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Abstract

This paper studies the problem of im-
posing a known hierarchical structure
onto an unstructured spoken document,
aiming to help browse such archives.
We formulate our solutions within a
dynamic-programming-based alignment
framework and use minimum error-
rate training to combine a number of
global and hierarchical constraints. This
pragmatic approach is computationally
efficient. Results show that it outperforms
a baseline that ignores the hierarchical
and global features and the improvement
is consistent on transcripts with different
WERs. Directly imposing such hierar-
chical structures onto raw speech without
using transcripts yields competitive
results.

1 Introduction

Though speech has long served as a basic method
of human communication, revisiting and brows-
ing speech content had never been a possibility
before human can record their own voice. Re-
cent technological advances in recording, com-
pressing, and distributing such archives have led
to the consistently increasing availability of spo-
ken content.

Along with this availability comes a demand for
better ways to browse such archives, which is in-
herently more difficult than browsing text. In re-
lying on human beings’ ability to browse text, a
solution is therefore to reduce the speech brows-
ing problem to a text browsing task through tech-
nologies that can automatically convert speech to

text, i.e., the automatic speech recognition (ASR).
Research along this line has implicitly changed
the traditional speaking-for-hearing and writing-
for-reading construals: now speech can beread
through its transcripts, though it was not originally
intended for this purpose, which in turn raises a
new set of problems.

The efficiency and convenience of reading spo-
ken documents are affected by at least two facts.
First, the quality of transcripts can impair brows-
ing efficiency, e.g., as shown in (Stark et al., 2000;
Munteanu et al., 2006), though if the goal is only
to browse salient excerpts, recognition errors on
the extracts can be reduced by considering the
confidence scores assigned by ASR (Zechner and
Waibel, 2000; Hori and Furui, 2003).

Even if transcription quality is not a problem,
browsing transcripts is not straightforward. When
intended to be read, written documents are al-
most always presented as more than uninterrupted
strings of text. Consider that for many writ-
ten documents, e.g., books, indicative structures
such as section/subsection headings and tables-of-
contents are standard constituents created manu-
ally to help readers. Structures of this kind, how-
ever, are rarely aligned with spoken documents.

In this paper, we are interested in addressing
the second issue: adding hierarchical browsable
structures to speech transcripts. We define a hi-
erarchical browsable structure as a set of nested
labelled bracketing which, when placed in text,
partition the document into labeled segments. Ex-
amples include the sequence of numbered sec-
tion headings in this paper, or the hierarchical
slide/bullet structure in the slides of a presenta-
tion.

1550



An ideal solution to this task would directly in-
fer both the hierarchical structure and the labels
from unstructured spoken documents. However,
this is a very complex task, involving the analysis
of not only local but also high-level discourse over
large spans of transcribed speech. Specifically for
spoken documents, spoken-language characteris-
tics as well as the lack of formality and thematic
boundaries in transcripts violate many conditions
that a reliable algorithm (Marcu, 2000) relies on
and therefore make the task even harder.

In this paper, we aim at a less ambitious but
naturally occurring problem: imposing a known
hierarchical structure, e.g., presentation slides,
onto the corresponding document, e.g., presenta-
tion transcripts. Given an ordered, nested set of
topic labels, we must place the labels so as to
correctly segment the document into appropriate
units. Such an alignment would provide a useful
tool for presentation browsing, where a user could
easily navigate through a presentation by clicking
on bullets in the presentation slides. The solution
to this task should also provide insights and tech-
niques that will be useful in the harder structure-
inference task, where hierarchies and labels are
not given.

We present a dynamic-programming-based
alignment framework that considers global docu-
ment features and local hierarchical features. This
pragmatic approach is computationally efficient
and outperforms a baseline alignment that ignores
the hierarchical structure of bullets within slides.
We also explore the impact of speech recognition
errors on this task. Furthermore, we study the
feasibility of directly aligning a structure to raw
speech, as opposed to a transcript.

2 Related work

Topic/slide boundary detection The previous
work most directly related to ours is research that
attempts to findflat structures of spoken docu-
ments, such as topic and slide boundaries. For
example, the work of (Chen and Heng, 2003;
Ruddarraju, 2006; Zhu et al., 2008) aims to find
slide boundaries in the corresponding lecture tran-
scripts. Malioutov et al. (2007) developed an ap-
proach to detecting topic boundaries of lecture

recordings by finding repeated acoustic patterns.
None of this work, however, has involved hierar-
chical structures that exist at different levels of a
document.

