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Abstract

There often exist multiple corpora for the
same natural language processing (NLP)
tasks. However, such corpora are gen-
erally used independently due to distinc-
tions in annotation standards. For the pur-
pose of full use of readily available hu-
man annotations, it is significant to simul-
taneously utilize multiple corpora of dif-
ferent annotation standards. In this pa-
per, we focus on the challenge of con-
stituent syntactic parsing with treebanks
of different annotations and propose a col-
laborative decoding (or co-decoding) ap-
proach to improve parsing accuracy by
leveraging bracket structure consensus be-
tween multiple parsing decoders trained
on individual treebanks. Experimental re-
sults show the effectiveness of the pro-
posed approach, which outperforms state-
of-the-art baselines, especially on long
sentences.

1 Introduction

Recent years have seen extensive applications of
machine learning methods to natural language
processing problems. Typically, increase in the
scale of training data boosts the performance of
machine learning methods, which in turn en-
hances the quality of learning-based NLP systems
(Banko and Brill, 2001). However, annotating
data by human is expensive in time and labor. For
this reason, human-annotated corpora are consid-
ered as the most valuable resource for NLP.

In practice, there often exist more than one cor-
pus for the same NLP tasks. For example, for
constituent syntactic parsing (Collins, 1999; Char-
niak, 2000; Petrov et al., 2006) in Chinese, in ad-
dition to the most popular treebank Chinese Tree-
bank (CTB) (Xue et al., 2002), there are also
other treebanks such as Tsinghua Chinese Tree-
bank (TCT) (Zhou, 1996). For the purpose of
full use of readily available human annotations
for the same tasks, it is significant if such cor-
pora can be used jointly. At first sight, a di-
rect combination of multiple corpora is a way to
this end. However, corpora created for the same
NLP tasks are generally built by different orga-
nizations. Thus such corpora often follow dif-
ferent annotation standards and/or even different
linguistic theories. We take CTB and TCT as
a case study. Although both CTB and TCT are
Chomskian-style treebanks, they have annotation
divergences in at least two dimensions: a) CTB
and TCT have dramatically different tag sets, in-
cluding parts-of-speech and grammar labels, and
the tags cannot be mapped one to one; b) CTB
and TCT have distinct hierarchical structures. For
example, the words “中国 (Chinese)传统 (tradi-
tional)文化 (culture)” are grouped as a flat noun
phrase according to the CTB standard (right side
in Fig. 1), but in TCT, the last two words are in-
stead grouped together beforehand (left side in
Fig. 1). The differences cause such treebanks
of different annotations to be generally used in-
dependently. This paper is dedicated to solving
the problem of how to use jointly multiple dis-
parate treebanks for constituent syntactic parsing.
Hereafter, treebanks of different annotations are
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calledheterogeneous treebanks, and correspond-
ingly, the problem of syntactic parsing with het-
erogeneous treebanks is referred to asheteroge-
neous parsing.

Previous work on heterogeneous parsing is of-
ten based on treebank transformation (or treebank
conversion) (Wang et al., 1994; Niu et al., 2009).
The basic idea is to transform annotations of one
treebank (source treebank) to fit the standard of
another treebank (target treebank). Due to diver-
gences of treebank annotations, such transforma-
tion is generally achieved in an indirect way by
selecting transformation results from the output of
a parser trained on the target treebank. A com-
mon property of all the work mentioned above is
that transformation accuracy is heavily dependent
on the performance of parsers trained on the tar-
get treebank. Sometimes transformation accuracy
is not so satisfactory that techniques like instance
pruning are needed in order to refine transforma-
tion results (Niu et al., 2009).

We claim there exists another way, interesting
but less studied for heterogeneous parsing. The
basic idea is that, although there are annotation
divergences between heterogenous treebanks, ac-
tually we can also find consensus in annotations
of bracket structures. Thus we would like to train
parsers on individual heterogeneous treebanks and
guide the parsers to gain output with consensus in
bracket structures as much as possible when they
are parsing the same sentences.

To realize this idea, we propose a generic col-
laborative decoding (or co-decoding) framework
where decoders trained on heterogeneous tree-
banks can exchange consensus information be-
tween each other during the decoding phase. The-
oretically the framework is able to incorporate a
large number of treebanks and various functions
that formalize consensus statistics.

