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Abstract

Several sets of explanatory variables – in-
cluding shallow, language modeling, POS,
syntactic, and discourse features – are com-
pared and evaluated in terms of their im-
pact on predicting the grade level of read-
ing material for primary school students.
We find that features based on in-domain
language models have the highest predic-
tive power. Entity-density (a discourse fea-
ture) and POS-features, in particular nouns,
are individually very useful but highly cor-
related. Average sentence length (a shal-
low feature) is more useful – and less ex-
pensive to compute – than individual syn-
tactic features. A judicious combination
of features examined here results in a sig-
nificant improvement over the state of the
art.

1 Introduction

1.1 Motivation and Method
Readability Assessment quantifies the difficulty
with which a reader understands a text. Automatic
readability assessment enables the selection of ap-
propriate reading material for readers of varying
proficiency. Besides modeling and understanding
the linguistic components involved in readability, a
readability-prediction algorithm can be leveraged
for the task of automatic text simplification: as sim-
plification operators are applied to a text, the read-
ability is assessed to determine whether more sim-
plification is needed or a particular reading level
was reached.

Identifying text properties that are strongly cor-
related with text complexity is itself complex. In

this paper, we explore a broad range of text proper-
ties at various linguistic levels, ranging from dis-
course features to language modeling features, part-
of-speech-based grammatical features, parsed syn-
tactic features and well studied shallow features,
many of which are inspired by previous work.

We use grade levels, which indicate the number
of years of education required to completely under-
stand a text, as a proxy for reading difficulty. The
corpus in our study consists of texts labeled with
grade levels ranging from grade 2 to 5. We treat
readability assessment as a classification task and
evaluate trained classifiers in terms of their predic-
tion accuracy. To investigate the contributions of
various sets of features, we build prediction models
and examine how the choice of features influences
the model performance.

1.2 Related Work

Many traditional readability metrics are linear mod-
els with a few (often two or three) predictor vari-
ables based on superficial properties of words, sen-
tences, and documents. These shallow features
include the average number of syllables per word,
the number of words per sentence, or binned word
frequency. For example, the Flesch-Kincaid Grade
Level formula uses the average number of words
per sentence and the average number of syllables
per word to predict the grade level (Flesch, 1979).
The Gunning FOG index (Gunning, 1952) uses av-
erage sentence length and the percentage of words
with at least three syllables. These traditional met-
rics are easy to compute and use, but they are not
reliable, as demonstrated by several recent stud-
ies in the field (Si and Callan, 2001; Petersen and
Ostendorf, 2006; Feng et al., 2009).
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With the advancement of natural language pro-
cessing tools, a wide range of more complex text
properties have been explored at various linguis-
tic levels. Si and Callan (2001) used unigram
language models to capture content information
from scientific web pages. Collins-Thompson and
Callan (2004) adopted a similar approach and used
a smoothed unigram model to predict the grade lev-
els of short passages and web documents. Heilman
et al. (2007) continued using language modeling
to predict readability for first and second language
texts. Furthermore, they experimented with vari-
ous statistical models to test their effectiveness at
predicting reading difficulty (Heilman et al., 2008).
Schwarm/Petersen and Ostendorf (Schwarm and
Ostendorf, 2005; Petersen and Ostendorf, 2006)
used support vector machines to combine features
from traditional reading level measures, statistical
language models and automatic parsers to assess
reading levels. In addition to lexical and syntactic
features, several researchers started to explore dis-
course level features and examine their usefulness
in predicting text readability. Pitler and Nenkova
(2008) used the Penn Discourse Treebank (Prasad
et al., 2008) to examine discourse relations. We
previously used a lexical-chaining tool to extract
entities that are connected by certain semantic re-
lations (Feng et al., 2009).

In this study, we systematically evaluate all
above-mentioned types of features, as well as a
few extensions and variations. A detailed descrip-
tion of the features appears in Section 3. Section
4 discusses results of experiments with classifiers
trained on these features. We begin with a descrip-
tion of our data in the following section.