In addition, researchers have also analyzed
other multimedia channels, e.g., video (Liu et al.,
2002; Wang et al., 2003; Fan et al., 2006), to de-
tect slide transitions. Such approaches, however,
are unlikely to find semantic structures that are
more detailed than slide transitions, e.g., the bullet
hierarchical structures that we are interested in.

Building tables-of-contents on written text A
notable effort going further than topic segmenta-
tion is the work by Branavan et al. (2007), which
aims at the ultimate goal of building tables-of-
contents for written texts. However, the authors
assumed the availability of the hierarchical struc-
tures and the corresponding text spans. Therefore,
their problem was restricted to generating titles for
each span. Our work here can be thought of as the
inverse problem, in which the title of each section
is known, but the corresponding segments in the
spoken documents are unknown. Once the corre-
spondence is found, an existing hierarchical struc-
ture along with its indicative titles is automatically
imposed on the speech recordings. Moreover, this
paper studies spoken documents instead of writ-
ten text. We believe it is more attractive not only
because of the necessity of browsing spoken con-
tent in a more efficient way but also the general
absence of helpful browsing structures that are of-
ten available in written text, as we have already
discussed above.

Rhetoric analysis In general, analyzing dis-
course structures can provide thematic skeletons
(often represented as trees) of a document as well
as relationship between the nodes in the trees. Ex-
amples include the widely known discourse pars-
ing work by Marcu (2000). However, when the
task involves the understanding of high-level dis-
course, it becomes more challenging than just
finding local discourse conveyed on small spans of
text; e.g., the latter is more likely to benefit from
the presence of discourse markers. Specifically
for spoken documents, spoken-language charac-
teristics as well as the absence of formality and
thematic boundaries in transcripts pose additional

1551



difficulty. For example, the boundaries of sen-
tences, paragraphs, and larger text blocks like sec-
tions are often missing. Together with speech
recognition errors as well as other speech charac-
teristics such as speech disfluences, they will im-
pair the conditions on which an effective and reli-
able algorithm of discourse analysis is often built.

3 Problem formulation

We are given a speech sequenceU =
u1, u2, ..., um, where ui is an utterance. De-
pending on the application,ui can either stand
for the audio or transcript of the utterance. We
are also given a corresponding hierarchical struc-
ture. In our work, this is a sequence of lecture
slides containing a set of slide titles and bullets,
B = {b1, b2, ..., bn}, organized in a tree structure
T (ℜ,ℵ,Ψ), whereℜ is the root of the tree that
concatenates all slides of a lecture; i.e., each slide
is a child of the rootℜ and each slide’s bullets
form a subtree. In the rest of this paper, the word
bullet means both the title of a slide (if any) and
any bullet in it. ℵ is the set of nodes of the tree
(both terminal and non-terminals, excluding the
root ℜ), each corresponding to a bulletbi in the
slides.Ψ is the edge set. With the definitions, our
task is herein to find the triple(bi, uk, ul), denot-
ing that a bulletbi starts from thekth utterance
uk and ends at thelth. Constrained by the tree
structure, the text span corresponding to an an-
cestor bullet contains those corresponding to its
descendants; i.e., if a bulletbi is the ancestor of
another bulletbj in the tree, the acquired bound-
ary triples(bi, uk1, ul1) and (bj , uk2, ul2) should
satisfyuk1 ≤ uk2 andul1 ≥ ul2. In implemen-
tation, we only need to find the starting point of a
bullet, i.e., a pair(bi, uk), since we know the tree
structure in advance and therefore we know that
the starting position of the next sibling bullet is
the ending boundary for the current bullet.

4 Our approaches

Our task is to find the correspondence between
slide bullets and a speech sequence or its tran-
scripts. Research on finding correspondences be-
tween parallel texts pervades natural language
processing. For example, aligning bilingual sen-

tence pairs is an essential step in training ma-
chine translation models. In text summarization,
the correspondence between human-written sum-
maries and their original texts has been identified
(Jing, 2002), too. In speech recognition, forced
alignment is applied to align speech and tran-
scripts. In this paper, we keep the general frame-
work of alignment in solving our problem.