Our contributions can be summarized: 1) we
propose a co-decoding approach to directly uti-
lizing heterogeneous treebanks; 2) we propose a
novel function to measure parsing consensus be-
tween multiple decoders. We also conduct ex-
periments on two Chinese treebanks: CTB and
TCT. The results show that our approach achieves
promising improvements over baseline systems
which make no use of consensus information.
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Figure 1: Example tree fragments with TCT (left)
and CTB (right) annotations

2 Collaborative Decoding-based
Heterogeneous Parsing

2.1 Motivation

This section describes the motivation to use
co-decoding for heterogeneous parsing. We first
use the example in Fig. 1 to illustrate what con-
sensus information exists between heterogenous
treebanks and why such information might help
to improve parsing accuracy. This figure contains
two partial parse trees corresponding to the
words “中国 (Chinese)传统 (traditional)文化
(culture)”, annotated according to the TCT (left
side) and CTB (right side) standards respectively.
Despite the distinctions in tag sets and bracket
structures, these parse trees actually have partial
agreements in bracket structures. That is, not all
bracket structures in the parse trees are different.
Specifically put, although the internal structures
of the parse trees are different, both CTB and
TCT agree to take “中国 传统 文化” as a noun
phrase. Motivated by this observation, we would
like to guide parsers that are trained on CTB and
TCT respectively to verify their output interac-
tively by using consensus information implicitly
contained in these treebanks. Better performance
is expected when such information is considered.

A feasible framework to make use of consensus
information is n-best combination (Henderson
and Brill, 1999; Sagae and Lavie, 2006; Zhang et
al., 2009; Fossum and Knight, 2009). In contrast
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to previous work on n-best combination where
multiple parsers, say, Collins parser (Collins,
1999) and Berkeley parser (Petrov et al., 2006)
are trained on the same training data, n-best
combination for heterogeneous parsing is instead
allowed to use either a single parser or multiple
parsers which are trained on heterogeneous
treebanks. Consensus information can be incor-
porated during the combination of the output
(n-best list of full parse trees following distinct
annotation standards) of individual parsers. How-
ever, despite the success of n-best combination
methods, they suffer from the limited scope of
n-best list. Taking this into account, we prefer
to apply the co-decoding approach such that
consensus information is expected to affect the
entire procedure of searching hypothesis space.

2.2 System Overview

The idea of co-decoding is recently extensively
studied in the literature of SMT (Li et al., 2009;
Liu et al., 2009). As the name shows, co-decoding
requires multiple decoders be combined and pro-
ceed collaboratively. As with n-best combination,
there are at least two ways to build multiple de-
coders: we can either use multiple parsers trained
on the same training data (use of diversity of mod-
els), or use a single parser on different training
data (use of diversity of datasets)1. Both ways
can build multiple decoders which are to be inte-
grated into co-decoding. For the latter case, one
method to get diverse training data is to use dif-
ferent portions of the same training set. In this
study we extend the case to an extreme situation
where heterogeneous treebanks are used to build
multiple decoders.

Fig. 2 represents a basic flow chart of heteroge-
neous parsing via co-decoding. Note that here we
discuss the case of co-decoding with only two de-
coders, but the framework is generic enough to in-
tegrate more than two decoders. For convenience
of reference, we call a decoder without incorpo-
rating consensus information asbaseline decoder

1To make terminologies clear, we useparseras its regular
sense, including training models (ex. Collins model 2) and
parsing algorithms (ex. the CKY algorithm used in Collins
parser), and we usedecoderto represent parsing algorithms
with specified parameter values

treebank1 treebank2

decoder1 decoder2

co-decoding

test data

Figure 2: Basic flow chart of co-decoding

and correspondingly refer to a decoder augmented
with consensus information asmember decoder.
So the basic steps of co-decoding for heteroge-
neous parsing is to first build baseline decoders on
heterogeneous treebanks and then use the baseline
decoders to parse sentences with consensus infor-
mation exchanged between each other.

To complete co-decoding for heterogeneous
parsing, three key components should be consid-
ered in the system:

• Co-decoding model. A co-decoder con-
sists of multiple member decoders which are
baseline decoders augmented with consen-
sus information. Co-decoding model de-
fines how baseline decoders and consensus
information are correlated to get member de-
coders.

• Decoder coordination. Decoders in the co-
decoding model cannot proceed indepen-
dently but should have interactions between
each other in order to exchange consensus in-
formation. A decoder coordination strategy
decides on when, where, and how the inter-
actions happen.

