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ABSTRACT
Many parsers learn sparse class distributions over trees to model natural language. Recursive
Neural Networks (RNN) use much denser representations, yet can still achieve an F-score of
92.06% for right binarized sentences up to 15 words long. We examine an RNN model by
comparing it with an abstract generative probabilistic model using a Deep Belief Network
(DBN). The DBN provides both an upwards and downwards pointing conditional model, drawing
a connection between RNN and Charniak type parsers, while analytically predicting average
scoring parameters in the RNN. In addition, we apply the RNN to longer sentences and develop
two methods which, while having negligible effect on short sentence parsing, are able to
improve the parsing F-Score by 0.83% on longer sentences.
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1 Introduction

Fast and accurate constituent parsing is critical for many natural language processing systems
(Curran et al., 2007), as it enables rich information to be extracted from text.

Charniak (2000) parsed text by learning to compute top down production probabilities. The
Stanford (Klein and Manning, 2003) and Berkeley (Petrov and Klein, 2007) parsers represent
a parse as a sub-class distribution on a tree, and maximize the entropy of predicting label
probabilities for each node. Advanced parsers use techniques like training on unlabeled text
(McClosky et al., 2006), and parse re-ranking (Charniak and Johnson, 2005) to improve their
accuracy.

To achieve such accuracy requires conditional probabilities to be computed correctly far up the
parse tree, and requires plenty of sub-class labels (typically over 4000) to produce a sufficiently
fine grained analysis that accommodates subtle distinctions in text. The resulting transition
matrices become large very quickly.

Titov and Henderson (2007) used vectors of real numbers to represent words in a history based
model with a mean field representation. Such word vectors have the advantage of maintaining
expressive power with much lower dimensionality, typically just 100 dimensions. Garg and
Henderson (2011) extended this model to use a Restricted Boltzmann Machine (RBM, Hinton
et al., 2006) representation.

Socher et al. (2010) constructed a parse tree using word vectors in a Recursive Neural Network
(RNN, Bengio et al., 1994), and applied a similar unsupervised approach for sentiment analysis
(Socher et al., 2011).

We focus on the RNN models of Socher, which perform well on short (up to 15 word) sentences,
achieving a parse F-score of 92.06% on right binarized text, and we obtain a baseline of 83.94%
by applying this to all sentences.

We develop an abstract fully generative model of parsing by considering a Deep Belief Network
(DBN, Hinton et al., 2006), and by examining the mean field approximation, contrast this with
the conditional RNN model to discover underlying properties of the scoring function.

Motivated by insights from the DBN model, we use an RBM to implement a better model for
scoring production probabilities. While this has negligible affect on short sentences, it achieves
a 0.83% gain in parsing performance on long sentences.

Noting that the RNN parser’s CKY performance drops over large trees, we also develop a novel
method of applying gradient methods during evaluation time that improves the parsing F-score
by 0.38% for long sentences.

While demonstrating these methods over an RNN model, the gradient method can broadly be
applied to a wide range of conditional tree-based models.

2 Background

The Charniak (2000) parser represents a parse probability as the product of the top down
production probabilities of a parse. One intuition is that the head node represents the entire
sentence, and lower nodes are the probabilities of expressing a span of the text in each
possible way. This makes each parse a downwards pointing conditional graphical model, and as
explained by Charniak (1997), parser performance increases as more conditional information is
used in calculating these production probabilities.

280



The more recent Stanford (Klein and Manning, 2003) and Berkeley (Petrov and Klein, 2007)
parsers use increasingly fine grained sub-class schemes to convey rich information to each parse
node to increase performance.

2.1 Berkeley Parser

The Berkeley parser solves the graphical model using the inside-outside algorithm to calculate
the distribution of latent subcategories from transition probabilities, β:

β(Ax → By Cz) :=
#{Ax → By Cz}∑
y ′z′{Ax → By ′Cz′}

(1)

The algorithm is an application of the Expectation Maximization algorithm (Dempster et al.,
1977) for a tree based graphical model. Each tree node maintains a distribution of being in
each class with probability Ax . The Berkeley parser uses about 4000 different classes, requiring
the optimization algorithm to learn 16 million transition probabilities. This makes computation
slow. Other parsers like the C&C parser (Clark and Curran, 2004) speed up this process by
effectively limiting the transition space through operator rules that reduce the transition space.

