 3 and 15, resp., as reported by (Dreyer
et al., 2008). M-M+HMM: Many-to-many aligner with HMM and instance-based segmenter for
decoding as reported by (Jiampojamarn et al., 2007). BN: (Bisani and Ney, 2008) using a machine
translation motivated approach to many-to-many alignments. MeR+A∗: Results of Moses system
on G2P data as reported by (Rama et al., 2009). CRF-3 Our approach with window size of 3
and 3-gram scoring model (see Algorithm 3). CRF-4: Our approach with window size of 4 and
3-gram scoring model. CRF-4∗: Our approach with window size of 4 and 4-gram scoring model
and 2-best lists (i.e. in Algorithm 3, obtain ŷ1 and ŷ2 as the two most probable transductions of
s). In bold: Best results (no statistical tests). Underlined: best results using ‘pure’ alignments.

2008), (Jiampojamarn et al., 2007), and (Rama et al., 2009), who gives the Moses ‘baseline’
(Koehn et al., 2007).

For the morphology data we use exactly the same training/test data splits as in (Dreyer
et al., 2008). Moreover, because (Dreyer et al., 2008) report all results in terms of window
sizes of 3, we do likewise for this data. For decoding we do not use a (complex) predictor
model here but rely on simple statistics; e.g. we find that for the class 13SIA, k is always
in {m− 2,m− 1,m}, where m is the length of x, so we apply Algorithm 3 three times and
select the best scoring ŷ string. To avoid zeros in the decoding process (see discussion in
Section 6.2), we replace the (0, 2) steps used in the rP and 2PKE data sets by a step (1, 3).

Results are shown in Table 6. For the G2P data, our approach always outperforms the best
reported results for pipeline approaches (see below), while we are significantly below the
results reported by (Dreyer et al., 2008) for the morphology data in two out of four cases.
Contrarily, when ‘pure’ alignments are taken into consideration — (Dreyer et al., 2008)
learn very complex latent classes with which to enrich alignments — our results are clearly
better throughout. In almost all cases, we significantly beat the Moses ‘baseline’.

8 Discussion
We believe our alignment procedure to be superior to the one presented in (Jiampojamarn
et al., 2007) (and likewise for the ‘machine translation motivated’ approach outlined by
(Bisani and Ney, 2008)) from a number of perspectives. First, it is more flexible and general
in that it allows the specification of arbitrary non-negative steps S and arbitrary similarity
measures sim. Moreover, as we have shown, our approach can very easily and conveniently
be adapted to incorporate step quality measures, which may turn out to be very useful
in detecting the ‘right’ choice of S (i.e. as a ‘regularization term’); and our approach can
also easily be generalized to incorporate the modeling of latent classes as e.g. done in
(Dreyer et al., 2008), within a polynomial running time framework; further generalizations
such as semi-ring specifications (Mohri, 2002) are obvious but not discussed in the current

793

work (cf. (Eger, 2012b)). Secondly, our algorithm appears very simple and intuitive, while
being computationally equivalently tractable and making the same sorts of independence
assumptions as in (Jiampojamarn et al., 2007).

As regards decoding, (Jiampojamarn et al., 2007) use a grapheme segmentation module
where each grapheme letter can form a chunk with its neighbor or stand alone, a decision
that is based on local context and instance-based learning. We hold this approach to
be insufficient because (besides the obvious drawback that, as we have shown, larger
chunks than two seem appropriate for G2P) it unecessarily restricts the search space for
grapheme segmentation; once a decision is made to join two letters, it cannot be reversed
and alternative segmentations are not considered. The same holds true for the phrasal
decoder approach outlined in (Jiampojamarn et al., 2008), the critique of which is already
uttered in (Dreyer et al., 2008), namely, that the input string is segmented into substrings
which are transduced independently of each other, ignoring context. Contrarily, for decoding
x, we compute all possible segmentations of x and score them (in conjunction with the
transduced ŷ strings) with higher order n-gram models, which is clearly superior to the
named approaches because it takes both context into account and does not restrict search
space. Moreover, given an adequate predictor model, we found that enumerating all possible
restricted integer compositions is so fast that no further investigation of restricting search
space is necessary.9

While we thus believe our individual components for alignment and decoding to be superior
to the mentioned approaches, our modeling of string transductions adheres to a pipeline
approach — in (Jiampojamarn et al., 2008)’s words — that, as they suggest, is inferior
to a unified framework, as they present it. All our components can be integrated within
such a framework, which is scope for future research. In contrast with (Dreyer et al.,
2008), we believe our alignments (per se) to be more adequate (they use one-to-one and
one-to-zero alignments), which the performance measures corroborate, while their idea
to enrich alignments with a multitude of latent classes (more complex than representable
in our framework) obviously outperforms our method on certain data sets such as those
encountered in morphology, where e.g. latent word classes may be of great importance.

Conclusion
We have presented a simple and general framework for generating monotone many-to-
many alignments that competes with (Jiampojamarn et al., 2007)’s alignment procedure.
Moreover, we have discussed crucial independence assumptions and, thus, limitations of this
algorithm and shown that exhaustive enumeration (among other methods) can overcome
these problems — in particular, due to the relatively small search space — in the field of
monotone alignments. Additionally, we have discussed problems of standard alignment
quality measures such as conditional entropy and have suggested an alternative decoding
procedure for string transduction within the monotone many-to-many alignment framework
that addresses the limitations of the procedures suggested by (Jiampojamarn et al., 2007)
and (Jiampojamarn et al., 2008). In future work, we intend to explore more extensively,
in particular, the effects of appropriate step restriction and regularization upon alignment
quality.