• Consensus-based score function. Consensus-
based score functions formalize consensus
information between member decoders. Tak-
ing time complexity into consideration, con-
sensus statistics should be able to be com-
puted efficiently.
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In the following subsections, we first present
the generic co-decoding model and then describe
in detail how member decoders collaborate. Fi-
nally we introduce a novel consensus-based score
function which is used to quantify consensus in-
formation exchanged between member decoders.

2.3 Generic Co-decoding Model

The generic co-decoding model described here is
also used in (Li et al., 2009) for co-decoding of
machine translators. For a given sentenceS, a
parsing algorithm (decoder) seeks a parse treeT ∗

which is optimal in the sense that it maximizes
some score functionF (T ), as shown in Eq. 1.

T ∗ = argmax
Ts.t.S=yield(T )

F (T ) (1)

whereTs.t.S = yield(T ) represents the set of
parse trees that yield the input sentenceS. For
baseline decoders, the score functionF (T ) is
generally just the inside probabilityP (T ) 2 of
a tree T , defined as the product of probabili-
ties of grammar rules appearing in parse treeT :∏

r∈R(T ) P (r). In the co-decoding framework,
F (T ) is extended so as to integrate consensus-
based score functions which measure consensus
information between member decoders, as shown
in Eq. 2.

Fm(T ) = Pm(T ) +

n∑

k,k 6=m

Ψk(Hk(S), T ) (2)

We usedk to denote thekth decoder and use
Hk(S) to denote corresponding parsing hypoth-
esis space of decoderdk. Moreover,Pm(T ) is
referred to asbaseline scoregiven by baseline
decoders andΨk(Hk(S), T ) is consensus score
between decodersdm and dk, which is defined
as a linear combination of consensus-based score
functions, as shown in Eq. 3.

Ψk(Hk(S), T ) =
∑

l

λk,lfk,l(Hk(S), T ) (3)

where fk,l(Hk(S), T ) represents a consensus-
based score function betweenT and Hk(S),
and λk,l is the corresponding weight. Indexl

2Actually, the joint probability P(S,T) of sentenceS and
parse treeT is used, but we can prove thatP (S, T ) = P (T ).

ranges over all consensus-based score functions
in Eq. 3. Theoretically we can define a variety
of consensus-based score functions.

For the simplest case where there are only two
member decoders and one consensus-based score
function, Eq. 2 and Eq. 3 can be combined and
simplified into the equation

Fi(T ) = Pi(T ) + λ1−if(H1−i(S), T ) (4)

where indexi is set to the value of either 1 or 0.
This simplified version is used in the experiments
of this study.

2.4 Decoder Coordination

This subsection discusses the problem of decoder
coordination. Note that although Eq. 2 is defined
at sentence level, the co-decoding model actu-
ally should be applied to the parsing procedure
of any subsequence (word span) of sentenceS.
So it is natural to render member decoders col-
laborate when they are processing the same word
spans. To this end, we would like to adopt best-
first CKY-style parsing algorithms as baseline de-
coders, since CKY-style decoders have the prop-
erty that they process word spans in the ascend-
ing order of span sizes. Moreover, the hypothe-
ses3 spanning the same range of words are read-
ily stacked together in a chart cell before CKY-
style decoders move on to process other spans.
Thus, member decoders can process the same
word spans collaboratively from small ones to big
ones until they finally complete parsing the entire
sentence.

A second issue in Eq. 2 is that consensus-
based score functions are dependent on hypoth-
esis spaceHk(S). Unfortunately, the whole hy-
pothesis space is not available most of the time.
To address this issue, one practical method is to
approximateHk(S) with a n-best hypothesis list.
For best-first CKY parsing, we actually retain all
unpruned partial hypotheses over the same span
as the approximation. Hereafter, the approxima-
tion is denoted aŝHk(S)

Finally, we notice in Eq. 2 that consensus score

3In the literature of syntactic parsing, especially in chart
parsing, hypotheses is often callededges. This paper will
continue to use the terminologyhypothesiswhen no ambigu-
ity exists.
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Ψk(Hk(S), T ) andHk(S) form a circular depen-
dency: searching forHk(S) requires both base-
line score and consensus score; on the other hand,
calculating consensus score needsHk(S) (its ap-
proximation in practice) to be known beforehand.
Li et al. (2009) solves this dilemma with a boot-
strapping method. It starts with seedy n-best lists
generated by baseline decoders and then alter-
nates between calculating consensus scores and
updating n-best hypothesis lists. Such bootstrap-
ping method is a natural choice to break down the
circular dependency, but multi-pass re-decoding
might dramatically reduce decoding efficiency.
Actually, Li et al. (2009) restricts the iteration
number to two in their experiments. In this paper,
we instead use an alternative to the bootstrapping
method. The process is described as follows.

