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ABSTRACT
Lexical simplification is the task of replacing a word in a given context by an easier-to-understand
synonym. Although a number of lexical simplification approaches have been developed in
recent years, most of them have been applied to English, with recent work taking advantage
of parallel monolingual datasets for training. Here we present LexSiS, a lexical simplification
system for Spanish that does not require a parallel corpus, but instead relies on freely available
resources, such as an on-line dictionary and the Web as a corpus. LexSiS uses three techniques
for finding a suitable word substitute: a word vector model, word frequency, and word length.
In experiments with human informants, we have verified that LexSiS performs better than a
hard-to-beat baseline based on synonym frequency.

TITLE AND ABSTRACT IN SPANISH

¿Puede ser el Español más simple?
LexSiS: Simplificación Léxica en Español

La tarea de simplificación léxica consiste en sustituir una palabra en un contexto de-
terminado por un sinónimo que sea más sencillo de comprender. Aunque en los últimos
años han aparecido algunos sistemas para desempeñar esta tarea, la mayoría de ellos se han
desarrollado para el inglés y hacen uso de corpus paralelos. En este artículo presentamos LexSiS,
un sistema de simplificación léxica en español que utiliza recursos libremente disponibles tales
como un diccionario en línea o la Web como corpus, sin la necesidad de acudir a la creación de
corpus paralelos. LexSiS utiliza tres técnicas para encontrar un sustituto léxico más simple: un
modelo vectorial basado en palabras, la frecuencia de las palabras y la longitud de la palabras.
Una evaluación realizada con tres anotadores demuestra que para algunos conjuntos de datos
LexSiS propone sinónimos más simples que el sinónimo más frecuente.

KEYWORDS: Lexical Simplification, Text Simplification, Textual Accessibility, Word Sense
Disambiguation, Spanish.

KEYWORDS IN SPANISH: Simplificación Léxica, Simplificación Textual, Accesibilidad Textual,
Desambiguación, Español.
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1 Introduction

Automatic text simplification is an NLP task that has received growing attention in recent years
(Chandrasekar et al., 1996; Carroll et al., 1998; Siddharthan, 2002; Aluísio et al., 2008; Zhu
et al., 2010). Text simplification is the process of transforming a text into an equivalent which is
easier to read and to understand than the original, preserving, in essence, the original content.
This process may include the manipulation of several linguistic layers, and consists of sub-tasks
such as syntactic simplification, lexical simplification, content reduction and the introduction of
clarifications and definitions. Historically, text simplification started as a task mainly intended
as a preprocessing stage in order to make other NLP tasks easier (Chandrasekar et al., 1996;
Siddharthan, 2002). However, the task of simplifying a text also has a high potential to help
people with various types of reading comprehension problems (Carroll et al., 1998; Aluísio and
Gasperin, 2010). For example, lexical simplification by itself, without syntactic simplification,
can be helpful for users with some cognitive conditions, such as aphasic readers or people with
dyslexia (Hyönä and Olson, 1995). This second context in which text simplification is carried
out is closely related to social initiatives which promote easy-to-read material, such as the
Simple English section of the Wikipedia.1 There are also various national and international
organizations dedicated to the (mostly human) production of simple and simplified text.

Lexical simplification, an indispensable component of a text simplification system, aims at
the substitution of words by simpler synonyms, where the evident question is: “What is a
simpler synonym?”. The lion’s share of the work on lexical simplification has been carried out
for English. In this paper, we present LexSiS, the first system for the lexical simplification of
Spanish text, which proposes and evaluates a solution to the previous question. LexSiS is being
developed in the context of the Simplext project (Saggion et al., 2011), which aims at improving
text accessibility for people with cognitive impairments. Until now text simplification in Spanish
has concentrated mainly on syntactic simplification (Bott and Saggion, 2012). Lexical and
syntactic simplification are tasks which are very different in nature. Working with Spanish
presents particular challenges, most notably dealing with the lack of large-scale resources which
could be used for our purposes.

LexSiS uses (i) a word vector model to find possible substitutes for a target word and (ii) a
simplicity computation procedure grounded on a corpus study and implemented as a function
of word length and word frequency. LexSiS uses available resources such as the free thesaurus
OpenThesaurus and a corpus of Spanish documents from the Web. The approach we take
here serves to test how well relatively simple open domain resources can be used for lexical
simplification. Since comparable resources can be found for many other languages, our approach
is, in principle, language independent. As will be shown in this paper, by using contextual
information and a well-grounded simplicity criterion, LexSiS is able to outperform a hard-to-beat
frequency-based lexical replacement procedure.