Our solution, however, should be flexible to
consider multiple constraints such as those con-
veyed in hierarchical bullet structures and global
word distribution. Accordingly, the model pro-
posed in this paper depends on two orthogonal
strategies to ensure efficiency and richness of the
model. First of all, we formulate all our solutions
within a classic dynamic programming framework
to enforce computational efficiency (section 4.1).
On the other hand, we explore the approach to in-
corporating hierarchical and global features into
the alignment framework (Section 4.2). The as-
sociated parameters are then optimized with Pow-
ell’s algorithm (Section 4.3).

4.1 A pre-order walk of bullet trees

We formulate our solutions within the classic
dynamic-programming-based alignment frame-
work, dynamic time warping (DTW). To this end,
we need to sequentialize the given hierarchies,
i.e., bullet trees. We propose to do so through a
pre-order walk of a bullet tree; i.e., at any step
of a recursive traversal of the tree, the alignment
model always visits the root first, followed by its
children in a left-to-right order. This sequential-
ization actually corresponds to a reasonable as-
sumption: words appearing earlier on a given slide
are spoken earlier by the speaker. The pre-order
walk is also used by (Branavan et al., 2007) to
reduce the search space of their discriminative
table-of-contents generation. Our sequentializa-
tion strategy can be intuitively thought of as re-
moving indentations that lead each bullet. As
shown in Figure 1, the right panel is a bullet array
resulting from a pre-walk of the slide in the left
panel. In our baseline model, the resulted bullet
array is directly aligned with lecture utterances.

Other orders of bullet traversal could also be
considered, e.g., when speech does not strictly fol-
low bullet orders. In general, one can regard our
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task here as a tagging problem to allow further
flexibility on bullet-utterance correspondence, in
which bullets are thought of as tags. However,
considering the fact that bullets are created to or-
ganize speech and in most cases they correspond
to the development of speech content monotoni-
cally, this paper focuses on addressing the prob-
lem in the alignment framework.

Figure 1: A pre-order walk of a bullet tree.

4.2 Incorporating hierarchical and global
features

Our models should be flexible enough to consider
constraints that could be helpful, e.g., the hierar-
chical bullet structures and global word distribu-
tion. We propose to consider all these constraints
in the phase of estimating similarity matrices. To
this end, we use two levels of similarity matrices
to capture local tree constraints and global word
distributions, respectively.

First of all, information conveyed in the hierar-
chies of bullet trees should be considered, such as
the potentially discriminative nature between two
sibling bullets (Branavan et al., 2007) and the re-
lationships between ancestor and descendant bul-
lets. We incorporate them in the bullet-utterance
similarity matrices. Specifically, when estimating
the similarity between a bulletbi and an utterance
uj , we consider local tree constraints based on
where the nodebi is located on the slide. We do
so by accounting for first and second-order tree
features. Given a bullet,bi, we first represent it
as multiple vectors, one for each of the following:
its own words, the words appearing in its parent
bullet, grandparent, children, grandchildren, and
the bullets immediately adjacent tobi. That is,bi

is now represented as 6 vectors of words (we do
not discriminate between its left and right siblings
and put these words in the same vector). Simi-
larity between the bulletbi and an utteranceuj is
calculated by taking a weighted average over the
similarities between each of the 6 vectors and the
utteranceuj . A linear combination is used and the
weights are optimized on a development set.

Global property of word distributions could be
helpful, too. A general term often has less dis-
criminative power in the alignment framework
than a word that is localized to a subsection of
the document and is related to specific subtopics.
For example, in a lecture that teaches introductory
computer science topics, aligning a general term
“computer” should receive a smaller weight than
aligning some topic-specific terms such as “au-
tomaton.” The latter word is more likely to appear
in a more narrow text span. It is not straightfor-
ward to directly calculateidf scores unless a lec-
ture is split into smaller segments in some way.
Instead, in our models, the distribution property
of a word is considered in word-level similarity
matrices with the following formula.

sim(wi, wj) =

{
0 : i 6= j

1− λ var(wi)
maxk(var(wk))

: i = j

Aligning different words receives no bonus,
while matching the same word between bullets
and utterances receives a score of 1 minus a dis-
tribution penalty, as shown in the formula above.
The functionvar(wi) calculates the standard vari-
ance of the positions where the wordwi appears.
Divided by the maximal standard variance of word
positions in the same lecture, the score is normal-
ized to [0,1]. This distribution penalty is weighted
by λ, which is tuned in a development set. Again,
a general term is expected to have a larger posi-
tional variance.