1. In traditional best-first CKY-style parsing al-
gorithms, hypotheses over the same word
spans are grouped according to some crite-
rion of hypothesis equivalence4. Among
equivalent hypotheses, only a single optimal
hypothesis is retained. In this paper, we in-
stead keep topk of equivalent hypotheses in
a data structure calledbest-first cache.

2. Use hypotheses in best-first caches to ap-
proximateHk(S), and calculate consensus
scoreΨk(Hk(S), T ) between decoders.

3. Use baseline score and consensus score to lo-
cally rerank hypotheses in best-first caches.
Then remove hypotheses in caches except the
top one hypothesis.

In this study, we choose the best-first CKY-style
parsing algorithm used in Collins parser (Collins,
1999). Algorithm 1 extends this algorithm for co-
decoding. The first two steps initialize baseline
decoders and assign appropriate POS tags to sen-
tenceSt. Since baseline decoders are built on het-
erogeneous treebanks, POS taggers correspond-
ing to each baseline decoder are demanded, unless
gold POS tags are provided. The third step is the
core of the co-decoding algorithm. Here thecom-
pleteprocedure invokes baseline decoders to com-

4the simplest criterion of equivalence is whether hypothe-
ses have the same grammar labels.

Algorithm 1 CKY-style Co-decoding
Argument: dk{the set of baseline decoders}

St{a sentence to be parsed}
Begin
Steps:
1. assign POS tags to sentenceSt

2. initialize baseline decodersdk
3. for span from 2 to sentencelengthdo

for start from 1 to (sentencelength-span+1)do
end := (start + span - 1)
for each base decoderdk do

complete(dk, start, end)
do co-decoding(start, end)

End

Subroutine:
complete(dk, start, end): base decoderdk generates

hypotheses over the span (begin.end), and fills in best-
first caches.

co-decoding(start, end): calculate consensus score
and rerank hypotheses in best-first caches. The top 1 is
chosen to be the best-first hypothesis.

plete parsing on the span[start, end] and gener-
atesĤk(s). Theco-decodingprocedure calculates
consensus score and locally reranks hypotheses in
best-first caches.

2.5 Consensus-based Score Function

There are at least two feasible ways to mea-
sure consensus between constituency parse trees.
By viewing parse trees from diverse perspectives,
we can either use functions on bracket structures
of parse trees, as in (Wang et al., 1994), or
use functions on head-dependent relations by first
transforming constituency trees into dependency
trees, as in (Niu et al., 2009). Although the co-
decoding model is generic enough to integrate var-
ious consensus-based score functions in a uniform
way, this paper only uses a bracket structure-based
function.

As mentioned above, the function proposed in
(Wang et al., 1994) is based on bracket struc-
tures. Unfortunately, that function is not appli-
cable in the situation of this paper. The reason is
that, the function in (Wang et al., 1994) is de-
fined to work on two parse trees, but this paper
instead needs a function on a treeT and a set of
trees (the approximation̂Hk(S)). To this end, we
first introduce the concept ofconstituent set (CS)
of a parse tree. Conceptually, CS of a parse tree is
a set of word spans corresponding to all the sub-
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Figure 3: Constituent set of a synthetic parse tree

trees of the tree, as illustrated in Fig. 3. For exam-
ple, the constituent set of the tree rooted at node
6 has three elements:[1, 1], [1, 3], and[1, 2]. For
Ĥk(S), the constituent set is defined as the union
of constituent sets of all elements it contains.

CS(Ĥk(S)) =
⋃

T∈Ĥk(S)

CS(T )

In practice, we need to cut off elements in
CS(Ĥk(S)) in order to retain most confident
word spans.

With the concept of constituent set, a
consensus-based score function onT andĤk(S)
can be defined as follows.

f(Ĥk(S), T ) =

∑
c∈CS(T ) I(c, CS(Ĥk(S)))

|CS(T )| (5)

whereI(c, CS(Ĥk(S))) is an indicator function
which returns one ifc ∈ CS(T ) is compatible
with all the elements inCS(Ĥk(S)), zero oth-
erwise. Two spans,[a, b] and [i, j] are said to
be compatible if they satisfy one of the following
conditions: 1)i > b; 2) a > j; 3) a ≤ i ≤ b and
j ≤ b; 4) i ≤ a ≤ j andb ≤ j. Fig 4 uses two
example to illustrate the concept of compatibility.