Next section discusses related work on text simplification with particular emphasis on lexical
simplification. Section 3 presents the analysis of a sample of original and simplified texts
to design a word simplicity criteria. In Section 4 we present the resources we use for the
development of LexSiS, while in Section 5 we describe our lexical simplification approach. We
present the evaluation design in Section 6 and discuss the obtained results in Section 7. Finally,
in Section 8 we summarize our findings and indicate possible ways to improve our results.

1http://simple.wikipedia.org/

358



2 Related Work

Text simplification has by now become a well-established paradigm in NLP, combining a number
of rather heterogeneous sub-tasks, such as syntactic simplification, content reduction, lexical
simplification and the insertion of clarification material. In this paper, we are only interested in
lexical simplification as one of the various aspects of text simplification. Lexical simplification
requires, at least, two things: a way of finding synonyms (or, in some cases, hyperonyms), and
a way of measuring lexical complexity (or simplicity, see Section 3). Note that applying word
sense disambiguation can improve the accuracy of the simplification. Consider trying to simplify
the word hogar in the following sentence: La madera ardía en el hogar (‘The wood was burning
in the fireplace’). The most frequent synonym of hogar is casa (‘house’); however, choosing this
word for simplification would produce the sentence La madera ardía en la casa (‘The wood was
burning in the house’), which does not preserve the meaning of the original sentence. Choosing
the correct meaning of hogar, in this case ‘fireplace’, is important for lexical simplification.

Early approaches to lexical simplification (Carroll et al., 1998; Lal and Ruger, 2002; Burstein
et al., 2007) often used WordNet in order to find appropriate word substitutions, in combination
with word frequency as a measure of lexical simplicity. Bautista et al. (2011) use a dictionary
of synonyms in combination with a simplicity criterion based on word length. De Belder et al.
(2010) apply explicit word sense disambiguation, with a Latent Words Language Model, in
order to tackle the problem that many of the target words to be substituted are polysemic.

More recently, the availability of the Simple English Wikipedia (SEW) (Coster and Kauchak,
2011b), in combination with the “ordinary” English Wikipedia (EW), made a new generation of
text simplification approaches possible, which use primarily machine learning techniques (Zhu
et al., 2010; Woodsend et al., 2010; Woodsend and Lapata, 2011b; Coster and Kauchak, 2011a;
Wubben et al., 2012). This includes some new approaches to lexical simplification. Yatskar
et al. (2010) use edit histories for the SEW and the combination of SEW and EW in order to
create a set of lexical substitution rules. Biran et al. (2011) also use the SEW/EW combination
(without the edit history of the SEW), in addition to the explicit sentence alignment between
SEW and EW. They use WordNet as a filter for possible lexical substitution rules. Although they
do not apply explicit word sense disambiguation, their approach is context-aware, since they
use a cosine-measure of similarity between a lexical item and a given context, in order to filter
out possibly harmful rule applications which would select word substitutes with the wrong
word sense. Their work is also interesting because they use a Vector Space Model to capture the
lexical semantics and, with that, their context preferences.

Finally, there is a recent tendency to use statistical machine translation techniques for text
simplification (defined as a monolingual machine translation task). Coster and Kauchak (2011a)
and Specia (2010), drawing on work by Caseli et al. (2009), use standard statistical machine
translation machinery for text simplification. The former uses a dataset extracted from the
SEW/EW combination, while the latter is noteworthy for two reasons: first, it is one of the
few statistical approaches that targets a language different from English (namely Brazilian
Portuguese); and second, it is able to achieve good results with a surprisingly small bi-data-set
of only 4,483 sentences. Specia’s work is closely related to the PorSimples project, described
in Aluísio and Gasperin (2010). In this project a dedicated lexical simplification module was
developed, and it uses a thesaurus and a lexical ontology for Portuguese. They use word
frequency as a measure for simplicity, but apply no word sense disambiguation.
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3 Corpus Analysis

As the basis for the development of LexSiS, we have conducted an empirical analysis of a small
corpus of news articles in Spanish, the Simplext Corpus (Bott and Saggion, 2011). It consists
of 200 news articles, 40 of which have been manually simplified. Original texts and their
corresponding simplifications have been aligned at the sentence level, thus producing a parallel
corpus of a total of 590 sentences (246 and 324 in the original and simplified sets respectively).
All texts have been annotated using Freeling, including part-of-speech tagging, named entity
recognition and parsing (Padró et al., 2010).

Our methodology, explained more in depth in Drndarevic and Saggion (2012), consists in
observing lexical changes applied by trained human editors and preparing their computational
implementation accordingly. In addition to that, we conduct quantitative analysis on the word
level in order to compare frequency and length distributions in the sets of original and simplified
texts. Earlier work on lexical substitution has largely concentrated on word frequency, with
occasional interest for word length as well (Bautista et al., 2009). It has also been shown that
lexical complexity correlates with word frequency: more frequent words present less cognitive
effort for the reader (Rayner and Duffy, 1986). Our analysis is motivated by the desire to test
the relevance of these factors in the text genre we treat and the possibility of their combined
influence on the choice of the simplest out of a set of synonyms to replace a difficult input word.