2.2 Word Vectors

Instead of representing the sparse high dimensional distributions of word selection, classes and
transitions directly, the word-vector approach attempts to encode such sparse distributions into
a much shorter (say 100 dimensions) dense vectors of latent states.

This method was used in the adjacent field of language modeling (Chen and Goodman, 1996),
which aims to predict the smoothed frequency of n-gram distributions. Using Neural Networks
in a method similar to Principle Component Analysis (Pearson, 1901), Mnih and Hinton (2007)
show a log-bilinear model having a low perplexity in predicting the last word of an n-gram.
This approach effectively encodes words into same-sized word vectors which can be combined
to maximally represent n-gram distributional information through a neural network.

2.3 Neural Networks

Neural Networks are the natural extension of logistic regression that can be used to transform
word-vectors into sub-class distributions.

Given a dataset of inputs X and their corresponding outputs Q, a simple logistic regression
predicts an output qx ∈Q for each input x ∈ X by learning a matrix W such that

px = P(qx |x; W ) = σ(W x) (2)

where σ is the sigmoid or hyperbolic tangent function. Learning consists of training W to
minimize the loss error function E =

∑
x∈X Ex , commonly using the square or cross entropy loss

Ex = (qx − px)
2 or Ex = qx log(px) + (1− qx) log(1− px) (3)

which can be solved through Stochastic Gradient Descent (SGD, Bottou, 2010) by subtracting
from W the gradient of Ex for each training example, multiplied by a learning rate.
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Stacking logistic regression layers into neural networks (Rumelhart et al., 1986) is possible by
passing back the gradient of the error using the derivative chain rule, but learning may become
slow if both the outputs and inputs to a logistic regression are latent. This can be overcome by
pre-training with Restricted Boltzmann Machines (RBM, Hinton et al., 2006).

2.4 Neural Network Parsing

Costa et al. (2003) previously used a Neural Network for parsing. Titov and Henderson (2007)
achieved successful results, with an F-score of 89.3% on sentences of up to 15 words of the
WSJ dataset Marcus et al. (1993) by implementing a recurring neural network, predicting the
constituents and label decisions at each step based on text features and previous decisions.

Garg and Henderson (2011) used RBM in a similar approach to dependency parsing. Here,
while the prediction step stays the same, the learning method is adjusted. Instead of trying to
learn px = P(q|x; W ) over the dataset {X ,Q}, the goal is to learn the generative probability of
P(x , q;W ). Garg and Henderson implements a recurrent model, with weight biases derived
from previous parse decisions, achieving 89% dependency parser score on short sentences.

3 Recurrent Neural Network Parsing

Socher et al. (2010) used a Recurrent Neural Network (RNN) that represented a parse tree
consisting of real-valued node vectors from which the various sub-class distributions and parse
decisions were computed through logistic regression classifiers. The conditionally independent
nature of the elements of each node vector allows the normally sparse sub-class distributions to
be compressed into a length of just 100 dimensions.

3.1 Leaf Layer

At the lexical leaf node layer, each tokenized word in the text is represented by a word vector
t i that is supplied from a pre-generated word-to-vector table L. This table L (the Lexicon)
is generated through a distributional similarity process (Collobert and Weston, 2008) using
back-propagation through a series of transformations of word and feature distributions.