3 Experiments

3.1 Data and Performance Metric

The most recent version of the CTB corpus, CTB
6.0 and the CIPS ParsEval data are used as hetero-
geneous treebanks in the experiments. Following
the split utilized in (Huang et al., 2007), we di-
vided the dataset into blocks of 10 files. For each

w1 w2 w3 w4 w1 w2 w3 w4

Figure 4: left) two spans conflict; right) two spans
are compatible

block, the first file was added to the CTB develop-
ment data, the second file was added to the CTB
testing data, and the remaining 8 files were added
to the CTB training data. For the sake of parsing
efficiency, we randomly sampled 1,000 sentences
of no more than 40 words from the CTB test set.

CTB-Partitions Train Dev Test
#Sentences 22,724 2,855 1,000
#Words 627,833 78,653 25,100
Ave-Length 30.1 30.0 20.3
TCT-Partitions Train Dev Test
#Sentences 32,771 N/A 1,000
#Words 354,767 N/A 10,400
Ave-Length 10.6 N/A 10.4

Table 1: Basic statistics on the CTB and TCT data

CIPS-ParsEval data is publicly available for the
first Chinese syntactic parsing competition, CIPS-
ParsEval 2009. Compared to CTB, sentences in
CIPS-ParsEval data are much shorter in length.
We removed sentences which have words less
than three. CIPS-ParsEval test set has 7,995 sen-
tences after sentence pruning. As with the CTB
test set, we randomly sampled 1,000 sentences
for evaluating co-decoding performance. Since
CIPS-ParsEval data is actually a portion of the
TCT corpus, for convenience of reference, we will
refer to CIPS-ParsEval data as TCT in the follow-
ing sections. Table 1 contains statistics on CTB
and TCT.

The two training sets are used individually to
build baseline decoders. With regard to the test
sets, each sentence in the test sets should have
two kinds of POS tags, according to the CTB and
TCT standards respectively. To this end, we ap-
plied a HMM-based method for POS annotation
transformation (Zhu and Zhu, 2009). During the
POS transformation, the divergences of word seg-
mentation are omitted.

For all experiments,bracketing F1is used as
the performance metric, provided byEVALB5.

5http://nlp.cs.nyu.edu/evalb
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3.2 Baseline Decoders

As already mentioned above, we apply Collins
parser in this paper. Specifically speaking, two
CKY-style baseline decoders to participate co-
decoding are built on CTB and TCT respectively
with Collins model two. For the CTB-based de-
coder, we use the CTB training data with slight
modifications: we replaced POS tags of punctua-
tions with specific punctuation symbols.

To get the TCT-based decoder, we made follow-
ing modifications. Firstly, TCT is available with
manually annotated head indices for all the con-
stituents in parse trees. For example, a grammar
label, say, np-1, means that the constituent is a
noun phrase with the second child being its head
child. In order to relax context independence as-
sumptions made in PCFG, we appended head in-
dices to grammar labels to get new labels, for ex-
amplenp1. Secondly, since Collins parser is a
lexicalized parser, head rules specific to the TCT
corpus were manually created, which are used to-
gether with readily available head indices. Such
adaptation is also used in (Chen et al., 2009);

3.3 Parsing Results

We conduct experiments on both CTB and TCT
test sets. Two parameters need to be set: the cut-
off threshold for constructing constituent set of
Ĥk(S) and the weightλ 6 of consensus score in
Eq. 4. We tuned the parameters on the CTB de-
velopment set and finally set them to 5 and 20
respectively in the experiments. Table 2 presents
bracketing F1 scores of baseline systems and the
co-decoding approach. Here, the row ofbaseline
represents the performance of individual baseline
decoders, and the comparison of baseline and co-
decoding on a test set, say CTB, demonstrates
how much boosting the other side, say TCT, can
supply. For the co-decoding approach, the size
of best-first cache is set to 5 which achieves the
best result among the cache sizes we have experi-
mented.

As the results show, co-decoding achieves
promising improvements over baseline systems
on both test sets. Interestingly, we see that the
improvement on the TCT test set is larger than

6We use the sameλ for both member decoders.

Test Set CTB TCT
Baseline 79.82 81.02

Co-decoding 80.33 81.77

Table 2: Baseline and Co-decoding on the CTB
and TCT test sets

that on the CTB test set. In general, a relatively
strong decoder can improve co-decoding perfor-
mance more than a relatively weak decoder does.
At the first sight, the TCT-based decoder seems to
have better performance than the CTB-based de-
coder. But if taking sentence length into consid-
eration, we can find that the TCT-based decoder
is actually relatively weak. Table 3 shows the
performance of the CTB-based decoder on short
sentences.