We observe a high percentage of named entities (NE) and numerical expressions (NumExp)
in our corpus, due to the fact that it is composed of news articles, which naturally abound
in this kind of expressions. NEs and NumExps have been discarded from the frequency and
length analysis because they are tagged as a whole by Freeling, and this presents us with
two difficulties. First, some expressions, such as 30 millones de dólares (‘30 million dolars’) or
Programa Conjunto de las Naciones Unidas sobre el VIH/sida (‘Joint United Nations Programme on
HIV/AIDS’), are extremely long words (some exceed 40 characters in length) and are not found
in the dictionary; thus, we cannot assign them a frequency index. Second, such expressions are
not replaceable by synonyms, but require a different simplification approach.

We conduct word length and frequency analysis from two angles. First, we analyse the totality
of the words in the parallel corpus. Second, we analyse all lexical units (including multi-word
expressions, e.g. complex prepositions) that have been substituted with a simpler synonym.
These pairs of lexical substitutions (O-S) have been included in the so-called Lexical Substitution
Table (LST) and are used for evaluation purposes (see Section 6).

3.1 Word Length

Analysing the total of 10,507 words (6,595 and 3,912 in the original and simplified sets
respectively), we have observed that the most prolific words in both sets are two character
words, the majority of which are function words (97.61% in O and 88.97% in S). Two to
seven-character words are more abundant in the S set, while longer words are slightly more
common in the O set. The S set contains no words with more than 15 characters. Analysis of
the pairs in the LST has given us similar results: almost 70% of simple words are shorter than
their original counterparts.

On the whole, we can conclude that in S texts there is a tendency towards using shorter words
of up to ten characters, with one to five-character words taking up 64.10% of the set and one to
ten-character words accounting 95.54% of the content.
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3.2 Word Frequency

To analyse the frequency, a dictionary based on the Referential Corpus of Contemporary Spanish
(Corpus de Referencia del Español Actual, CREA)2 has been compiled for the purposes of the
Simplext project. Every word in the dictionary is assigned a frequency index (FI) from 1 to 6,
where 1 represents the lowest frequency and 6 the highest. We use this resource for the corpus
analysis because it allows easy categorisation of words according to their frequency and elegant
presentation and interpretation of results. However, in Section 5 this method is abandoned and
relative frequencies are calculated based on occurrences of given words in the training corpus,
so as to ensure that words not found in the above mentioned dictionary are also covered.

In the parallel corpus, we have documented words with FI 3, 4, 5 and 6, as well as words not
found in the dictionary. The latter are assigned FI 0 and termed rare words. This category
consists of infrequent words such as intransigencia (‘intransigence’), terms of foreign origin, like
e-book, and a small number of multi-word expressions, such as a lo largo de (‘during’). The latter
are recognized as multi-word expressions by Freeling, but are not included in the dictionary as
such. The ratio of these expressions with respect to total is rather small (1.08% in O and 0.59%
in S), so it should not significantly influence the overall results, presented in Table 1.

Frequency index Original Simplified

Freq. 0 10,53% 4,71%

Freq. 3 1,36% 0,74%

Freq. 4 1,35% 1,00%

Freq. 5 6,68% 5,67%

Freq. 6 80,08% 87,88%

Table 1: The distribution of n-frequency words in original and simplified texts.

We observe that lower frequency words (FI 3 and FI 0) are around 50% more common in O
texts than in S texts, while the latter are somewhat more saturated in highest frequency words.
As a general conclusion we observe that simple texts (S set) make use of more frequent words
from CREA than their original counterparts (O set).

In order to combine the factors of word length and frequency, we have additionally analysed
the length of all the words in the category of rare words. We have found that rare words are
largely (72.44% in O and 77.44% in S) made up of seven to nine-character words, followed by
longer words of up to twenty characters in O texts (39.42%) and fourteen characters in S texts
(29.88%).

We are, therefore, lead to believe that there is a degree of connection between the factors of
word length and word frequency, and that these are to be combined when scores are assigned
to synonym candidates. In Section 5.1 we propose criteria for determining word simplicity
exploiting these findings.

4 Resources

As we already mentioned in Section 2, most attempts to resolve the problem of lexical simplifica-
tion are concentrated on English and, in recent years, Simple English Wikipedia in combination
with the “ordinary” English Wikipedia has become a valuable resource for the study of text

2http://corpus.rae.es/creanet.html

361



simplification in general, and lexical simplification in particular. For Spanish, like for most other
languages, no comparably large parallel corpora are available.

