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Abstract 

In this paper we present a simplified shallow 
semantic parsing approach to learning the 
scope of negation (SoN). This is done by 
formulating it as a shallow semantic parsing 
problem with the negation signal as the 
predicate and the negation scope as its ar-
guments. Our parsing approach to SoN 
learning differs from the state-of-the-art 
chunking ones in two aspects. First, we ex-
tend SoN learning from the chunking level 
to the parse tree level, where structured syn-
tactic information is available. Second, we 
focus on determining whether a constituent, 
rather than a word, is negated or not, via a 
simplified shallow semantic parsing frame-
work. Evaluation on the BioScope corpus 
shows that structured syntactic information 
is effective in capturing the domination rela-
tionship between a negation signal and its 
dominated arguments. It also shows that our 
parsing approach much outperforms the 
state-of-the-art chunking ones. 

1 Introduction 

Whereas negation in predicate logic is 
well-defined and syntactically simple, negation 
in natural language is much complex. Gener-
ally, learning the scope of negation involves 
two subtasks: negation signal finding and nega-
tion scope finding. The former decides whether 
the words in a sentence are negation signals 
(i.e., words indicating negation, e.g., no, not, 
fail, rather than), where the semantic informa-
tion of the words, rather than the syntactic in-
formation, plays a critical role. The latter de-
termines the sequences of words in the sen-
tence which are negated by the given negation 
signal. Compared with negation scope finding, 
negation signal finding is much simpler and has 
been well resolved in the literature, e.g. with 

the accuracy of 95.8%-98.7% on the three 
subcorpora of the Bioscope corpus (Morante 
and Daelemans, 2009). In this paper, we focus 
on negation scope finding instead. That is, we 
assume golden negation signal finding. 

Finding negative assertions is essential in 
information extraction (IE), where in general, 
the aim is to derive factual knowledge from 
free text. For example, Vincze et al. (2008) 
pointed out that the extracted information 
within the scopes of negation signals should 
either be discarded or presented separately 
from factual information. This is especially 
important in the biomedical domain, where 
various linguistic forms are used extensively to 
express impressions, hypothesized explanations 
of experimental results or negative findings. 
Szarvas et al. (2008) reported that 13.45% of 
the sentences in the abstracts subcorpus of the 
BioScope corpus and 12.70% of the sentences 
in the full papers subcorpus of the Bioscope 
corpus contain negative assertions. In addition 
to the IE tasks in the biomedical domain, SoN 
learning has attracted more and more attention 
in some natural language processing (NLP) 
tasks, such as sentiment classification (Turney, 
2002). For example, in the sentence “The chair 
is not comfortable but cheap”, although both 
the polarities of the words “comfortable” and 
“cheap” are positive, the polarity of “the chair” 
regarding the attribute “cheap” keeps positive 
while the polarity of “the chair” regarding the 
attribute “comfortable” is reversed due to the 
negation signal “not”.  

Most of the initial research on SoN learning 
focused on negated terms finding, using either 
some heuristic rules (e.g., regular expression), 
or machine learning methods (Chapman et al., 
2001; Huang and Lowe, 2007; Goldin and 
Chapman, 2003). Negation scope finding has 
been largely ignored until the recent release of 
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the BioScope corpus (Szarvas et al., 2008; 
Vincze et al., 2008). Morante et al. (2008) and 
Morante and Daelemans (2009) pioneered the 
research on negation scope finding by formu-
lating it as a chunking problem, which classi-
fies the words of a sentence as being inside or 
outside the scope of a negation signal. How-
ever, this chunking approach suffers from low 
performance, in particular on long sentences, 
due to ignoring structured syntactic information. 
For example, given golden negation signals on 
the Bioscope corpus, Morante and Daelemans 
(2009) only got the performance of 50.26% in 
PCS (percentage of correct scope) measure on 
the full papers subcorpus (22.8 words per sen-
tence on average), compared to 87.27% in PCS 
measure on the clinical reports subcorpus (6.6 
words per sentence on average). 

This paper explores negation scope finding 
from a parse tree perspective and formulates it 
as a shallow semantic parsing problem, which 
has been extensively studied in the past few 
years (Carreras and Màrquez, 2005). In par-
ticular, the negation signal is recast as the pre-
dicate and the negation scope is recast as its 
arguments. The motivation behind is that 
structured syntactic information plays a critical 
role in negation scope finding and should be 
paid much more attention, as indicated by pre-
vious studies in shallow semantic parsing 
(Gildea and Palmer, 2002; Punyakanok et al., 
2005). Our parsing approach to negation scope 
finding differs from the state-of-the-art chunk-
ing ones in two aspects. First, we extend nega-
tion scope finding from the chunking level into 
the parse tree level, where structured syntactic 
information is available. Second, we focus on 
determining whether a constituent, rather than a 
word, is negated or not. Evaluation on the 
BioScope corpus shows that our parsing ap-
proach much outperforms the state-of-the-art 
chunking ones. 

The rest of this paper is organized as follows. 
Section 2 reviews related work. Section 3 in-
troduces the Bioscope corpus on which our 
approach is evaluated. Section 4 describes our 
parsing approach by formulating negation 
scope finding as a simplified shallow semantic 
parsing problem. Section 5 presents the ex-
perimental results. Finally, Section 6 concludes 
the work. 