2 Corpus

We contacted the Weekly Reader1 corporation, an
on-line publisher producing magazines for elemen-
tary and high school students, and were granted
access in October 2008 to an archive of their ar-
ticles. Among the articles retrieved, only those
for elementary school students are labeled with
grade levels, which range from 2 to 5. We selected
only this portion of articles (1629 in total) for the

1http://www.weeklyreader.com

Table 1: Statistics for the Weekly Reader Corpus
Grade docs. words/document words/sentence

mean std. dev. mean std. dev.
2 174 128.27 106.03 9.54 2.32
3 289 171.96 106.05 11.39 2.42
4 428 278.03 187.58 13.67 2.65
5 542 335.56 230.25 15.28 3.21

study.2 These articles are intended to build chil-
dren’s general knowledge and help them practice
reading skills. While pre-processing the texts, we
found that many articles, especially those for lower
grade levels, consist of only puzzles and quizzes,
often in the form of simple multiple-choice ques-
tions. We discarded such texts and kept only 1433
full articles. Some distributional statistics of the
final corpus are listed in Table 1.

3 Features

3.1 Discourse Features

We implement four subsets of discourse fea-
tures: entity-density features, lexical-chain fea-
tures, coreference inference features and entity grid
features. The coreference inference features are
novel and have not been studied before. We pre-
viously studied entity-density features and lexical-
chain features for readers with intellectual disabili-
ties (Feng et al., 2009). Entity-grid features have
been studied by Barzilay and Lapata (2008) in a
stylistic classification task. Pitler and Nenkova
(2008) used the same features to evaluate how well
a text is written. We replicate this set of features
for grade level prediction task.

3.1.1 Entity-Density Features
Conceptual information is often introduced in a
text by entities, which consist of general nouns
and named entities, e.g. people’s names, locations,
organizations, etc. These are important in text
comprehension, because established entities form
basic components of concepts and propositions, on
which higher level discourse processing is based.
Our prior work illustrated the importance of en-
tities in text comprehension (Feng et al., 2009).

2A corpus of Weekly Reader articles was previously used
in work by Schwarm and Ostendorf (2005). However, the two
corpora are not identical in size nor content.
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Table 2: New Entity-Density Features
1 percentage of named entities per document
2 percentage of named entities per sentences
3 percentage of overlapping nouns removed
4 average number of remaining nouns per sentence
5 percentage of named entities in total entities
6 percentage of remaining nouns in total entities

We hypothesized that the number of entities in-
troduced in a text relates to the working memory
burden on their targeted readers – individuals with
intellectual disabilities. We defined entities as a
union of named entities and general nouns (nouns
and proper nouns) contained in a text, with over-
lapping general nouns removed. Based on this, we
implemented four kinds of entity-density features:
total number of entity mentions per document, total
number of unique entity mentions per document,
average number of entity mentions per sentence,
and average number of unique entity mentions per
sentence.

We believe entity-density features may also re-
late to the readability of a text for a general au-
dience. In this paper, we conduct a more re-
fined analysis of general nouns and named entities.
To collect entities for each document, we used
OpenNLP’s3 name-finding tool to extract named
entities; general nouns are extracted from the out-
put of Charniak’s Parser (see Section 3.3). Based
on the set of entities collected for each document,
we implement 12 new features. We list several of
these features in in Table 2.

3.1.2 Lexical Chain Features
During reading, a more challenging task with enti-
ties is not just to keep track of them, but to resolve
the semantic relations among them, so that infor-
mation can be processed, organized and stored in
a structured way for comprehension and later re-
trieval. In earlier work (Feng et al., 2009), we
used a lexical-chaining tool developed by Galley
and McKeown (2003) to annotate six semantic re-
lations among entities, e.g. synonym, hypernym,
hyponym, etc. Entities that are connected by these
semantic relations were linked through the text to
form lexical chains. Based on these chains, we
implemented six features, listed in Table 3, which