Once a word-level matrix is acquired, it is com-
bined with the bullet-utterance level matrix dis-
cussed above. Specifically, when measuring the
similarity between a word vector (one of the 6
vectors) and the transcripts of an utterance, we
sum up the word-level similarity scores of all
matching words between them, normalize the re-
sulted score by the length of the vector and ut-
terance, and then renormalize it to the range
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[0, 1] within the same spoken document. The
final bullet-utterance similarity matrix is incor-
porated into the pre-order-walk suquentialization
discussed above, when alignment is conducted.

4.3 Parameter optimization

Powell’s algorithm (Press et al., 2007) is used to
find the optimal weights for the constraints we in-
corporated above, to directly minimize the objec-
tive function, i.e., thePk and WindowDiff scores
that we will discuss later. As a summary, we have
7 weights to tune: a weight for each of the fol-
lowing: parent bullet, grandparent, adjacent sib-
lings, children, grandchildren, and the current bul-
let, plus the word distribution penaltyλ. The val-
ues of these weights are determined on a develop-
ment set.

Note that the model we propose here does not
exclude the use of further features; instead, many
other features, such as smoothed word similarity
scores, can be easily added to this model. We
are conservative on our model complexity here,
in terms of number of weights need to be tuned,
for the consideration of the size of data that we
can used to estimate these weights. Finally, with
all the 7 weights being determined, we apply the
standard dynamic time warping (DTW).

5 Experimental set-up

5.1 Data

We use a corpus of lectures recorded at a large
research university. The correspondence between
bullets and speech utterances are manually an-
notated in a subset of this lecture corpus, which
contains approximately 30,000 word tokens in
its manual transcripts. Intuitively, this roughly
equals a 120-page double-spaced essay in length.
The lecturer’s voice was recorded with a head-
mounted microphone with a 16kHz sampling rate
and 16-bit samples. Students’ comments and
questions were not recorded. The speech is split
into utterances by pauses longer than 200ms, re-
sulting in around 4000 utterances. There are 119
slides that are composed of 921 bullets. A sub-
set containing around 25% consecutive slides and
their corresponding speech/transcripts are used as
our development set to tune the parameters dis-

cussed earlier; the rest data are used as our test
set.

5.2 Evaluation metric

We evaluate our systems according to how well
the segmentation implied by the inferred bullet
alignment matches that of the manually anno-
tated gold-standard bullet alignment. Though one
may consider that different bullets may be of dif-
ferent importance, in this paper we do not use
any heuristics to judge this and we treat all bul-
lets equally in our evaluation. We evaluate our
systems with thePk and WindowDiff metrics
(Malioutov et al., 2007; Beeferman et al., 1999;
Pevsner and Hearst, 2002). Note that for both
metrics, the lower a score is, the better the per-
formance of a system is. ThePk score computes
the probability of a randomly chosen pair of words
being inconsistently separated. The WindowDiff
is a variant ofPk; it penalizes false positives and
near misses equally.

6 Experimental results

6.1 Alignment performance

Table 1 presents the results on automatic tran-
scripts with a 39% WER, a typical WER in realis-
tic and uncontrolled lecture conditions (Leeuwis
et al., 2003; Hsu and Glass, 2006). The tran-
scripts were generated with the SONIC toolkit
(Pellom, 2001). The acoustic model was trained
on the Wall Street Journal dictation corpus. The
language model was trained on corpora obtained
from the Web through searching the words ap-
pearing on slides as suggested by (Munteanu et
al., 2007).

Pk WindowDiff
UNI 0.481 0.545
TT 0.469 0.534
B-ALN 0.283 0.376
HG-ALN 0.266 0.359

Table 1: ThePk and WindowDiff scores of uni-
form segmentation (UNI), TextTiling (TT), base-
line alignment (B-ALN), and alignment with hier-
archical and global information (HG-ALN).

From Table 1, we can see that the model that
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utilizes the hierarchical structures of slides and
global distribution of words, i.e., the HG-ALN
model, reduces bothPk and WindowDiff scores
over the baseline model, B-ALN. As discussed
earlier, the baseline is a re-implementation of
standard dynamic time warping based only on a
pre-order walk of the slides, while the HG-ALN
model incorporates also hierarchical bullet con-
straints and global word distribution.

