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Abstract
We propose semantic role features for a
Tree-to-String transducer to model the re-
ordering/deletion of source-side semantic
roles. These semantic features, as well as
the Tree-to-String templates, are trained
based on a conditional log-linear model
and are shown to significantly outperform
systems trained based on Max-Likelihood
and EM. We also show significant im-
provement in sentence fluency by using
the semantic role features in the log-linear
model, based on manual evaluation.

1 Introduction

Syntax-based statistical machine translation
(SSMT) has achieved significant progress during
recent years (Galley et al., 2006; May and
Knight, 2007; Liu et al., 2006; Huang et al.,
2006), showing that deep linguistic knowledge,
if used properly, can improve MT performance.
Semantics-based SMT, as a natural extension
to SSMT, has begun to receive more attention
from researchers (Liu and Gildea, 2008; Wu
and Fung, 2009). Semantic structures have two
major advantages over syntactic structures in
terms of helping machine translation. First of all,
semantic roles tend to agree better between two
languages than syntactic constituents (Fung et al.,
2006). This property motivates the approach of
using the consistency of semantic roles to select
MT outputs (Wu and Fung, 2009). Secondly,
the set of semantic roles of a predicate models
the skeleton of a sentence, which is crucial to
the readability of MT output. By skeleton, we
mean the main structure of a sentence including
the verbs and their arguments. In spite of the
theoretical potential of the semantic roles, there
has not been much success in using them to
improve SMT systems.

Liu and Gildea (2008) proposed a semantic role
based Tree-to-String (TTS) transducer by adding
semantic roles to the TTS templates. Their ap-
proach did not differentiate the semantic roles of
different predicates, and did not always improve
the TTS transducer’s performance. Wu and Fung
(2009) took the output of a phrase-based SMT sys-
tem Moses (Koehn et al., 2007), and kept permut-
ing the semantic roles of the MT output until they
best matched the semantic roles in the source sen-
tence. This approach shows the positive effect of
applying semantic role constraints, but it requires
re-tagging semantic roles for every permuted MT
output and does not scale well to longer sentences.

This paper explores ways of tightly integrating
semantic role features (SRFs) into an MT system,
rather than using them in post-processing or n-
best re-ranking. Semantic role labeling (SRL) sys-
tems usually use sentence-wide features (Xue and
Palmer, 2004; Pradhan et al., 2004; Toutanova et
al., 2005); thus it is difficult to compute target-
side semantic roles incrementally during decoding.
Noticing that the source side semantic roles are
easy to compute, we apply a compromise approach,
where the target side semantic roles are generated
by projecting the source side semantic roles us-
ing the word alignments between the source and
target sentences. Since this approach does not per-
form true SRL on the target string, it cannot fully
evaluate whether the source and target semantic
structures are consistent. However, the approach
does capture the semantic-level re-ordering of the
sentences. We assume here that the MT system is
capable of providing word alignment (or equiva-
lent) information during decoding, which is gener-
ally true for current statistical MT systems.

Specifically, two types of semantic role features
are proposed in this paper: a semantic role re-
ordering feature designed to capture the skeleton-
level permutation, and a semantic role deletion fea-
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ture designed to penalize missing semantic roles in
the target sentence. To use these features during de-
coding, we need to keep track of the semantic role
sequences (SRS) for partial translations, which can
be generated based on the source-side semantic
role sequence and the corresponding word align-
ments. Since the SRL system and the MT sys-
tem are separate, a translation rule (e.g., a phrase
pair in phrase-based SMT) could cover two partial
source-side semantic roles. In such cases partial
SRSs must be recorded in such a way that they can
be combined later with other partial SRSs. Deal-
ing with this problem will increase the complexity
of the decoding algorithm. Fortunately, Tree-to-
String transducer based MT systems (Liu et al.,
2006; Huang et al., 2006) can avoid this problem
by using the same syntax tree for both SRL and
MT. Such an arrangement guarantees that a TTS
template either covers parts of one source-side se-
mantic role, or a few complete semantic roles. This
advantage motivates us to use a TTS transducer as
the MT system with which to demonstrate the use
of the proposed semantic role features. Since it is
hard to design a generative model to combine both
the semantic role features and the TTS templates,
we use a log-linear model to estimate the feature
weights, by maximizing the conditional probabil-
ities of the target strings given the source syntax
trees. The log-linear model with latent variables
has been discussed by Blunsom et al. (2008); we
apply this technique to combine the TTS templates
and the semantic role features.