The text is padded with a pair of start-of-sentence and a pair end-of-sentence tokens, each pair
with their own vector. A direct 300→100 feature word-to-leaf logistic regression combines the
100 dimensional word-vectors for the current word t i , previous word t i−1 and next word t i+1,
to generate the 100 dimensional real-valued vector vi that acts as a leaf-vectors for the parse
tree, as shown on the left of Figure 1. The word-to-leaf logistic regression learns a 300x100
element matrix Y , which is composed of three 100x100 element matrices Y1, Y2and Y3, so that
the leaf vectors vi for each word are calculated by:

vi = σ(Y1 t i−1 + Y2 t i + Y3 t i+1) (4)

For example, in Figure 1, the leaf node a above the word “John” would be calculated as:

va = σ(Y1 t[star t] + Y2 t[John] + Y3 t[eats]) (5)

As well as predicting parse information, the leaf-vectors predict Part of Speech (POS) tags which,
when given a gold standard POS tag during training, provides an additional error gradient to
help learn the word-to-leaf logistic regression layer.
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Figure 1: (left) Word to leaf network for text “John eats fruit” and (right) parse tree for parse
T1 = a, (b, c) and (dotted) T2 = (a, b), c showing scoring nodes sd , se and sh. For clarity the
predictions for the POS and phrase classes are not shown, however these are logistic regression
classifications directly from the tree leaf nodes, and tree non-leaf nodes respectively.

3.2 Non Leaf Layer

The non-leaf node (i.e., parent node) vectors, p, of the tree are predicted using a 400→100
feature child-to-parent logistic regression layer. This logistic regression takes four lower tree
node vectors as inputs. Two of these input vectors c1 and c2 are the vectors of p’s left and right
children, which may themselves be either parent or leaf node vectors. The other two input
vectors are the leaf-node vectors v1 and v2 of the two words that directly surround the span of
text represented by p. The child-to-parent logistic regression uses a 400x100 element matrix
W , which is composed of four 100x100 element matrices W1, W2, W3and W4, so that the parent
vectors p are calculated by:

p = σ(W1c1 +W2c2 +W3v1 +W4v2) (6)

In Figure 1, the parent node h for the parse “John (eats fruit)” would be calculated as:

ph = σ(W1va +W2pe +W3vstar t +W4vend) (7)

As well as being used to predict parent vectors higher in the parse tree, the parent vectors are
used to predict node class labels (like VP or NP), and a real-valued score feature sp which is
used to predict whether a particular parent node is part of the gold-parse tree. The score is
calculated using the output of a 100→1 logistic regression classifier, with parameter R:

s = σ(r) where r = Rp (8)

3.3 Parse Generation

Parse trees are built from the leaves up. The leaf nodes vectors are first calculated, and then
parent vectors are calculated for each pair of adjacent leaf nodes. These parent vectors are then
scored using the node-to-score classifier.

For subsequent layers up the parse tree, each new parent vector is computed using each
combination of potential children vectors that might constitute the new parent vector. These
new parent vectors are each scored using the node-to-score classifier. The computed score is
added to the scores for sub-trees below, and the CKY algorithm (Kasami, 1965) is used to store
and select the highest scoring overall tree.
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The RNN’s continuous vector model does not have a direct class representation, so there are no
equivalence classes as needed for a packed chart. To overcome this, the RNN uses a beam to
store a selection of high-scoring parses and their node vectors. A beam size of one was used in
most experiments, as larger beam sizes gave little improvements. This is consistent with Socher
et al. (2010)’s experiments and observations.

3.4 Updating the Weights

The parameters for each regression layer are updated using gradient descent, back propagating
the error gradient through both the gold and the generated tree. The error function used is a
hinge loss error gradient for the predicted scores si .

dE

dr
=




−1 predicted, not gold

0 predicted+gold

1 gold, not predicted

(9)

For gold trees, the gradient is 0 if the computed parse includes the gold node, and 1 if it does
not. This is added to the gradients for the logistic regression POS tagger and node category
tagger. For computed trees, the error for the predicted score s is 0 if the node is included in the
gold parse, and −1 if it is not.

The errors for each tree are propagated down through each tree to the leaves, to update the
word-to-leaf classifiers and eventually update the word vectors in the lexicon L. Note the
gradient is calculated on r, not s (i.e. before the sigmoid function is applied), which has the
effect of making it an entropy based gradient.