3http://opennlp.sourceforge.net/

Table 3: Lexical Chain Features
1 total number of lexical chains per document
2 avg. lexical chain length
3 avg. lexical chain span
4 num. of lex. chains with span ≥ half doc. length
5 num. of active chains per word
6 num. of active chains per entity

Table 4: Coreference Chain Features
1 total number of coreference chains per document
2 avg. num. of coreferences per chain
3 avg. chain span
4 num. of coref. chains with span ≥ half doc. length
5 avg. inference distance per chain
6 num. of active coreference chains per word
7 num. of active coreference chains per entity

we use in our current study. The length of a chain
is the number of entities contained in the chain,
the span of chain is the distance between the index
of the first and last entity in a chain. A chain is
defined to be active for a word or an entity if this
chain passes through its current location.

3.1.3 Coreference Inference Features
Relations among concepts and propositions are of-
ten not stated explicitly in a text. Automatically re-
solving implicit discourse relations is a hard prob-
lem. Therefore, we focus on one particular type,
referential relations, which are often established
through anaphoric devices, e.g. pronominal refer-
ences. The ability to resolve referential relations is
important for text comprehension.

We use OpenNLP to resolve coreferences. En-
tities and pronominal references that occur across
the text and refer to the same person or object
are extracted and formed into a coreference chain.
Based on the chains extracted, we implement seven
features as listed in Table 4. The chain length,
chain span and active chains are defined in a sim-
ilar way to the lexical chain features. Inference
distance is the difference between the index of the
referent and that of its pronominal reference. If the
same referent occurs more than once in a chain,
the index of the closest occurrence is used when
computing the inference distance.

3.1.4 Entity Grid Features
Coherent texts are easier to read. Several computa-
tional models have been developed to represent and
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measure discourse coherence (Lapata and Barzilay,
2005; Soricut and Marcu, 2006; Elsner et al., 2007;
Barzilay and Lapata, 2008) for NLP tasks such as
text ordering and text generation. Although these
models are not intended directly for readability re-
search, Barzilay and Lapata (2008) have reported
that distributional properties of local entities gen-
erated by their grid models are useful in detecting
original texts from their simplified versions when
combined with well studied lexical and syntactic
features. This approach was subsequently pursued
by Pitler and Nenkova (2008) in their readability
study. Barzilay and Lapata’s entity grid model is
based on the assumption that the distribution of
entities in locally coherent texts exhibits certain
regularities. Each text is abstracted into a grid
that captures the distribution of entity patterns at
the level of sentence-to-sentence transitions. The
entity grid is a two-dimensional array, with one di-
mension corresponding to the salient entities in the
text, and the other corresponding to each sentence
of the text. Each grid cell contains the grammatical
role of the specified entity in the specified sentence:
whether it is a subject (S), object (O), neither of
the two (X), or absent from the sentence (-).

We use the Brown Coherence Toolkit (v0.2) (El-
sner et al., 2007), based on (Lapata and Barzilay,
2005), to generate an entity grid for each text in
our corpus. The distribution patterns of entities
are traced between each pair of adjacent sentences,
resulting in 16 entity transition patterns4. We then
compute the distribution probability of each entity
transition pattern within a text to form 16 entity-
grid-based features.

3.2 Language Modeling Features

Our language-modeling-based features are inspired
by Schwarm and Ostendorf’s (2005) work, a study
that is closely related to ours. They used data
from the same data – the Weekly Reader – for
their study. They trained three language mod-
els (unigram, bigram and trigram) on two paired
complex/simplified corpora (Britannica and Litera-
cyNet) using an approach in which words with high
information gain are kept and the remaining words

4These 16 transition patterns are: “SS”, “SO”, “SX”, “S-”,
“OS”, “OO”, “OX”, “O-”, “XS”, “XO”, “XX”, “X-”, “-S”,
“-O”, “-X”, “- -”.

are replaced with their parts of speech. These lan-
guage models were then used to score each text
in the Weekly Reader corpus by perplexity. They
reported that this approach was more successful
than training LMs on text sequences of word la-
bels alone, though without providing supporting
statistics.