The remainder of the paper is organized as fol-
lows: Section 2 describes the semantic role fea-
tures proposed for machine translation; Section 3
describes how semantic role features are used and
trained in a TTS transducer; Section 4 presents
the experimental results; and Section 5 gives the
conclusion.

2 Semantic Role Features for Machine
Translation

2.1 Defining Semantic Roles

There are two semantic standards with publicly
available training data: PropBank (Palmer et al.,
2005) and FrameNet (Johnson et al., 2002). Prop-
Bank defines a set of semantic roles for the verbs

in the Penn TreeBank using numbered roles. These
roles are defined individually for each verb. For
example, for the verb disappoint, the role name
arg1 means experiencer, but for the verb wonder,
role name arg1 means cause. FrameNet is moti-
vated by the idea that a certain type of verbs can
be gathered together to form a frame, and in the
same frame, a set of semantic roles is defined and
shared among the verbs. For example, the verbs
boil, bake, and steam will be in frame apply heat,
and they have the semantic roles of cook, food, and
heating instrument. Of these two semantic stan-
dards, we choose PropBank over FrameNet for the
following reasons:

1. PropBank has a simpler semantic definition
than FrameNet and thus is easier for auto-
matic labeling.

2. PropBank is built upon the Penn TreeBank
and is more consistent with statistical parsers,
most of which are trained on the Penn Tree-
Bank.

3. PropBank is a larger corpus than FrameNet.

Note that the semantic standard/corpus is not cru-
cial in this paper. Any training corpus that can be
used to automatically obtain the set of semantic
roles of a verb could be used in our approach.

2.2 Semantic Role Features

Ideally, we want to use features based on the true
semantic roles of the MT candidates. Consider-
ing there is no efficient way of integrating SRL
and MT, accurate target-side semantic roles can
only be used in post-processing and re-ranking
the MT outputs, where a limited number of MT
candidates are considered. On the other hand, it
is much easier to obtain reliable semantic roles
for the source sentences. This paper uses a com-
promise approach, where the target-side semantic
roles are projected from the source-side semantic
roles using the word alignment derived from the
translation process. More specifically, we define
two types of semantic role features:

1. Semantic Role Re-ordering (SRR) This fea-
ture describes re-ordering of the source-side
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semantic roles (including the predicate) in the
target side. It takes the following form:

SrcPred : SrcRole1, ..., SrcRolen

⇒ TarRole1, ..., TarRolen

where SrcPred and SrcRole denotes the
central verb and semantic roles in the source
side, and TarRole denotes the target-side
roles. The source/target SRSs do not need be
continuous, but there should be a one-to-one
alignment between the roles in the two sides.
Compared to the general re-ordering models
used in statistical MT systems, this type of
feature is capable of modeling skeleton-level
re-ordering, which is crucial to the fluency
of MT output. Because a predicate can have
different semantic role sequences in different
voices, passive/active are tagged for each oc-
currence of the verbs based on their POS and
preceding words. Figure 1 shows examples
of the feature SRR.

2. Deleted Roles (DR) are the individual source-
side semantic roles which are deleted in the
MT outputs, taking the form of:

SrcPred : SrcRole ⇒ deleted

DR is meant to penalize the deletion of the
semantic roles. Though most statistical MT
systems have penalties for word deletion, it
is still useful to make separate features for
the deletion of semantic roles, which is con-
sidered more harmful than the deletion of
non-core components (e.g., modifiers) and
deserves more serious penalty. Examples of
the deletion features can be found in Figure 1.

Both types of features can be made non-lexicalized
by removing the actual verb but retaining its voice
information in the features. Non-lexicalized fea-
tures are used in the system to alleviate the problem
of sparse verbs.