3.4 Analysis

Fig. 5 shows the bracketing F1 on the CTB test set
at different settings of the best-first cache sizeC.
F1 scores reach the peak beforeC increases to 6.
As a result, we setC to 5 in all our experiments.

 79

 79.5

 80

 80.5

 81

 0  1  2  3  4  5  6

br
ac

ke
tin

g 
F1

size of best-first cache

CTB

Figure 5: Bracketing F1 with varying best-first
cache size

To evaluate the effect of sentence length on co-
decoding, Table 3 presents F1 scores on portions
of the CTB test set, partitioned according to sen-
tence length. From the results we can see that
co-decoding performs better on long sentences.
One possible reason is that member decoders have
more consensus on big spans. Taking this obser-
vation into consideration, one enhancement to the
co-decoding approach is to enable co-decoding
only on long sentences. This way, parsing ef-
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Partitions [0,10] (10,20] (20,30] (30,40]
# Sentence 276 254 266 204
Ave-Length 6.07 15.64 25.43 35.20

Baseline 92.83 84.34 78.98 76.69
Co-decoding 92.84 84.36 79.43 77.65

Table 3: Effect of sentence length on co-decoding
performance

ficiency of co-decoding can be improved. It is
worth emphasizing that co-decoding is still help-
ful for parsers whose performance on short sen-
tences is not satisfactory, as shown in Table 2.

Another interesting analysis is to check how
many parsing results are affected by co-decoding,
compared to baseline decoders. Table 4 shows
the statistics.

Test Set # All # Improved # Decreased
CTB 1000 225 109
TCT 1000 263 92

Table 4: Statistics on sentences of test data

As the table shows, although overall accuracy is
increased, we find that on some sentences, co-
decoding instead worsens parsing accuracy. In
order to get insights on error sources, we manu-
ally analyzed 20 sentences on which co-decoding
achieves negative results. We find a large por-
tion (14 of 20) of sentences are short sentences
(of words less than 20). Actually, due to high ac-
curacy of the CTB-based decoder on short sen-
tences, co-decoding is indifferent when this de-
coder is processing short sentences. And we also
find that some errors are derived from differences
in annotation standards. Fortunately, the diver-
gence of annotations mainly exists in relatively
small spans. So one solution to the problem is to
enable co-decoding on relatively big spans. These
will be done in our future work.

4 Related Work

4.1 System Combination

In the literature of syntactic parsing, n-best com-
bination methods include parse selection, con-
stituent recombination, production recombina-
tion, and n-best reranking. Henderson and Brill
(1999) performs parse selection by maximizing

the expected precision of selected parse with re-
spect to the set of parses to be combined. Sagae
and Lavie (2006) proposes to recombine con-
stituents from the output of individual parsers.
More recently, Fossum and Knight (2009) studies
a combination method at production level. Zhang
et al. (2009) reranks n-best list of one parser with
scores derived from another parser.

Compared to n-best combination, co-decoding
(Li et al., 2009; Liu et al., 2009) combines sys-
tems during decoding phase. Theoretically, sys-
tem combination during decoding phase helps de-
coders to select better approximation to hypothe-
sis space, since pruning is practically unavoidable.
To the best of our knowledge, co-decoding meth-
ods have not been applied to syntactic parsing.

4.2 Treebank Transformation

The focus of this study is heterogeneous parsing.
Previous work on this challenge is generally based
on treebank transformation. Wang et al. (1994)
describes a method for transformation between
constituency treebanks. The basic idea is to train
a parser on a target treebank and generate a n-best
list for each sentence in source treebank(s). Then,
a matching metric which is a function on the num-
ber of the same word spans between two trees is
defined to select a best parse from each n-best list.
Niu et al. (2009) applies a closely similar frame-
work as with (Wang et al., 1994) to transform a
dependency treebank to a constituency one.

5 Conclusions

This paper proposed a co-decoding approach to
the challenge of heterogeneous parsing. Com-
pared to previous work on this challenge, co-
decoding is able to directly utilize heterogeneous
treebanks by incorporating consensus information
between partial output of individual parsers dur-
ing the decoding phase. Experiments demonstrate
the effectiveness of the co-decoding approach, es-
pecially the effectiveness on long sentences.
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