Table 1 also presents the performance of a
typical topic segmentation algorithm, TextTiling
(Hearst, 1997). Note that similar to (Malioutov et
al., 2007), we force the number of predicted topic
segments to be the target number, i.e., in our task,
the number of bullets. The results show that both
thePk and WindowDiff scores of TextTiling are
significantly higher than those of the alignment al-
gorithms. Our manual analysis suggests that many
segments are as short as several utterances and the
difference between two consecutive segments is
too subtle to be captured by a lexical cohesion-
based method such as TextTiling. For compari-
son, We also present the results of uniform seg-
mentation (UNI), which simply splits the tran-
script of each lecture evenly into segments with
same numbers of words.

6.2 Performance under different WERs

Speech recognition errors within reasonable
ranges often have very small impact on many spo-
ken language processing tasks such as spoken lan-
guage retrieval (Garofolo et al., 2000) and speech
summarization (Christensen et al., 2004; Maskey,
2008; Murray, 2008; Zhu, 2010). To study the
impact of speech recognition errors on our task
here, we experimented with the alignment mod-
els on manual transcripts as well as on automatic
transcripts with different WERs, including a 39%
and a 46% WER produced by two real recogni-
tion systems. To increase the spectrum of our ob-
servation, we also overfit our ASR models to ob-
tain smaller WERs at the levels of 11%, 19%, and
30%.

From Figure 2, we can see that at all levels of
these different WERs, the HG-ALN model con-
sistently outperforms the B-ALN system (the AU-
DIO model will be discussed below). ThePk

and WindowDiff curves also show that the align-
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Figure 2: The impact of different WERs on the
alignment models. The performance of an audio-
based model (AUDIO) is also presented.

ment performance is sensitive to recognition er-
rors, particularly when the WER is in the range of
30%–45%, suggesting that the problem we study
here can benefit from the improvement of current
ASR systems in this range, e.g., the recent ad-
vance achieved in (Glass et al., 2007).

6.3 Imposing hierarchical structures onto
raw speech

We can actually impose hierarchical structures di-
rectly onto raw speech, through estimating the
similarity between bullets and speech. This en-
ables navigation through the raw speech by using
slides; e.g., one can hear different parts of speech
by clicking a bullet. We apply keyword spotting to
solve this problem, which detects the occurrences
of each bullet word in the corresponding lecture
audio.
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In this paper, we use a token-passing based al-
gorithm provided in the ASR toolkit SONIC (Pel-
lom, 2001). Since the slides are given in advance,
we manually add into the pronunciation dictio-
nary the words that appear in slides but not in
the pronunciation dictionary. To estimate sim-
ilarity between a word vector (discussed earlier
in Section 4.2) and an utterance, we sum up all
keyword-spotting confidence scores assigned be-
tween them, normalize the resulted score by the
length of the vector and the duration of the utter-
ance, and then renormalize it to the range [0, 1]
within the same spoken lecture.

We present the performance of our bullet-audio
alignment model (AUDIO) in Figure 2 so that one
can compare its effectiveness with the transcrip-
tion based methods. The figure shows that the
performance of the AUDIO model is comparable
to the baseline transcription-based model, i.e., B-
ALN, when the WERs of the transcripts are in the
range of 37%–39%. The performance is compara-
ble to the HG-ALN model when WERs are in the
range of 42%–44%. Also, this suggests that incor-
porating hierarchical and global features compen-
sates for the performance degradation of speech
recognition in this range when the WER is 4%-
6% higher.

Note that we did not observe that the perfor-
mance is different when incorporating hierarchi-
cal information and global word distributions into
the AUDIO model, so the AUDIO results in Fig-
ure 2 are the performance of both types of meth-
ods. The current keyword spotting component
yields a high false-positive rate; e.g., it incorrectly
reports many words that are acoustically similar to
parts of other words that really appear in an utter-
ance. This happened even when a high threshold
is set. The noise impairs the benefit of hierarchical
and distribution features.

7 Conclusions and discussions

This paper investigates the problem of imposing
a known hierarchical structure onto an unstruc-
tured spoken document. Results show that incor-
porating local hierarchical constraints and global
word distributions in the efficient dynamic pro-
gramming framework yields a better performance
over the baseline. Further experiments on a wide

range of WERs confirm that the improvement is
consistent, and show that both types of models
are sensitive to speech recognition errors, partic-
ularly when WER increases to 30% and above.
Moreover, directly imposing hierarchical struc-
tures onto raw speech through keyword spotting
achieves competitive performance.
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