4 Generative Model

The RNN model is an upwards pointing conditional model in which the parents are conditioned
on the children. This ignores aspects of a generative nature. By contrast, the intuition of
Charniak shows a parse can be generated top down through a conditional generative process
from a root node. To bridge these two models, we develop a novel expressive generative model
(using a Deep Belief Network) that is conditional both up and down a tree, and examine the
similarity of the equations with those of an RNN.

We are also motivated towards using a generative top-down conditional model because of the
intuition that the speaking and writing process starts with ideas, which are reformulated into
phrases and expressed in words. This process supports the notion that words are conditionally
chosen based on ideas which would be found higher in the tree. A counter argument might
exist that for the listener, the ideas heard are selected conditionally on the words of the text,
however, the words and ideas were chosen by the speaker, so this is a weaker argument.

This bidirectional approach does not require these arguments to be mutually exclusive, as
learning to speak and learning to listen might be shared aspects of one bidirectionally conditional
model, transforming ideas into words, and back again.

4.1 Hypothetical Model

First we consider a (completely impractical) hypothetical model of parsing that follows the
top-down approach, so we can later constrain it and compare it with the RNN model.
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In this hypothetical model, the structure and meaning of any sentence can be represented by
a 100 dimensional root vector. This root vector generates two child vectors, one representing
a span of text on the left, and one representing a span on the right, and each of these child
vectors continue generating their own two children vectors until some stopping process makes
leaf vectors that generate words.

In this way, the process implements a top down generative conditional probability model
(Charniak, 2000) in which the children are conditionally dependent on their parents.

To parse of a piece of text, samples from every possible root node vector generate every possible
tree and their resulting texts. These trees and latent variables are then selected only where the
generated text equals the supplied text. From this sample, the most likely parse is determined
to be the most likely tree that generated the text.

The parameters of this hypothetical model would be tuned to create an optimum distribution at
the root node, and an optimum conditional child generation distribution and stopping process
to best model the parses of the text.

4.1.1 Constrained Model

We take this hypothetical model, and explore whether applying the constraints found in a Deep
Belief Network (DBN, Hinton et al., 2006) would severely limit the model’s expressive power.

A DBN consists of an RBM which generates a stationary distribution vector of binary values that
acts as the complementary prior (CP, Hinton et al., 2006) for a downwards pointing directed
acyclic graph (DAG) of binary vectors, each conditional on the parent. The complementary
prior is defined by Hinton et al. to be the prior distribution that contains exactly the correct
correlations necessary to enable the posterior parent distribution to be factorial (independent
of one-another) given the child vector.

To implement a parse tree using a DBN, we firstly require that elements of each latent node-
vector p (including the root vector) only take values 0 and 1. These vectors could potentially
predict any other latent multi-class variable from p through soft-max classifiers, so a binary
constraint should not be too onerous.

Secondly, we require that the root node be able to generate a stationary distribution that is
optimum to generate the text. We note that RBMs can flexibly generate any distribution of child
vectors, limited only by the number of hidden units (the dimension of p) (Le Roux and Bengio,
2008). For modeling text, this should be sufficient, since the text is independent of the trees
when given the leaf vectors’ distributions.

Thirdly, we require that the DBN generates a tree with downwards pointing conditional distribu-
tions. The DBN will naturally support the conditional distribution with function F:

P(c1, c2|p) = F(p, c1, c2) (10)

and the probability of generating a tree T given its root will be:

P(T ) =
∏

nodes p∈T

F(p, c1, c2) (11)

Finally, however, using a DBN within a tree structure presents the problem of maintaining
a complementary prior at every parent node throughout the tree. Typically, the DAG used
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with RBMs only recover the original complementary prior at every alternate layer. This can be
overcome by initializing W with a symmetric weight matrix with W =W T .

A second issue is that as we travel down the tree, the total vector count grows, so an issue
of double-counting the prior arises. The prior must be a prior of both its children together,
and not each child taken separately. While constructing a Deep Boltzmann Machine (DBM),
Salakhutdinov and Hinton (2009) discuss how to manage the asymmetric application of DBN so
the downward posterior has twice the dimensionality of the upwards posterior.