3 Using Semantic Role Features in
Machine Translation

This section describes how to use the proposed se-
mantic role features in a Tree-to-String transducer,

I  did  not  see  the  b

没有 看见

arg0

arg‐neg

arg1

SRR:
see‐active: arg‐neg verb
borrowed‐active: arg1 a
borrowed‐active: arg1 ve
borrowed‐active: arg0 ve
borrowed‐active: arg1 a

DR:
see‐active: arg0  delet

book  you  borrowed

你借的 书

arg1

arg0

  arg‐neg verb
rg0  arg0 arg1
erb  verb arg1
erb  arg0 verb
rg0 verb  arg0 verb arg1

ted 

Figure 1: Examples of the semantic role features

assuming that the semantic roles have been tagged
for the source sentences. We first briefly describe
the basic Tree-to-String translation model used in
our experiments, and then describe how to modify
it to incorporate the semantic role features.

3.1 Basic Tree-to-String Transducer

A Tree-to-String transducer receives a syntax tree
as its input and, by recursively applying TTS tem-
plates, generates the target string. A TTS tem-
plate is composed of a left-hand side (LHS) and
a right-hand side (RHS), where the LHS is a sub-
tree pattern and the RHS is a sequence of variables
and translated words. The variables in the RHS
of a template correspond to the bottom level non-
terminals in the LHS’s subtree pattern, and their
relative order indicates the permutation desired at
the point where the template is applied to translate
one language to another. The variables are further
transformed, and the recursive process goes on un-
til there are no variables left. The formal descrip-
tion of a TTS transducer is given by Graehl and
Knight (2004), and our baseline approach follows
the Extended Tree-to-String Transducer defined by
Huang et al. (2006). For a given derivation (de-
composition into templates) of a syntax tree, the
translation probability is computed as the product
of the templates which generate both the source
syntax trees and the target translations.

Pr(S | T,D∗) =
∏

t∈D∗
Pr(t)

Here, S denotes the target sentence, T denotes the
source syntax tree, and D∗ denotes the derivation
of T . In addition to the translation model, the
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function DECODE(T )
for tree node v of T in bottom-up order do

for template t applicable at v do

{c1, c2}=match(v, t);
s.leftw = c1.leftw;
s.rightw = c2.rightw;
s.val = c1.val × c2.val;
s.val ×= Pr(t);
s.val ×= Pr(c2.leftw|c1.rightw);
add s to v’s beam;

Figure 2: Decoding algorithm for the standard Tree-to-String
transducer. leftw/rightw denote the left/right boundary
word of s. c1, c2 denote the descendants of v, ordered based
on RHS of t.

TTS system includes a trigram language model,
a deletion penalty, and an insertion bonus. The
bottom-up decoding algorithm for the TTS trans-
ducer is sketched in Figure 2. To incorporate the
n-gram language model, states in the algorithm
denote a tree node’s best translations with different
left and right boundary words. We use standard
beam-pruning to narrow the search space. To sim-
plify the description, we assume in Figure 2 that
a bigram language model is used and all the TTS
templates are binarized. It is straightforward to
generalize the algorithm for larger n-gram models
and TTS templates with any number of children in
the bottom using target-side binarized combination
(Huang et al., 2006).

3.2 Modified Tree-to-String Transducer with
Semantic Role Features

Semantic role features can be used as an auxiliary
translation model in the TTS transducer, which
focuses more on the skeleton-level permutation.
The model score, depending on not only the in-
put source tree and the derivation of the tree, but
also the semantic roles of the source tree, can be
formulated as:

Pr(S | T,D∗) =
∏

f∈F (S,T.role,D∗)

Pr(f)

where T denotes the source syntax tree with
semantic roles, T.role denotes the seman-
tic role sequence in the source side and
F (S.role, T.role,D∗) denotes the set of defined
semantic role features over T.role and the target
side semantic role sequence S.role. Note that
given T.role and the derivation D∗, S.role can

VP

NP
[giving: 

VBG
[giving: verb]

giving

VP
[giving: arg

TTS template: (VP (VBG givin
Triggered  SRR:  giving‐active: a
Triggered DR:     giving‐active: v

NP
[giving: 