It’s worth pointing out that their LMs were not
trained on the Weekly Reader data, but rather on
two unrelated paired corpora (Britannica and Lit-
eracyNet). This seems counter-intuitive, because
training LMs directly on the Weekly Reader data
would provide more class-specific information for
the classifiers. They justified this choice by stating
that splitting limited Weekly Reader data for train-
ing and testing purposes resulted in unsuccessful
performance.

We overcome this problem by using a hold-
one-out approach to train LMs directly on our
Weekly Reader corpus, which contains texts rang-
ing from Grade 2 to 5. We use grade levels to
divide the whole corpus into four smaller subsets.
In addition to implementing Schwarm and Osten-
dorf’s information-gain approach, we also built
LMs based on three other types of text sequences
for comparison purposes. These included: word-
token-only sequence (i.e., the original text), POS-
only sequence, and paired word-POS sequence.
For each grade level, we use the SRI Language
Modeling Toolkit5 (with Good-Turing discounting
and Katz backoff for smoothing) to train 5 lan-
guage models (1- to 5-gram) using each of the four
text sequences, resulting in 4×5×4 = 80 perplex-
ity features for each text tested.

3.3 Parsed Syntactic Features
Schwarm and Ostendorf (2005) studied four parse
tree features (average parse tree height, average
number of SBARs, noun phrases, and verb phrases
per sentences). We implemented these and addi-
tional features, using the Charniak parser (Char-
niak, 2000). Our parsed syntactic features focus on
clauses (SBAR), noun phrases (NP), verb phrases
(VP) and prepositional phrases (PP). For each
phrase, we implement four features: total num-
ber of the phrases per document, average number
of phrases per sentence, and average phrase length

5http://www.speech.sri.com/projects/srilm/
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measured by number of words and characters re-
spectively. In addition to average tree height, we
implement two non-terminal-node-based features:
average number of non-terminal nodes per parse
tree, and average number of non-terminal nodes
per word (terminal node).

3.4 POS-based Features

Part-of-speech-based grammatical features were
shown to be useful in readability prediction (Heil-
man et al., 2007; Leroy et al., 2008). To extend
prior work, we systematically studied a number of
common categories of words and investigated to
what extent they are related to a text’s complex-
ity. We focus primarily on five classes of words
(nouns, verbs, adjectives, adverbs, and preposi-
tions) and two broad categories (content words,
function words). Content words include nouns,
verbs, numerals, adjectives, and adverbs; the re-
maining types are function words. The part of
speech of each word is obtained from examining
the leaf node based on the output of Charniak’s
parser, where each leaf node consists of a word and
its part of speech. We group words based on their
POS labels. For each class of words, we imple-
ment five features. For example, for the adjective
class, we implemented the following five features:
percent of adjectives (tokens) per document, per-
cent of unique adjectives (types) per document,
ratio of unique adjectives per total unique words
in a document, average number of adjectives per
sentence and average number of unique adjectives
per sentence.

3.5 Shallow Features

Shallow features refer to those used by traditional
readability metrics, such as Flesch-Kincaid Grade
Level (Flesch, 1979), SMOG (McLaughlin, 1969),
Gunning FOG (Gunning, 1952), etc. Although
recent readability studies have strived to take ad-
vantage of NLP techniques, little has been revealed
about the predictive power of shallow features.
Shallow features, which are limited to superficial
text properties, are computationally much less ex-
pensive than syntactic or discourse features. To en-
able a comparison against more advanced features,
we implement 8 frequently used shallow features
as listed in Table 5.

Table 5: Shallow Features
1 average number of syllables per word
2 percentage of poly-syll. words per doc.
3 average number of poly-syll. words per sent.
4 average number of characters per word
5 Chall-Dale difficult words rate per doc.
6 average number of words per sentence
7 Flesch-Kincaid score
8 total number of words per document

3.6 Other Features

For comparison, we replicated 6 out-of-vocabulary
features described in Schwarm and Ostendorf
(2005). For each text in the Weekly Reader corpus,
these 6 features are computed using the most com-
mon 100, 200 and 500 word tokens and types based
on texts from Grade 2. We also replicated the 12
perplexity features implemented by Schwarm and
Ostendorf (2005) (see Section 3.2).