Some approaches to lexical simplification make use of WordNet (Miller et al., 1990) in order to
measure the semantic similarity between lexical items and to find an appropriate substitute.
While Spanish is one of the languages represented in EuroWordNet (Vossen, 2004), its scope is
much more modest. The Spanish part of EuroWordNet contains only 50,526 word meanings
and 23,370 synsets, in comparison to 187,602 meanings and 187,602 synsets in the English
WordNet 1.5.

4.1 Corpora

The most valuable resources for lexical simplification are comparable corpora which represent
the “normal” and a simplified variant of the target language. Although the corpus described in
Section 3 served us as a basis for the corpus study and provided us with gold standard examples
for the evaluation presented in Section 6, it is not large enough to train a simplification model.
We, therefore, made use of an 8M word corpus of Spanish text extracted from the Web to train
the vector models in Section 4.3.

4.2 Thesaurus

We use the Spanish OpenThesaurus (version 2),3 which is freely available under the GNU Lesser
General Public License, for the use with OpenOffice.org. This thesaurus lists 21,831 target
words (lemmas) and provides a list of word senses for each word. Each word sense is, in turn,
a list of substitute words (and we shall refer to them as substitution sets hereafter). There is
a total of 44,353 such word senses. The substitution candidate words may be contained in
more than one of the substitution sets for a target word. The following is the Thesaurus entry
for mono, which is ambiguous between the nouns ‘ape’, ‘monkey’ and ‘overall’, as well as the
adjective ‘cute’.

(a) mono|4
- |gorila|simio|antropoide
- |simio|chimpancé|mandril|mico|macaco
- |overol|traje de faena
- |llamativo|vistoso|atractivo|sugerente|provocativo|resultón|bonito

OpenThesaurus lists simple one-word and multi-word expressions, both as target and substi-
tution units. In the current version of LexSiS, we only treat single-word units, but we plan to
include the treatment of multi-word expressions in future versions. We counted 436 expressions
of the kind, such as arma blanca (‘stabbing or cutting weapon’) or de esta forma (‘in this manner’).
Some of those expressions are very frequent and are used as tag phrases. The treatment of
multi-word expressions only requires a multi-word detection module as an additional resource.

4.3 Word Vector Model

In order to measure lexical similarity between words and contexts, we used a Word Vector
Model (Salton et al., 1975). Word Vector Models are a good way of modelling lexical semantics

3http://openthes-es.berlios.de
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(Turney and Pantel, 2010), since they are robust, conceptually simple and mathematically well
defined. The ‘meaning’ of a word is represented as the contexts in which it can be found. A word
vector can be extracted from contexts observed in a corpus, where the dimensions represent
the words in the context, and the component values represent their frequencies. The context
itself can be defined in different ways, such as an n-word window surrounding the target word.
Whether two words are similar in meaning can be measured as the cosine distance between the
two corresponding vectors. Moreover, vector models are sensitive to word senses. For example,
vectors for word senses can be built as the sum of word vectors which share one meaning.

We trained this vector model on the 8M word corpus mentioned in 4.1. We lemmatized the
corpus with FreeLing (Padró et al., 2010) and for each lemma type in the corpus we constructed
a vector, which represents co-occurring lemmas in a 9-word (actually 9-lemma) window (4
lemmas to the left and to the right). The vector model has n dimensions, where n is the
number of lemmata in the lexicon. The dimensions of each vector in the model (i.e. the vector
corresponding to a target lemma) represent the lemmas found in the contexts, and the value for
each component represents to number of times the corresponding lemma has been found in the
9-word context. In the same process, we also calculated the absolute and relative frequencies of
all lemmas observed in this training corpus.

5 LexSiS Method

LexSiS tries to find the best substitution candidate (a word lemma) for every word which has
an entry in the Spanish OpenThesaurus. The substitution operates in two steps: first the system
tries to find the most appropriate substitution set for a given word, and then it tries to find the
best substitution candidate within this set. Here the best candidate is defined as the simplest
and most appropriate candidate word for the given context. As for the simplicity criterion,
we apply a combination of word length and word frequency, and for the determination of
appropriateness we perform a simple form of word sense disambiguation in combination with a
filter that blocks words which do not seem to fit in the context.

In the first step, we check for each lemma if it has alternatives in OpenThesaurus. If this is the
case, we extract a vector from the surrounding 9-word window, as described in Section 4.3.
Since each word is a synonym to itself (and might actually be the simplest word among all
alternatives), we include the original word lemma in the list of words that represent the word
sense. We construct a common vector for each of the word senses listed in the thesaurus by
adding all the vectors (resulting from Section 4.3) to the words listed in each word sense. Then,
we select the word sense with the lowest cosine distance to the context vector. In the second
step, we select the best candidate within the selected word sense, assigning a simplicity score
and applying several thresholds in order to eliminate candidates which are either not much
simpler or seem to differ too much from the context.