VBG
[giving: verb]

giving

arg2]
NP

[giving: arg1]

g2 arg1]

g )  NP#1 NP#2 )   NP#1 NP#2
arg2 arg1  arg2 arg1
verb  deleted

arg2]
NP

[giving: arg1]

Figure 3: An example showing the combination of the se-
mantic role sequences of the states. Above/middle is the state
information before/after applying the TTS template, and bot-
tom is the used TTS template and the triggered SRFs during
the combination.

be easily derived. Now we show how to in-
corporate the two types of semantic role features
into a TTS transducer. To use the semantic role
re-ordering feature SRR, the states in the decod-
ing algorithm need to be expanded to encode the
target-side SRSs. The SRSs are initially attached
to the translation states of the source tree con-

给 PP VBZ 新 考验

VP

VBZ
[bring: verb]

NP
[bring: arg1]

PP
[bring: arg3]

NNP NN

new test

0 3 4

^

Combined SRS arg3 verb arg1

Median = 3 arg1

Figure 4: An example showing how to compute the target side
position of a semantic role by using the median of its aligning
points.
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stituents which are labeled as semantic roles for
some predicate. These semantic roles are then
accumulated with re-ordering and deletion oper-
ations specified by the TTS templates as the de-
coding process goes bottom-up. Figure 5 shows
the decoding algorithm incorporating the SRR fea-
tures. The model component corresponding to the
feature SRR is computed when combining two
translation states. I.e., the probabilities of the SRR
features composed based on the semantic roles of
the two combining states will be added into the
combined state. See Figure 3 for examples. The
theoretical upper bound of the decoding complex-
ity is O(NM4(n−1)R(

∑C
i=0

C!
i! )

V ), where N is
the number of nodes in the source syntax tree, M
is the vocabulary size of the target language, n is
the order of the n-gram language model, R is the
maximum number of TTS templates which can be
matched at a tree node, C is the maximum number
of roles of a verb, and V is the maximum number
of verbs in a sentence. In this formula,

∑C
i=0

C!
i!

is the number of role sequences obtained by first
choosing i out of C possible roles and then per-
muting the i roles. This theoretical upper bound
is not reached in practice, because the number of
possible TTS templates applicable at a tree node
is very limited. Furthermore, since we apply beam
pruning at each tree node, the running time is con-
trolled by the beam size, and is linear in the size of
the tree.

The re-ordering of the semantic roles from
source to target is computed for each TTS template
as part of the template extraction process, using
the word-level alignments between the LHS/RHS
of the TTS template (e.g., Figure 3). This is usu-
ally straightforward, with the exception of the case
where the words that are aligned to a particular
role’s span in the source side are not continuous
in the target side, as shown in Figure 4. Since
we are primarily interested in the relative order of
the semantic roles, we approximate each seman-
tic role’s target side position by the median of the
word positions that is aligned to. If more than one
semantic role is mapped to the same position in
the target side, their source side order will be used
as their target side order, i.e., monotonic transla-
tion is assumed for those semantic roles. Figure 4
shows an example of calculating the target side

function DECODE(T )
for tree node v of T in bottom-up order do

for template t applicable at v do
{c1, c2}=match(v, t);
s.leftw = c1.leftw;
s.rightw = c2.rightw;
s.role = concatenate(c1.role, c2.role);
if v is a semantic role then

set s.role to v.role;
s.val = c1.val × c2.val;
s.val ×= Pr(t);
s.val ×= Pr(c2.leftw|c1.rightw);

. Compute the probabilities associated with semantic roles
s.val ×=

Q
f∈Sema(c1.role,c2.role,t)

Pr(f);
add s to v’s beam;

Figure 5: Decoding algorithm using semantic role features.
Sema(c1.role, c2.role, t) denotes the triggered semantic
role features when combining two children states, and ex-
amples can be found in Figure 3.

SRS based on a complicated TTS template. The
word alignments in the TTS templates are also used
to compute the deletion feature DR. Whenever a
semantic role is deleted in a TTS template’s RHS,
the corresponding deletion penalty will be applied.