4 Experiments and Discussion

Previous studies on reading difficulty explored vari-
ous statistical models, e.g. regression vs. classifica-
tion, with varying assumptions about the measure-
ment of reading difficulty, e.g. whether labels are
ordered or unrelated, to test the predictive power
of models (Heilman et al., 2008; Petersen and Os-
tendorf, 2009; Aluisio et al., 2010). In our re-
search, we have used various models, including
linear regression; standard classification (Logis-
tic Regression and SVM), which assumes no rela-
tion between grade levels; and ordinal regression/
classification (provided by Weka, with Logistic
Regression and SMO as base function), which as-
sumes that the grade levels are ordered. Our exper-
iments show that, measured by mean squared error
and classification accuracy, linear regression mod-
els perform considerably poorer than classification
models. Measured by accuracy and F-measure,
ordinal classifiers perform comparable or worse
than standard classifiers. In this paper, we present
the best results, which are obtained by standard
classifiers. We use two machine learning packages
known for efficient high-quality multi-class classi-
fication: LIBSVM (Chang and Lin, 2001) and the
Weka machine learning toolkit (Hall et al., 2009),
from which we choose Logistic Regression as clas-
sifiers. We train and evaluate various prediction
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Table 6: Comparison of discourse features
Feature Set LIBSVM Logistic Regress.
Entity-Density 59.63±0.632 57.59±0.375
Lexical Chain 45.86±0.815 42.58±0.241
Coref. Infer. 40.93±0.839 42.19±0.238
Entity Grid 45.92±1.155 42.14±0.457
all combined 60.50±0.990 58.79±0.703

models using the features described in Section 3.
We evaluate classification accuracy using repeated
10-fold cross-validation on the Weekly Reader cor-
pus. Classification accuracy is defined as the per-
centage of texts predicted with correct grade levels.
We repeat each experiment 10 times and report the
mean accuracy and its standard deviation.

4.1 Discourse Features

We first discuss the improvement made by extend-
ing our earlier entity-density features (Feng et al.,
2009). We used LIBSVM to train and test mod-
els on the Weekly Reader corpus with our earlier
features and our new features respectively. With
earlier features only, the model achieves 53.66%
accuracy. With our new features added, the model
performance is 59.63%.

Table 6 presents the classification accuracy of
models trained with discourse features. We see
that, among four subsets of discourse features,
entity-density features perform significantly better
than the other three feature sets and generate the
highest classification accuracy (LIBSVM: 59.63%,
Logistic Regression: 57.59%). While Logistic Re-
gression results show that there is not much perfor-
mance difference among lexical chain, coreference
inference, and entity grid features, classification
accuracy of LIBSVM models indicates that lexical
chain features and entity grid features are better
in predicting text readability than coreference in-
ference features. Combining all discourse features
together does not significantly improve accuracy
compared with models trained only with entity-
density features.

4.2 Language Modeling Features

Table 7 compares the performance of models gen-
erated using our approach and our replication of
Schwarm and Ostendorf’s (2005) approach. In our
approach, features were obtained from language

Table 7: Comparison of lang. modeling features
Feature Set LIBSVM Logistic Regress.
IG 62.52±1.202 62.14±0.510
Text-only 60.17±1.206 60.31±0.559
POS-only 56.21±2.354 57.64±0.391
Word/POS pair 60.38±0.820 59.00±0.367
all combined 68.38±0.929 66.82±0.448
IG by Schwarm 52.21±0.832 51.89±0.405

Table 8: Comparison of parsed syntactic features
Feature Set # Feat. LIBSVM
Original features 4 50.68±0.812
Expanded features 21 57.79±1.023

models trained on the Weekly Reader corpus. Not
surprisingly, these are more effective than LMs
trained on the Britannica and LiteracyNet corpora,
in Schwarm and Ostendorf’s approach. Our results
support their claim that LMs trained with infor-
mation gain outperform LMs trained with POS la-
bels. However, we also notice that training LMs on
word labels alone or paired word/POS sequences
achieved similar classification accuracy to the IG
approach, while avoiding the complicated feature
selection of the IG approach.