4.1.2 Parent Probability

The main feature of the DBN is that inference can be performed quickly to calculate the parent
vector given the children vectors. Given a tree T , this allows us to calculate up the tree, even
though it is through a downwards pointing conditional model, so the ith element of p can be
predicted by:

P(p(i) = 1|c1, c2) = σ(c1W1 + c2W2)
(i) (12)

It is important to note that here c1, c2 and p are binary sampled values, not their probabilities or
averages, whereas the resulting probabilities are distributions. However, used as a mean-field
approximation, Equation (12) is essentially the same as that of the RNN. The DBN overcomes
this limitation by sampling at each step within the tree.

4.1.3 Tree Probability

For each word sequence, there are multiple tree structures that could generate the same text,
each with varying probabilities. Occasional examples exist like ‘I saw that gas can explode’
having two different parses of similar probability. To select the most likely parse, we must
compare the generative probability of the two trees.

When two parses differ only at some parent node h, and the trees beneath h are of the form
T1 = a, (b, c) and T2 = (a, b), c (see Figure 1) and d is the parent of (a, b) and e is the parent
of (b, c), then we approximate the relative probability each tree was generated as follows:

Given the supplied text under nodes a, b, c being respectively x , y, z, the conditional vector
distributions can be calculated through sampling going up each tree. In both T1 and T2, , when
we arrive at nodes a, b and c, they will each have the same sampled distributions, as below
a, b, and c, the two trees are identical. The mean field approximations for the most probable
combinations of each vector a, b, c will be near their expected values ā = E(a|x), b̄ = E(b|y)
and c̄ = E(c|z).
Given no information, the prior probability of h will be the complementary prior, so taking a
mean field approximation, the probability T1 generates the text will be:

P(x , y, z|T1) =
∑

h

∑
d

P(h, ā, d)P(b̄, c̄|d)P(x |ā)P(y|b̄)P(z|c̄) (13)

Ignoring the common terms P(x |a) etc, we get:

P(x , y, z|T1)∝
∑
hd

P(h, ā, d)P(b̄, c̄|d) (14)
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If again we make the mean field approximation that P(b̄, c̄|d) only has probability mass at the
point E(b̄, c̄), and apply Bayes rule ignoring common terms we get:

P(T1|x , y, z)∝ P(ā,d) (15)

4.1.4 Scoring the Tree Probability

The relative log probabilities for T1 and T2 is (where d and e are as shown in Figure 1):

log(P(a, d)) : log(P(e, c)) (16)

So for children u, v of an arbitrary parent node h, where the parent node h has the distribution
of the complementary prior, we can model the log probability log(P(u, v)) by summing each
one of the 2|h| combinations of h using:

log(
∑

h

P(h, u, v)) = log(
∑

h

exp(hW1u+ hW2v+ γh+αu+ β v))− log(Z) (17)

where α,β and γ are the biases to be learned with W1 and W2. We can ignore log(Z) as it is
found in both T1 and T2. A common rearrangement is to multiply out the contributions made
for each element h(i) of h being a 0 and a 1 (writing

∑
i g(i) as the sum of g ’s elements):

=αu+ β v+
∑

i

log(1+ exp(γ+W1u+W2v))(i) (18)

=αu+ β v−
∑

i

log(1−σ(γ+W1u+W2v)))(i) (19)

log(P(u, v)) =αu+ β v −
∑

i

log(1− hi) (20)

where hi = P(h(i) = 1). Since u and v are factorial in h, the resulting log probability is also
largely factorial in h making it suitable for a regression layer. As the RNN operates with
mean-field values, it can learn log(P(u, v)) through regression based on h using:

s(h) = σ(Rh)' log(P(u, v))∝ log(P(T1)) (21)

In this way, the approximate conditional probability of each parent is calculated upwards using
the RNN model, and the log probability of each parse can be estimated by summing the expected
values of s, and learned through back-propagation.