9We used the algorithm presented in (Updyke, 2010).

794

References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723.

Baayen, H., Piepenbrock, R., and Gulikers, L. (1996). The CELEX2 lexical database.
Linguistic Data Consortium, Philadelphia.

Baldwin, T. and Tanaka, H. (1999). Automated Japanese grapheme-phoneme alignment.
In Proc. of the International Conference on Cognitive Science, pages 349–354.

Bisani, M. and Ney, H. (2008). Joint-sequence models for grapheme-to-phoneme conversion.
Speech Communication, 50(5):434–451.

Black, A., Lenzo, K., and Pagel, V. (1998). Issues in building general letter to sound rules.
In The Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis. ISCA.

Brill, E. and Moore, R. (2000). An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics, pages 286–293. Association for Computational Linguistics.

Brown, P., Cocke, J., , Pietra, S. D., Pietra, V. D., Jelinek, F., Lafferty, J., Mercer, R.,
and Roossin, P. (1990). A statistical approach to machine translation. Computational
Linguistics, 16(2):79–85.

Clarkson, P. and Rosenfeld, R. (1997). Statistical language modeling using the CMU-
Cambridge toolkit. In Proceedings ESCA Eurospeech.

Comtet, L. (1974). Advanced Combinatorics. D. Reidel Publishing Company.

Content, A., Mousty, P., and Radeau, M. (1990). Une base de données lexicales informatisée
pour le francais écrit et parlé. In L’Année Psychologique, pages 551–566.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38.

Dreyer, M., Smith, J., and Eisner, J. (2008). Latent-variable modeling of string transduc-
tions with finite-state methods. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1080–1089, Honolulu, Hawaii.

Eger, S. (2012a). On S-restricted f -weighted integer compositions and extended binomial
coefficients. Submitted.

Eger, S. (2012b). Sequence alignment with arbitrary steps and further generalizations,
with applications to alignments in linguistics. Submitted.

Galescu, L. and Allen, J. (2001). Bi-directional conversion between graphemes and
phonemes using a joint n-gram model. In Proc. 4th ISCA Tutorial and Research Workshop
on Speech Synthesis, Perthshire, Scotland.

Heubach, S. and Mansour, T. (2004). Compositions of n with parts in a set. Congressus
Numerantium, 164:127–143.

795

Hoang, H., Kim, S., and Kan, M.-Y. (2009). A re-examination of lexical association mea-
sures. In MWE ’09 Proceedings of the Workshop on Multiword Expressions: Identification,
Interpretation, Disambiguation and Applications.

Jiampojamarn, S., Cherry, C., and Kondrak, G. (2008). Joint processing and discriminative
training for letter-to-phoneme conversion. In 46th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies (ACL-08: HLT), pages
905–913.

Jiampojamarn, S. and Kondrak, G. (2010). Letter-phoneme alignment: An exploration.
In The 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010),
pages 780–788.

Jiampojamarn, S., Kondrak, G., and Sherif, T. (2007). Applying many-to-many alignments
and Hidden Markov models to letter-to-phoneme conversion. In Proceedings of the Annual
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT 2007), pages 372–379, Rochester, NY.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E.
(2007). Moses: Open source toolkit for statistical machine translation. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (ACL), Prague,
Czech Republic. Association for Computational Linguistics.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th International Conf. on
Machine Learning, pages 282–289.

Malandro, M. (2012). Asymptotics for restricted integer compositions. Preprint available
at http://arxiv.org/pdf/1108.0337v1.

Mohri, M. (2002). Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350.

Needleman, S. and Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453.

Pervouchine, V., Li, H., and Lin, B. (2009). Transliteration alignment. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 136–144.

Rama, T., Kumar, A., and Kolachina, S. (2009). Modeling letter to phoneme conversion as
a phrase based statistical machine translation problem with minimum error rate training.
In NAACL HLT 2009 Student Research Workshop, pages 90–95, Colorada, USA.

Ristad, E. and Yianilos, P. (1998). Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(5):522–533.

Samdani, R., Chang, M.-W., and Roth, D. (2012). Unified expectation maximization. In
HLT-NAACL, pages 688–698.

796

Taylor, P. (2005). Hidden Markov models for grapheme to phoneme conversion. In
Proceedings of the 9th European Conference on Speech Communication and Technology
2005.

Updyke, J. (2010). A unified approach to algorithms generating unrestricted and restricted
integer compositions and integer partitions. Journal of Mathematical Modelling and
Algorithms, 9(1):53–97.

van den Bosch, A., Chen, S., Daelemans, W., Damper, R., Gustafson, K., Marchand,
Y., and Yvon, F. (2006). Pascal letter-to-phoneme conversion challenge. http://www.
pascalnetwork.org/Challenges/PRONALSYL.

Wimmer, G., Köhler, R., Grotjahn, R., and Altmann, G. (1994). Towards a theory of
word length distribution. Journal of Quantitative Linguistics, 1:98–106.

Zucchini, W. (2000). An introduction to model selection. Journal of Mathematical
Psychology, 44:41–61.

797