5.1 Simplicity

According to our discussion in Section 3, we calculate simplicity as a combination of word length
and word frequency. The task of combining them, however, is not entirely trivial, considering
the underlying distribution of lengths and frequencies. In both cases simplicity is clearly not
linearly correlated to the observable values. We know that simplicity monotonically decreases
with length and monotonically increases with frequency, but a linear combination of the two
factors not necessarily behaves monotonically as well. What we need is a score for simplicity,
such that for all possible combinations of word lengths and frequencies of two words, w1 and

363



w2, score(w1) > score(w2) iff w1 is simpler than w2. For this reason, we try to approximate
the correlation between simplicity and the observable values at least to some degree.

In the case of length, our corpus study showed that a word with length wl is simpler than a
word with length wl + 1. But the degree to which it is simpler depends on the value of wl.
The corresponding difference decreases with longer values for wl. For words with a very high
wl value, a difference in simplicity between wl words and wl - 1 words is not perceived any
more. In our corpus, we found that very long words (10 characters and longer) were always
substituted with much shorter words with an average length difference of 4.35 characters. In
medium length range (from 5 to 9 characters), the average difference was only 0.36 characters,
and very short original words (4 characters or shorter) did not tend to be shortened in the
simplified version at all. For this reason we use the following formula:4

scorewl =

(p
wl − 4 if wl ≥ 5 ,

0 otherwise.

In the case of frequency, we make the standard assumption that word frequency is distributed
according to Zipf’s law (Zipf, 1935); therefore, simplicity must be similarly distributed (when
we abstract away from the influence of word length). In order to get a score which associates
simplicity to frequency in a way which comes closer to linearity, we calculate the simplicity
score for frequency as the logarithm of the frequency count cw for a given word:

scorefreq = log cw

Now the combination of the two values is

scoresimp = α1scorewl +α2scorefreq

where α1 and α2 are weights. We determined values for α1 and α2 in the following way:
we manually selected 100 good simplification candidates proposed by OpenThesaurus for
given contexts. We only considered cases which were both indisputable synonyms and clearly
perceived as being simpler than the original. Then we calculated the average difference
between the scores for word length and word frequency between the the original lemma and
the simplified lemma, and took these averaged differences as being the average contribution of
length and frequency to the receivable simplicity of the lemma. This resulted in α1 = −0.395

and α2 = 1.11.

4The formula for scorewl resulted in quite a stable average value for scorewl (woriginal)− scorewl (wsimplified) for
the different values of wl in the range of word lengths from 7 to 12, when tested on the gold standard (cf 6.3 below).
For longer and shorter words this value was still over-proportionally high or low, respectively, but the difference is less
pronounced than with alternative formulas we tried, and much smoother than the direct use of wl counts. In addition,
74% of all observed substitutions fell into that range.

5Note that word length is a penalizing factor, since longer words are generally less simple. For this reason, the value
for α1 is negative.
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5.2 Thresholds

There are several cases in which we do not want to accept an alternative for a target word, even
if it has a high simplicity score. First of all, we do not want to simplify frequent words, even if
OpenThesaurus lists them. So we set a cutoff point for frequent words, such that LexSiS does
not try to simplify words with a frequency higher than 1% (calculated on the training corpus in
4.3). We also discard substitutes where the difference in the simplicity score with respect to
the original word is lower than 0.5, because such words can be expected not to be significantly
simpler. We achieved this latter value through experimentation.

Many of the alternatives proposed by OpenThesaurus are in reality not acceptable substitutes.
We try to filter out words that do not fit into the context by discarding all candidates whose
word vector has a distance with a cosine inferior to 0.013, another value achieved through
experimentation.

Finally, there are two cases in which the system does not propose a substitute. First, there are
cases where none of the substitution candidates have low enough cosine distance to the context
vector (with the threshold of 0.013). There are also cases where the highest scoring substitute
is the same as the original lemma. In both cases the original word is preserved.

6 Evaluation

In this section we present the experimental set-up employed to evaluate LexSiS by comparing it
with two baselines and a gold standard. The evaluation was conducted thoroughly, rating the
degree of simplification and the preservation of meaning of the substitutions.

6.1 Baselines

We employ two baselines:

(a) Random: it replaces the target word with a synonym selected randomly from our resource.

(b) Frequency: it replaces a word with its most frequent synonym provided by the thesaurus,
presumed to be the simplest, similar to Devlin and Unthank (2006).