4.3 Parsed Syntactic Features

Table 8 compares a classifier trained on the four
parse features of Schwarm and Ostendorf (2005) to
a classifier trained on our expanded set of parse fea-
tures. The LIBSVM classifier with the expanded
feature set scored 7 points higher than the one
trained on only the original four features, improv-
ing from 50.68% to 57.79%. Table 9 shows a
detailed comparison of particular parsed syntactic
features. The two non-terminal-node-based fea-
tures (average number of non-terminal nodes per
tree and average number of non-terminal nodes
per word) have higher discriminative power than
average tree height. Among SBARs, NPs, VPs and
PPs, our experiments show that VPs and NPs are
the best predictors.

4.4 POS-based Features

The classification accuracy generated by models
trained with various POS features is presented
in Table 10. We find that, among the five word
classes investigated, noun-based features gener-
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Table 9: Detailed comp. of syntactic features
Feature Set LIBSVM Logistic Regress.
Non-term.-node ratios 53.02±0.571 51.80±0.171
Average tree height 44.26±0.914 43.45±0.269
SBARs 44.42±1.074 43.50±0.386
NPs 51.56±1.054 48.14±0.408
VPs 53.07±0.597 48.67±0.484
PPs 49.36±1.277 46.47±0.374
all combined 57.79±1.023 54.11±0.473

Table 10: Comparison of POS features
Feature Set LIBSVM Logistic Regress.
Nouns 58.15±0.862 57.01±0.256
Verbs 54.40±1.029 55.10±0.291
Adjectives 53.87±1.128 52.75±0.427
Adverbs 52.66±0.970 50.54±0.327
Prepositions 56.77±1.278 54.13±0.312
Content words 56.84±1.072 56.18±0.213
Function words 52.19±1.494 50.95±0.298
all combined 59.82±1.235 57.86±0.547

ate the highest classification accuracy, which is
consistent with what we have observed earlier
about entity-density features. Another notable ob-
servation is that prepositions demonstrate higher
discriminative power than adjectives and adverbs.
Models trained with preposition-based features per-
form close to those trained with noun-based fea-
tures. Among the two broader categories, content
words (which include nouns) demonstrate higher
predictive power than function words (which in-
clude prepositions).

4.5 Shallow Features

We present some notable findings on shallow fea-
tures in Table 11. Experimental results generated
by models trained with Logistic Regression show
that average sentence length has dominating predic-
tive power over all other shallow features. Features
based on syllable counting perform much worse.
The Flesch-Kincaid Grade Level score uses a fixed
linear combination of average words per sentence
and average syllables per word. Combining those
two features (without fixed coefficients) results in
the best overall accuracy, while using the Flesch-
Kincaid score as a single feature is significantly
worse.

Table 11: Comparison of shallow features
Feature Set Logistic Regress.
Avg. words per sent. 52.17±0.193
Avg. syll. per word 42.51±0.264
above two combined 53.04±0.514
Flesch-Kincaid score 50.83±0.144
Avg. poly-syll. words per sent. 45.70±0.306
all 8 features combined 52.34±0.242

4.6 Comparison with Previous Studies

A trivial baseline of predicting the most frequent
grade level (grade 5) predicts 542 out of 1433 texts
(or 37.8%) correctly. With this in mind, we first
compare our study with the widely-used Flesch-
Kincaid Grade Level formula, which is a linear
function of average words per sentence and average
syllables per word that aims to predict the grade
level of a text directly. Since this is a fixed formula
with known coefficients, we evaluated it directly
on our entire Weekly Reader corpus without cross-
validation. We obtain the predicted grade level
of a text by rounding the Flesch-Kincaid score
to the nearest integer. For only 20 out of 1433
texts the predicted and labeled grade levels agree,
resulting in a poor accuracy of 1.4%. By contrast,
using the Flesch-Kincaid score as a feature of a
simple logistic regression model achieves above
50% accuracy, as discussed in Section 4.5.