3.3 Training

We describe two alternative methods for training
the weights for the model’s features, including both
the individual TTS templates and the semantic
role features. The first method maximizes data
likelihood as is standard in EM, while the second
method maximizes conditional likelihood for a log-
linear model following Blunsom et al. (2008).

3.3.1 Maximizing Data Likelihood
The standard way to train a TTS translation

model is to extract the minimum TTS templates us-
ing GHKM (Galley et al., 2004), and then normal-
ize the frequency of the extracted TTS templates
(Galley et al., 2004; Galley et al., 2006; Liu et al.,
2006; Huang et al., 2006). The probability of the
semantic features SRR and DR can be computed
similarly, given that SRR and DR can be derived
from the paired source/target sentences and the
word alignments between them. We refer to this
model as max-likelihood training and normalize
the counts of TTS templates and semantic features
based on their roots and predicates respectively.

We wish to overcome noisy alignments from
GIZA++ and learn better TTS rule probabilities
by re-aligning the data using EM within the TTS
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E-step:
for all pair of syntax tree T and target string S do

for all TTS Template t, semantic features f do
EC(t) +=

P
D:t∈D Pr(S,T,D)P
D′ Pr(S,T,D′) ;

EC(f) +=
P

D:f∈D Pr(S,T,D)P
D′ Pr(S,T,D′) ;

M-step:
for all TTS Template t, semantic features f do

Pr(t) = EC(t)P
t′:t′.root=t.root EC(t′) ;

Pr(f) = EC(f)P
f′:f′.predicate=t.predicate EC(f ′) ;

Figure 6: EM Algorithm For Estimating TTS Templates and
Semantic Features

framework (May and Knight, 2007). We can es-
timate the expected counts of the TTS templates
and the semantic features by formulating the prob-
ability of a pair of source tree and target string
as:

X
D

Pr(S, T,D) =
X
D

0@Y
t∈D

Pr(t)
Y

f∈F (S,T.role,D)

Pr(f)

1A
Though the above formulation, which makes the
total probability of all the pairs of trees and strings
less than 1, is not a strict generative model, we can
still use the EM algorithm (Dempster et al., 1977)
to estimate the probability of the TTS templates
and the semantic features, as shown in Figure 6.

The difficult part of the EM algorithm is the E-
step, which computes the expected counts of the
TTS templates and the semantic features by sum-
ming over all possible derivations of the source
trees and target strings. The standard inside-
outside algorithm (Graehl and Knight, 2004) can
be used to compute the expected counts of the TTS
templates. Similar to the modification made in the
TTS decoder, we can add the target-side semantic
role sequence to the dynamic programming states
of the inside-outside algorithm to compute the ex-
pected counts of the semantic features. This way
each state (associated with a source tree node) rep-
resents a target side span and the partial SRSs. To
speed up the training, a beam is created for each
target span and only the top rated SRSs in the beam
are kept.

3.3.2 Maximizing Conditional Likelihood
A log-linear model is another way to combine

the TTS templates and the semantic features to-
gether. Considering that the way the semantic

function COMPUTE PARTITION(T )
for tree node v of T in bottom-up order do

for template t applicable at v do
for {s1, s2}=Match(v, t) do

s.sum += s1.sum× s2.sum×
exp(λt +

P
f∈Sema(s1,s2,t)

λf );
s.role = concatenate(s1.role, s2.role);
add s to v;

for state s in root do res += s.sum;
return res;

Figure 7: Computing the partition function of the conditional
probability Pr(S|T ). Sema(s1, s2, t) denotes all the seman-
tic role features generated by combining s1 and s2 using t.

role features are defined makes it impossible to
design a sound generative model to incorporate
these features, a log-linear model is also a theoreti-
cally better choice than the EM algorithm. If we
directly translate the EM algorithm into the log-
linear model, the problem becomes maximizing
the data likelihood represented by feature weights
instead of feature probabilities:

Pr(S, T ) =

P
D exp

P
i λifi(S, T,D)P

S′,T ′
P

D′ exp
P

i λifi(S′, T ′, D′)

where the features f include both the TTS tem-
plates and the semantic role features. The numer-
ator in the formula above can be computed using
the same dynamic programming algorithm used to
compute the expected counts in the EM algorithm.
However, the partition function (denominator) re-
quires summing over all possible source trees and
target strings, and is infeasible to compute. In-
stead of approximating the partition function using
methods such as sampling, we change the objective
function from the data likelihood to the conditional
likelihood:

Pr(S | T ) =
P

D exp
P

i λifi(S, T,D)P
S′∈all(T )

P
D′ exp

P
i λifi(S′, T,D′)

where all(T ) denotes all the possible target strings
which can be generated from the source tree T .
Given a set of TTS templates, the new partition
function can be efficiently computed using the dy-
namic programming algorithm shown in Figure 7.
Again, to simplify the illustration, only binary TTS
templates are used. Using the conditional proba-
bility as the objective function not only reduces
the computational cost, but also corresponds better
to the TTS decoder, where the best MT output is
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selected only among the possible candidates which
can be generated from the input source tree using
TTS templates.

The derivative of the logarithm of the objective
function (over the entire training corpus) w.r.t. a
feature weight can be computed as:

∂ log
Q

S,T Pr(S | T )
∂λi

=
X
S,T

{ECD|S,T (fi)− ECS′|T (fi)}

where ECD|S,T (fi), the expected count of a fea-
ture over all derivations given a pair of tree and
string, can be computed using the modified inside-
outside algorithm described in Section 3.2, and
ECS′|T (fi), the expected count of a feature over
all possible target strings given the source tree,
can be computed in a similar way to the partition
function described in Figure 7. With the objective
function and its derivatives, a variety of optimiza-
tion methods can be used to obtain the best feature
weights; we use LBFGS (Zhu et al., 1994) in our
experiments. To prevent the model from overfitting
the training data, a weighted Gaussian prior is used
with the objective function. The variance of the
Gaussian prior is tuned based on the development
set.

4 Experiments

We train an English-to-Chinese translation system
using the FBIS corpus, where 73,597 sentence
pairs are selected as the training data, and 500
sentence pairs with no more than 25 words on the
Chinese side are selected for both the development
and test data.1 Charniak (2000)’s parser, trained on
the Penn Treebank, is used to generate the English
syntax trees. To compute the semantic roles for the
source trees, we use an in-house max-ent classifier
with features following Xue and Palmer (2004) and
Pradhan et al. (2004). The semantic role labeler
is trained and tuned based on sections 2–21 and
section 24 of PropBank respectively. The standard
role-based F-score of our semantic role labeler is
88.70%. Modified Kneser-Ney trigram models
are trained using SRILM (Stolcke, 2002) on the
Chinese portion of the training data. The model

1The total 74,597 sentence pairs used in experiments are
those in the FBIS corpus whose English part can be parsed
using Charniak (2000)’s parser.

(n-gram language model, TTS templates, SRR,
DR) weights of the transducer are tuned based on
the development set using a grid-based line search,
and the translation results are evaluated based on a
single Chinese reference using BLEU-4 (Papineni
et al., 2002). Huang et al. (2006) used character-
based BLEU as a way of normalizing inconsistent
Chinese word segmentation, but we avoid this prob-
lem as the training, development, and test data are
from the same source.

The baseline system in our experiments uses
the TTS templates generated by using GHKM
and the union of the two single-direction align-
ments generated by GIZA++. Unioning the two
single-direction alignments yields better perfor-
mance for the SSMT systems using TTS templates
(Fossum et al., 2008) than the two single-direction
alignments and the heuristic diagonal combination
(Koehn et al., 2003). The two single-direction
word alignments as well as the union are used to
generate the initial TTS template set for both the
EM algorithm and the log-linear model. The ini-
tial TTS templates’ probabilities/weights are set to
their normalized counts based on the root of the
TTS template (Galley et al., 2006). To test seman-
tic role features, their initial weights are set to their
normalized counts for the EM algorithm and to 0
for the log-linear model. The performance of these
systems is shown in Table 1. We can see that the
EM algorithm, based only on TTS templates, is
slightly better than the baseline system. Adding
semantic role features to the EM algorithm actu-
ally hurts the performance, which is not surprising
since the combination of the TTS templates and
semantic role features does not yield a sound gen-
erative model. The log-linear model based on TTS
templates achieves significantly better results than
both the baseline system and the EM algorithm.
Both improvements are significant at p < 0.05
based on 2000 iterations of paired bootstrap re-
sampling of the test set (Koehn, 2004).