6.2 Gold Standard

As the gold standard we used the synonym pairs composed by the manual lexical substitutions
extracted from the corpus described in Section 3. Since current lexical simplification systems
for English handle only one-word cases (Yatskar et al., 2010; Biran et al., 2011), only single
lexical substitutions were taken intro consideration. For instance, the substitution of the word
pinacoteca (‘art gallery’) by museo (‘museum’) in the following sentence:

(b) (O) El visitante puede contemplar los óleos y esculturas que se exponen en la PINACOTECA.
‘The visitor can appreciate the paintings and sculptures showed in the ART GALLERY.’
(S) El visitante puede contemplar los óleos y esculturas que se exponen en el MUSEO.
‘The visitor can appreciate the paintings and sculptures showed in the MUSEUM.’

With that restriction, we found a total of 26 lexical substitutions in the corpus. We discarded
collocations and multi-word expressions, as well as single lexical substitutions which supposed
a mayor transformation in the sentence structure. For instance, the word pese a (‘despite’),
substituted with sin embargo (‘however’), has changed the structure of the sentence itself:
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(c) (O) Amnistía subrayó que Manning se encuentra detenido en “custodia máxima”, PESE A carecer
de antecedentes por violencia o infracciones disciplinarias durante la detención, lo que significa
que está atado de pies y manos durante todas las visitas y se le niega la oportunidad de trabajar y
salir de su celda.
‘Amnesty underlined that Manning is being held in “maximum custody”, DESPITE having no history of
violence or disciplinary offenses during detention, which means his hands and feet are tied during all
visits and he is denied the opportunity to work and leave his cell.’
(S) Bradley Manning ha tenido un buen comportamiento en la cárcel. SIN EMBARGO, Bradley
Manning está atado durante las visitas. Tampoco puede trabajar ni salir de su celda.
‘Bradley Manning has exhibited good behavior in prison. HOWEVER, Bradley Manning is tied during
visits. He cannot work or leave his cell.’

6.3 Evaluation Dataset

We have three different evaluation datasets.

(T-S/B) Target vs. System and Baselines: This dataset is composed of 50 unique target words,
together with their synonyms generated by LexSiS and the baselines. To create this dataset,
we first ran our system for lexical simplification through the original texts from the Spanish
Simplext Corpus (Bott and Saggion, 2011). This gave us 739 automatic lexical substitutions.
We randomly selected 50 sentences that included one lexical substitution. Subsequently, for
each of the examples, we generated two baselines and inserted them in the sentences, obtaining
a total of 200 sentences. We manually corrected the ungrammatical examples resulting from
lexical substitution.

(T-G/S/B) Target vs. Gold, System and Baselines: This dataset is composed of the examples
which were manually simplified in the gold standard and which were also simplified by our
system (12 cases out of the 26 cases of single lexical substitution in the Simplext Corpus). For
each of these examples, we also generated two baselines, obtaining a total or 48 sentences to
evaluate.

(G-T) Gold vs. Target: This dataset is composed of the remaining lexical simplification examples
of our gold standard (14 instances) and their target words. For these examples our system did
not propose a simplified example.

We could set up more evaluation data to compare the system and the baselines. However, we
considered 50 sentences (a total of 200 sentences for dataset T-S/B, and 276 different sentences
if we consider all data sets) to be reasonable because: (i) It was feasible for the annotators to
perform the task; and (ii) previous works in lexical simplification used slightly smaller data sets
for evaluation - in Yatskar et al. (2010) they use a total of 200 simplification examples, and in
Biran et al. (2011) 130 simplification examples are used. Below, we show two examples of a
sentence with its original word (O) and the lexical substitution proposed by our system (S).

(d) (O) De la Iglesia merece este GALARDÓN.
‘De la Iglesia deserves this AWARD.’
(S) De la Iglesia merece este PREMIO.
‘De la Iglesia deserves this PRIZE.’

(e) (O) Cuenta con una AMPLIA oferta de títulos.
‘It has a WIDE range of titles.’
(S) Cuenta con una GRAN oferta de títulos.
‘It has a GREAT range of titles.’
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6.4 Design

We created a multiple choice questionnaire presenting two sentences for each item. Each item
contained one sentence with a simplification example and the same sentence with the target
word. These sentences were presented in random order to the annotator (i.e., either as Target
vs. LexSiS/Gold/Baseline or LexSiS/Gold/Baseline vs. Target). The labels for each pair of
sentences in comparison with the other were: “simpler”, “more complex”, “equally simple or
complex”, “they do not have the same meaning”, and “I do not know or I do not understand
at least one of the sentences”. In Table 2 we show an example of one target word and its
corresponding substitutions presented in the sentences.

Type Sentence
Target Descubren en Valencia una nueva ESPECIE de pez prehistórico.

A new SPECIES of prehistoric fish is discovered in Valencia.
LexSIS Descubren en Valencia un nuevo TIPO de pez prehistórico.