The most closely related previous study is the
work of Schwarm and Ostendorf (2005). How-
ever, because their experiment design (85/15 train-
ing/test data split) and machine learning tool
(SV Mlight) differ from ours, their results are not
directly comparable to ours. To make a compar-
ison, we replicated all the features used in their
study and then use LIBSVM and Weka’s Logistic
Regression to train two models with the replicated
features and evaluate them on our Weekly Reader
corpus using 10-fold cross-validation.

Using the same experiment design, we train clas-
sifiers with three combinations of our features as
listed in Table 12. “All features” refers to a naive
combination of all features. “AddOneBest” refers
to a subset of features selected by a group-wise
add-one-best greedy feature selection. “WekaFS”
refers to a subset of features chosen by Weka’s
feature selection filter.

“WekaFS” consists of 28 features selected au-
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Table 12: Comparison with previous work
baseline accuracy (majority class) 37.8
Flesch-Kincaid Grade Level 1.4

Feature Set # Feat. LIBSVM Logistic Reg.
Schwarm 25 63.18±1.664 60.50±0.477
All features 273 72.21±0.821 63.71±0.576
AddOneBest 122 74.01±0.847 69.22±0.411
WekaFS 28 70.06±0.777 65.46±0.336

tomatically by Weka’s feature selection filter us-
ing a best-first search method. The 28 features
include language modeling features, syntactic fea-
tures, POS features, shallow features and out-of-
vocabulary features. Aside from 4 shallow features
and 5 out-of-vocabulary features, the other 19 fea-
tures are novel features we have implemented for
this paper.

As Table 12 shows, a naive combination of all
features results in classification accuracy of 72%,
which is much higher than the current state of the
art (63%). This is not very surprising, since we are
considering a greater variety of features than any
previous individual study. Our WekaFS classifier
uses roughly the same number of features as the
best published result, yet it has a higher accuracy
(70.06%). Our best results were obtained by group-
wise add-one-best feature selection, resulting in
74% classification accuracy, a big improvement
over the state of the art.

5 Conclusions

We examined the usefulness of features at various
linguistic levels for predicting text readability in
terms of assigning texts to elementary school grade
levels. We implemented a set of discourse features,
enriched previous work by creating several new
features, and systematically tested and analyzed
the impact of these features.

We observed that POS features, in particular
nouns, have significant predictive power. The high
discriminative power of nouns in turn explains the
good performance of entity-density features, based
primarily on nouns. In general, our selected POS
features appear to be more correlated to text com-
plexity than syntactic features, shallow features
and most discourse features.

For parsed syntactic features, we found that verb

phrases appear to be more closely correlated with
text complexity than other types of phrases. While
SBARs are commonly perceived as good predic-
tors for syntactic complexity, they did not prove
very useful for predicting grade levels of texts in
this study. In future work, we plan to examine this
result in more detail.

Among the 8 shallow features, which are used
in various traditional readability formulas, we iden-
tified that average sentence length has dominating
predictive power over all other lexical or syllable-
based features.

Not surprisingly, among language modeling
features, combined features obtained from LMs
trained directly on the Weekly Reader corpus show
high discriminative power, compared with features
from LMs trained on unrelated corpora.

Discourse features do not seem to be very use-
ful in building an accurate readability metric. The
reason could lie in the fact that the texts in the cor-
pus we studied exhibit relatively low complexity,
since they are aimed at primary-school students. In
future work, we plan to investigate whether these
discourse features exhibit different discriminative
power for texts at higher grade levels.

A judicious combination of features examined
here results in a significant improvement over the
state of the art.
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