Adding semantic role features to the log-linear
model further improves the BLEU score. One prob-
lem in our approach is the sparseness of the verbs,
which makes it difficult for the log-linear model
to tune the lexicalized semantic role features. One
way to alleviate this problem is to make features
based on verb classes. We first tried using the verb
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TTS Templates + SRF + Verb Class
Union 15.6 – –
EM 15.9 15.5 15.6

Log-linear 17.1 17.4 17.6

Table 1: BLEU-4 scores of different systems

equal better worse
With SRF vs. W/O SRF 72% 20.2% 7.8%

Table 2: Distribution of the sentences where the semantic
role features give no/positive/negative impact to the sentence
fluency in terms of the completeness and ordering of the
semantic roles.

classes in VerbNet (Dang et al., 1998). Unfortu-
nately, VerbNet only covers about 34% of the verb
tokens in our training corpus, and does not im-
prove the system’s performance. We then resorted
to automatic clustering based on the aspect model
(Hofmann, 1999; Rooth et al., 1999). The training
corpus used in clustering is the English portion of
the selected FBIS corpus. Though automatically
obtained verb clusters lead to further improvement
in BLEU score, the total improvement from the se-
mantic role features is not statistically significant.
Because BLEU-4 is biased towards the adequacy
of the MT outputs and may not effectively evaluate
their fluency, it is desirable to give a more accurate
evaluation of the sentence’s fluency, which is the
property that semantic role features are supposed
to improve. To do this, we manually compare
the outputs of the two log-linear models with and
without the semantic role features. Our evaluation
focuses on the completeness and ordering of the
semantic roles, and better, equal, worse are tagged
for each pair of MT outputs indicating the impact
of the semantic role features. Table 2 shows the
manual evaluation results based on the entire test
set, and the improvement from SRF is significant
at p < 0.005 based on a t-test. To illustrate how
SRF impacts the translation results, Figure 8 gives
3 examples of the MT outputs with and without
the SRFs.

5 Conclusion

This paper proposes two types of semantic role
features for a Tree-to-String transducer: one mod-
els the reordering of the source-side semantic role
sequence, and the other penalizes the deletion of a
source-side semantic role. These semantic features

Source Launching1 New2 Dip

SRF On 实施1 新的2 外交3 攻势4

SRF Off 新的2 外交3 攻势4

Source
It1 is2 therefore3 ne
transformation9 of10
high14 technologies15

SRF On 所以123 要4 加快6,7 高新

SRF Off 所以123 要4 高技术14,15

Source
A1 gratifying2 chan
structure8 of9 ethnic

SRF On 少数民族10,11 结构8 也4

SRF Off 一个1 可喜的2 变化3 ,还

plomatic3 Offensive4

4

ecessary4 to5 speed6 up7 the8
traditional11 industries12 with13
5

新技术14,15 改造9 传统产业11,12

,加快6,7 传统产业11,12 改造9

nge3 also4 occurred5 in6 the7
10 minority11 cadres12

发生5 可喜的2 变化3

还在4 少数民族10,11干部的 结构8

Figure 8: Examples of the MT outputs with and without SRFs.
The first and second example shows that SRFs improve the
completeness and the ordering of the MT outputs respectively,
the third example shows that SRFs improve both properties.
The subscripts of each Chinese phrase show their aligned
words in English.

and the Tree-to-String templates, trained based on
a conditional log-linear model, are shown to sig-
nificantly improve a basic TTS transducer’s per-
formance in terms of BLEU-4. To avoid BLEU’s
bias towards the adequacy of the MT outputs, man-
ual evaluation is conducted for sentence fluency
and significant improvement is shown by using
the semantic role features in the log-linear model.
Considering our semantic features are the most ba-
sic ones, using more sophisticated features (e.g.,
the head words and their translations of the source-
side semantic roles) provides a possible direction
for further experimentation.
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