A new TYPE of prehistoric fish is discovered in Valencia.
Frequency Baseline Descubren en Valencia un nuevo GRUPO de pez prehistórico.

A new GROUP of prehistoric fish is discovered in Valencia.
Random Baseline Descubren en Valencia un nuevo LINAJE de pez prehistórico.

A new LINEAGE of prehistoric fish is discovered in Valencia.

Table 2: Example extracted from dataset (T-S/B) Target vs. LexSIS and Baselines.

6.5 Annotators

Three annotators with no previous annotation experience performed the tests using an on-line
form. They were all Spanish native speakers, frequent readers and were not the authors of
this paper. To measure the inter-annotator agreement of multiple annotators and multiple
classes (five classes, one per label), we used the Fleiss’ kappa measure (Fleiss, 1971). The three
participants annotated all the instances of the three datasets, achieving a Fleiss’ kappa score of
0.330. Hence, we can assume we have a fair agreement (Landis and Koch, 1977), comparable
with other inter-annotator agreements in related literature (see Section 7).

7 Results and Discussion

In this section we present the results and discuss the performance of LexSiS. We calculate
(in percentage) how well the meaning has been preserved, taking into consideration all the
instances (Synonym column). The percentage of simpler, equal and more complex synonyms
is calculated among the synonymous instances (Simpler Syn., Equal Syn. and Complex Syn.
columns, respectively) and among all the instances, taking into consideration the global
performance of LexSiS (Simpler Syn. Glob., Equal Syn. Glob. and Complex Syn. Glob. columns,
respectively).6

System Synonym Simpler Equal Complex Simpler Equal Complex
(%) Syn. (%) Syn. (%) Syn. (%) Syn. Glob. (%) Syn. Glob. (%) Syn. Glob. (%)

Random 65.03 15.13 24.37 58.82 9.94 16.02 38.67
Frequency 66.12 42.98 19.01 38.02 28.42 12.57 25.14
LexSiS 72.49 40.88 17.52 41.61 29.63 12.70 30.16
Gold 97.44 71.05 17.11 11.84 69.23 16.67 11.54

Table 3: Evaluation of all the datasets.
6The sum of Simpler Syn. Glob., Equal Syn. Glob. and Complex Syn. Glob. columns equals the number of synonyms

(Synonym column) and the sum of Simpler Syn., Equal Syn. and Complex Syn. columns equals 100.
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In Table 3 we present the results for all the datasets. The percentage of meaning preservation
is higher in LexSiS than in the baselines, and LexSiS offers simpler synonyms (29.63%) than
the frequency baseline (28.42%). However, 30.16% of the lexical substitutions suggested by
our system are found to be more complex by the annotators. One possible reason for this is
that the texts used for this study were already simple from a lexical point of view. For instance,
we found only 26 manual lexical substitutions in the Simplext corpus, and our system only
offered a lexical substitute for 12 of these manual substitutions. Consequently, 53.84% of the
manually substituted target words were not simplified by LexSiS, and 78.57% of these manual
substitutions were found to be simpler synonyms by the annotators (see Table 4). Even though
our gold standard is small, to the best of our knowledge, this is the only existing resource from
which we could generate a gold standard for lexical simplification in Spanish.

System Synonym Simpler Equal Complex Simpler Equal Complex
(%) Syn. (%) Syn. (%) Syn. (%) Syn. Glob. (%) Syn. Glob. (%) Syn. Glob. (%)

Gold 100 78.57 16.67 4.76 78.57 16.67 4.76

Table 4: Evaluation of dataset (G-T): Gold vs. Target.
We performed an error analysis to try and discover why LexSiS did not account for the remaining
instances from the gold standard, and we found five possible reasons: (1) the target word
does not occur in the LexSiS dictionary; (2) the target word is already too frequent to be
substituted by LexSiS; (3) the target word and its lexical substitution are the same; (4) the
lexical substitution proposed by LexSiS has a very similar ranking to the target word, hence
the substitution is not performed; and (5) the target word is discarded because its vectorial
distance taking into account the original context is too large.

System Synonym Simpler Equal Complex Simpler Equal Complex
(%) Syn. (%) Syn. (%) Syn. (%) Syn. Glob. (%) Syn. Glob. (%) Syn. Glob. (%)

Random 57.14 4.76 42.86 47.62 2.86 25.71 28.57
Frequency 47.22 47.06 17.65 35.29 22.22 8.33 16.67
LexSiS 55.56 65.00 15.00 20.00 36.11 8.33 11.11
Gold 95.83 58.70 17.39 21.74 61.11 16.67 16.67

Table 5: Evaluation of dataset (T-G/S/B): Target vs. Gold, LexSiS and Baselines.