4.1.5 Estimating the Scoring Function

We can estimate the value of s by taking the Taylor expansion of the log probability of log(P(u, v))
in terms of hi:
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log(P(u, v))' C +
∑

i

− log(1− hi)' C +
∑

i

hi +O(h2
i ) (22)

The Taylor expansion of the logistic function used by the classifier by contrast is:

σ(Rh) = C +
∑

i

1

4
R(i)hi +O(h2

i ) (23)

Comparing the linear hi terms in Equations (22) and (23) would suggest an expected value of
R(i) = 4

It is interesting to note that in our experiments with the RNN model, the average value of R(i)

was 1.77. However, the implementation of the RNN used the tanh function, instead of the
sigmoid function σ found in the abstract DBN model for the node to node matrices W1 and W2
which generate the input to the scoring function. Since tanh(x) outputs values in twice the
range as σ(x), this gave the RNN model an effective average value for R(i) of 3.54, within 13%
of the predicted value.

4.1.6 Reducing Divergence

In practice, the mean-field distribution diverges from the true combinatoric binary distribution.
This becomes most noticeable when a node’s distribution is sharply constrained by its own
parent node, and is the result of each node being conditioned only on its children, and not
on its parents. To reduce this effect, conditioning each node’s probability on leaf-node vectors
adjacent to the span (as in Equation 6) helps bring in some of the conditional information of
the parent’s node vector, since the parent node-vector is itself conditioned on its two children,
one being the original node, the other being an ancestor of one of the adjacent leaf node.

4.2 RBM to Improve Modeling S
The RNN can be thought of as a mean-field approximation of the DBN model that learns to model
the log probability of P(T1) through Equation (21). The R term implies that s is computed
through a logistic regression.

Although the DBN abstract model indicates logistic regression on h should provide a good
solution of P(T1), the mean-field approximation diverges sufficiently enough that incorporating
contextual features makes a significant improvement to the results (Socher et al., 2010). This
suggests that a superior scoring classifier might also further improve the results. Recalling that
RBMs are better at modeling general distributions, and that when given the complementary
prior, the probability of P(T1) takes the form of Equation (17), this motivates that s(p) would
be better modeled by a Restricted Boltzmann Machines (RBM).

RBMs have been used before in parsing (Garg and Henderson, 2011). They aim to model a
generative probability P(x , h)∝ exp(xWh) and are often trained through Gibbs sampling, one
layer at a time. Layer-wise training is harder for a recursive model, however, they can be used
to model the distribution of the scoring function s(p) in the approximate RNN model:

s(p)∝
∑

h

exp(hU p+ ap+ bh) (24)
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4.2.1 Configuration

RBMs can be used in several configurations for modeling the probability of s(p).

One method involves using two RBMs, one with energy functions E1 = h1U1p to model the
probability that the parent node is part of the correct parse, and one with E2 = h2U2p to model
the probability that it is not. In this case, the probability the parent node is part of the parse is
given by exp(E1)/(exp(E1) + exp(E2)).

Another configuration uses a single RBM, E = hM p and regression s = σ(Vh). This model most
naturally extends to a three layer neural network.

The discriminative RBM (Schmah et al., 2009) which we use goes one step further, by assuming
that s is itself a latent feature of the RBM which has energy E = hM p + hVs. This means
that P(s = 1|p) = σ(Vh), while P(hi = 1|p) = σ(M p+ Vs). By including the Vs term in the
calculation of P(hi = 1), it enhances the expressiveness of the model.

4.2.2 Training

Instead of using Contrastive Divergence (CD, Hinton et al., 2006) to learn the parameters of M
and V , we perform discriminative RBM training, since the dimensions of s are so small. This
is done by calculating the RBM twice, once for s = 0 and once for s = 1. These results can be
combined to give a value of P(s = 1|p), and the gradient can be used to update M and V .

We train this model for s as a post-process to training the RNN, while holding fixed the parameters
of the underlying RNN model. The motivation was to effectively implement the top layer-wise
training seen in deep RBM training models. We do not allow the gradient to back-propagate to
update W or other parameters, as it did not improve our overall results.

4.3 Improvement to CKY through Leaf Vector Nudging

Different parse decisions made at lower levels of the tree result in different parent vectors.
Even when the structure of two trees differs only slightly, as T1 and T2 did in Section 4.1.3, the
changes to the parent vectors are not local but propagate up all the way to the root node.