Among the instances from the gold standard not accounted for by LexSiS, our system presents
more lexical substitutions synonymous with the target word than the baselines, and a greater
amount of simpler synonyms (65.00%) than the frequency (47.06%) and random (4.76%)
baselines (see results for dataset (T-G/S/B) in Table 5). We have found that the dataset (T-S/B)
is the only case where the frequency baseline presents a higher percentage of suggesting simpler
synonyms (31.29%) than LexSiS (27.33%). Nevertheless, LexSiS shows a higher meaning
preservation percentage.

System Synonym Simpler Equal Complex Simpler Equal Complex
(%) Syn. (%) Syn. (%) Syn. (%) Syn. Glob. (%) Syn. Glob. (%) Syn. Glob. (%)

Random 66.00 18.18 20.20 60.61 12.08 13.42 40.27
Frequency 72.11 43.40 18.87 37.74 31.29 13.61 27.21
LexSiS 76.00 35.96 18.42 45.61 27.33 14.00 34.67

Table 6: Evaluation of dataset (T-S/B): Target vs. LexSiS and Baselines.

These results are consistent with the state of the art of lexical simplification for English. In
SemEval-2012 shared task for lexical simplification, only one lexical simplification system
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among nine systems presented a higher ranking (0.496) than the frequency baseline (0.471),
according to a pairwise kappa metric (Specia et al., 2012).

Our results are comparable with the lexical simplification system for English presented in (Biran
et al., 2011), whose frequency baseline for English target words (medium frequency) is very
similar to ours (42.86%). The results of their system are higher for English and they make use
of a comparable corpus. Our inter-annotator agreement rate (Fleiss’ kappa score of 0.330) is
also consistent with their pairwise inter-annotator agreement, where kappa score was between
0.35 and 0.53.

Our evaluation methodology includes five possible answers for each pair of instances, as in
SIMPL method (Yatskar et al., 2010), although we present the annotators with the words in their
original context. SIMPL reaches 66% precision for the 100 top pairs using a probabilistic model
based on the edit history in simple Wikipedia.

Other methods, which include syntactic operations as well, approach lexical simplification as a
monolingual machine translation problem and use machine translation measures to evaluate
them (Zhu et al., 2010), together with human judges (Woodsend and Lapata, 2011a).

In summary, LexSiS is the first approach to lexical simplification in Spanish, a language where
only syntactic simplification has been previously performed (Bott and Saggion, 2012). Our
system uses free resources, such as a dictionary and the Web as corpus. LexSiS is based on the
analysis of a small sample of data and it does not require a parallel corpus to function.

8 Conclusion and Future work

In the past few years, automatic text simplification has rapidly become an important technology
for the information society, due to its potential application in information access and the benefits
it may bring to people with special needs. One important aspect of text simplification is lexical
simplification: the selection of simpler/easier substitutes for difficult words. Automatic lexical
simplification has, in most cases, been applied to English datasets, with many recent approaches
relying on the availability of large parallel simplified and non-simplified documents to train
statistical methods.

In this paper we have presented LexSiS, the first implemented lexical simplification system for
Spanish, which does not require a parallel corpus for its implementation. LexSiS, rather, uses
available texts found on the Web and a freely available Thesaurus. LexSiS uses a word vector
model to identify the correct sense of the word to be replaced, and then selects the simplest
synonym using simplicity criteria based on word frequency and word length.

We have evaluated three aspects of LexSiS: (i) its ability to identify a correct synonym for
the target to be simplified; (ii) its ability to provide a simpler word substitute; and (iii) its
performance as a whole. We have compared LexSiS with two baselines, one of which is a
hard-to-beat procedure based on word frequency.

For each of the datasets used in the evaluation, LexSiS shows a higher meaning preservation
percentage, offering more synonymous lexical substitutions than the baseline. For the overall of
the datasets, LexSiS proposes simpler synonyms than the frequency baseline.

We believe our research makes the following contributions: we present a well-grounded proce-
dure for the simplification of Spanish text, which could possibly be a language independent
method, due to its small-scale resources that can be found for many other languages. It repre-
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sents the first computational implementation of a lexical simplification algorithm for Spanish.
Finally, we use a well-designed and viable evaluation methodology for lexical simplification.

Based on the evaluation, we have found various aspects of the method which need to be
taken into further consideration. First, we are facing the problem of out-of-dictionary words.
One way to overcome this problem is by inducing possible word-substitutes with methods
similar to the word vector model we use here, as well as larger datasets. Second, frequency
computation in our procedure is not carried out considering word sense disambiguation, but
by performing counts disregarding senses. It is possible that taking the word sense into
consideration before computing its frequency could improve the results. Finally, in this work we
only consider substitution of single lexical units – the identification of multi-word expressions
and collocations, such as poco a poco (‘little by little’), substituted with its simpler synonym
gradualmente (‘gradually’), will be addressed in future work.
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