This affects the ability of the CKY algorithm to find the parse with the highest log likelihood
score. For longer sentences, the scoring model may give the gold parse the highest parse score,
but using the CKY algorithm with a small beam may fail to find this highest scoring parse.

In this situation, there must be a node where the CKY algorithm made an incorrect decision. For
the parent of this node, the gold parse’s local sub-tree score was lower than several incorrect
parse’s sub-tree scores, enough to incorrectly fill the CKY beam with the wrong parent node
vector. In this case, there will be some group of higher nodes that would have scored higher
had the gold node’s children vectors been used, rather than the incorrect parse node’s children
vectors found in the CKY beam (and by a more significant margin), but the CKY algorithm would
have never calculated them.

With this motivation, we examine how to temporarily nudge some parameters of the model to
encourage the CKY algorithm to find the best overall parse and, in particular, how the gradient
of higher node scores can be back-propagated at evaluation time to lower nodes to encourage
the CKY algorithm to favour parse decisions at a lower level that will do better at higher levels.
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4.3.1 Learning Leaf Vectors

Another motivation for this approach comes from considering the process of updating the word-
vectors during learning. The back-propagation for the RNN passes through the tree and leaves
into the lexicon L. One can imagine that words with multiple senses will be given a blended
vector representation, sometimes being tugged towards one sense’s vector, and sometimes
tugged towards another. In this instance, even during testing, where a parse is mostly correct it
is likely that the vector would have been tugged mostly in the correct direction.

With this in mind, we found it possible to back-propagate the parse score gradient down through
the tree and into the leaf vectors temporarily, just for the current parse. The goal of this is to
temporarily give the leaf vector a value closer to the sense that is currently being used, thereby
giving a chance of fixing any errors in the parse.

During testing, however, we do not know the correct parse, so cannot use the correct gradient
for back-propagation. Instead, we use the parse scores s as a measure of confidence on each
parse node, and back-propagate the direction of the gradient ds

dp
from the most confident nodes.

4.3.2 Method of Gradient Improvement

First, a parse of the sentence is generated using the RNN model and scores si for each parse
decision calculated. The average score ŝ is computed for the entire tree, and a reliability variable
gi =max(0, si − ŝ) calculated to determine the most confident parse decisions. These values are
then used as the error model and the gradient kgi

dsi

dp
is back-propagated to the leaf-node level.

This gradient is temporarily added to the leaf vectors and the sentence is re-parsed and the
highest scoring parse selected. Finally the new parse is re-scored using the original leaf vectors
and the new parse is only selected if the total score exceeds the sentence’s original total parse
score. Since we expect half the nodes to contribute gradients, we set k =2/(10+ len(sentence))
which empirically worked well with the development set.

5 Results

We used the WSJ corpus of the Penn Treebank (Marcus et al., 1993), using sections 2-21 for
training, 22 as a development set and 23 as the test set.

We require binary branching parse trees so, before commencing we made the following adjust-
ments to the WSJ data that was kept for both training, development and final evaluation: all
traces were removed; all unary rules (nodes with a single child) were collapsed (the resulting
label was the POS tag of the leaf word); all nodes with more than 2 children were right branched
(except for the most right node if it was punctuation) and the resulting node labels of the newly
generated parents was made the same as for the original multi-branched parent; for short
sentence experiments only sentences containing 15 or fewer tokens (including punctuation)
were used.

The networks were trained with 500 passes over the training corpus with an initial learning rate
of 0.005 that decreased by 2% of its value after pass. The parameters were stored whenever
evaluation against the development set revealed a higher result, which was tested every 1000
sentences. Final testing was performed against section 23.

The word-vector table was initialized from pre-computed values in the lexicon (Collobert and
Weston, 2008) and the word vectors took the values Lu(S,i) according to each word u(S, i) of the
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Method F1 significance

Socher ¶ 15 words 92.06%
RNN ¶ 15 words 92.41%

RNN all sentences 83.94%
Gradient 84.32% +0.38% (p=0.0001)

RBM 84.77% +0.83% (p=0.0008)

Table 1: F1 Test scores for section 23 of the WSJ

text. For tokens found in WSJ but not in the table, we added a fresh token with a value given
by either the lowercase version of the token (if found) or with the value of the *UNKNOWN*
token. All numeric characters were replaced with the digit ‘2’.

5.1 De-Binarization

The RNN and DBN model both require binarized trees. The standard WSJ corpus is not binarized,
but (especially at the leaf layer) contains many nodes consisting of more than two children.
For example, tokens of multi-word nouns like “New York Stock Exchange” will all be
children of the same node, while binarized trees might nest these as (New (York (Stock
Exchange))). During evaluation, the computed F-scores for binarized trees will appear inflated
compared to those of un-binarized trees, since it is easier to learn and reproduce the additional
right bracketings.

For comparison with other systems, we consider how the binarization process could be reversed
so that generated trees may be compared with the original unbinary WSJ corpus. This could
be done through coded compounding rules based on predicted phrase categories labels, or by
learning a de-binarize feature. The method we used was as follows.

There are 28 non-terminal labels that are applied to the gold-standard text (e.g. S, VP, NP).
During the process of right binarizing the text, we label the newly created nodes with one of
28 newly created categories (e.g. !S, !VP, !NP) generated by adding ‘!’ to the label of the
new node’s parent node. In this manner we identify which nodes to delete when debinarizing
generated parses.

Unless otherwise noted, the results we show are for binarized trees, as binarized trees were
used in the original experiments by Socher (2012).

5.2 Evaluation

Testing was performed using evalb. The F1 score (precision and accuracy are are identical for
binarized trees) was taken as the overall reported performance.

A result of 92.41% was achieved by training on all the text, and testing on just the sentences up
to 15 tokens long. A result of 83.94% used the same model, testing on the entire test set, both
short and long sentences (refer to Table 1). For comparison with other parsers, we obtained a
debinarized F-Score of 89.47% on short sentences.

Significance was calculated using Dan Bikel’s Randomized Parsing Evaluation Comparator. 1

1http://www.cis.upenn.edu/~dbikel/download/compare.pl
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token er ror2 token er ror2

. 0.128 if 0.032
? 0.125 It 0.029
: 0.077 get 0.028
. 0.054 what 0.026
– 0.046 That 0.025

Table 2: Tokens and square errors of modifications during testing

5.3 RBM

The discriminative RBM model was used as a post-process to learn an improved model of the
scoring function. It was trained in about 24 hours, holding the other parameters of the model
fixed. It out-performed the original model by 0.83% (with a p-value of 0.0008). The training
was entirely discriminatively performed with no back propagation through the structure.

5.4 Gradient Update

The gradient update method was used entirely during evaluation time. It improved the F-score
by just 0.38% (with a p-value of 0.0001). The significance was higher because more of the
mistakes it made were also made in the baseline model.

The tokens with the greatest average modification were mostly punctuation and function words
that shaped the structure of the sentence (see Table 2). These words control the sentence
structure but have little distributional information. Other highly modified words were those
with low frequency counts in the corpus.

Conclusion

We have demonstrated the performance of a Recursive Neural Network parser to binarized
forms of all sentences in the WSJ corpus, obtaining a baseline of 83.94%. We have presented a
method to improve parser performance by using a discriminative Restricted Boltzmann Machine
for scoring productions increasing F-score by 0.83%. We have also presented a gradient method
that can be used during evaluation that augments the CKY algorithm and improves accuracy
by a separate 0.38%. We have provided a framework to draw a connection between top-
down generative conditional parsers with bottom-up conditional RNN parsers, and using this
framework have analytically calculated estimates of the learned RNN parameters.

In future work, we hope to implement the generative model described in this paper using
Contrastive Divergence starting with just the leaf layer and increasing one parse layer at a time.

The methods we presented are easily applied to other recursive tasks and network structures
and provide a link between generative and conditional parsing. These improvements can be
used in future down-stream tasks.
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