2 Related Work 

While there is a certain amount of literature 
within the NLP community on negated terms 
finding (Chapman et al., 2001; Huang and 
Lowe, 2007; Goldin and Chapman, 2003), 
there are only a few studies on negation scope 
finding (Morante et al., 2008; Morante and 
Daelemans, 2009).  

Negated terms finding  

Rule-based methods dominated the initial re-
search on negated terms finding. As a repre-
sentative, Chapman et al. (2001) developed a 
simple regular expression-based algorithm to 
detect negation signals and identify medical 
terms which fall within the negation scope. 
They found that their simple regular expres-
sion-based algorithm can effectively identify a 
large portion of the pertinent negative state-
ments from discharge summaries on determin-
ing whether a finding or disease is absent. Be-
sides, Huang and Lowe (2007) first proposed 
some heuristic rules from a parse tree perspec-
tive to identify negation signals, taking advan-
tage of syntactic parsing, and then located ne-
gated terms in the parse tree using a corre-
sponding negation grammar. 

As an alternative to the rule-based methods, 
various machine learning methods have been 
proposed for finding negated terms. As a rep-
resentative, Goldin and Chapman (2003) a-
dopted both Naïve Bayes and decision trees to 
distinguish whether an observation is negated 
by the negation signal “not” in hospital reports.  

Negation scope finding  

Morante et al. (2008) pioneered the research on 
negation scope finding, largely due to the 
availability of a large-scale annotated corpus, 
the Bioscope corpus. They approached the ne-
gation scope finding task as a chunking prob-
lem which predicts whether a word in the sen-
tence is inside or outside of the negation scope, 
with proper post-processing to ensure consecu-
tiveness of the negation scope. Morante and 
Daelemans (2009) further improved the per-
formance by combing several classifiers.  

Similar to SoN learning, there are some ef-
forts in the NLP community on learning the 
scope of speculation. As a representative, 
Özgür and Radev (2009) divided speculation 
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learning into two subtasks: speculation signal 
finding and speculation scope finding. In par-
ticular, they formulated speculation signal 
finding as a classification problem while em-
ploying some heuristic rules from the parse tree 
perspective on speculation scope finding. 

3 Negation in the BioScope Corpus 

This paper employs the BioScope corpus 
(Szarvas et al., 2008; Vincze et al., 2008)1, a 
freely downloadable negation resource from 
the biomedical domain, as the benchmark cor-
pus. In this corpus, every sentence is annotated 
with negation signals and speculation signals 
(if it has), as well as their linguistic scopes. 
Figure 1 shows a self-explainable example. In 
this paper, we only consider negation signals, 
rather than speculation ones. Our statistics 
shows that 96.57%, 3.23% and 0.20% of nega-
tion signals are represented by one word, two 
words and three or more words, respectively. 
Additional, adverbs (e.g., not, never) and de-
terminers (e.g., no, neither) occupy 45.66% and 
30.99% of negation signals, respectively. 

 
The Bioscope corpus consists of three sub-

corpora: the full papers and the abstracts from 
the GENIA corpus (Collier et al., 1999), and 
clinical (radiology) reports. Among them, the 
full papers subcorpus and the abstracts subcor-
pus come from the same genre, and thus share 
some common characteristics in statistics, such 
as the number of words in the negation scope to 
the right (or left) of the negation signal and the 
average scope length. In comparison, the clini-
cal reports subcorpus consists of clinical radi-
ology reports with short sentences. For detailed 
statistics about the three subcorpora, please see 
Morante and Daelemans (2009). 

                                                           

                                                          

1 http://www.inf.u-szeged.hu/rgai/bioscope 

For preprocessing, all the sentences in the 
Bioscope corpus are tokenized and then parsed 
using the Berkeley parser2 (Petrov and Klein, 
2007) trained on the GENIA TreeBank (GTB) 
1.0 (Tateisi et al., 2005)3, which is a bracketed 
corpus in (almost) PTB style. 10-fold 
cross-validation on GTB1.0 shows that the 
parser achieves the performance of 86.57 in 
F1-measure. It is worth noting that the GTB1.0 
corpus includes all the sentences in the ab-
stracts subcorpus of the Bioscope corpus. 

4 Negation Scope Finding via Shallow 
Semantic Parsing 

In this section, we first formulate the negation 
scope finding task as a shallow semantic pars-
ing problem. Then, we deal with it using a sim-
plified shallow semantic parsing framework.  

4.1 Formulating Negation Scope Finding  
as a Shallow Semantic Parsing Prob-
lem 

Given a parse tree and a predicate in it, shallow 
semantic parsing recognizes and maps all the 
constituents in the sentence into their corre-
sponding semantic arguments (roles) of the 
predicate. As far as negation scope finding 
considered, the negation signal can be regarded 
as the predicate4, while the scope of the nega-
tion signal can be mapped into several con-
stituents which are negated and thus can be 
regarded as the arguments of the negation sig-
nal. In particular, given a negation signal and 
its negation scope which covers wordm, …, 
wordn, we adopt the following two heuristic 
rules to map the negation scope of the negation 
signal into several constituents which can be 
deemed as its arguments in the given parse tree. 

<sentence id="S26.8">These findings <xcope 
id="X26.8.2"><cue type="speculation" 
ref="X26.8.2">indicate that</cue> <xcope 
id="X26.8.1">corticosteroid resistance in bron-
chial asthma <cue type="negation" 
ref="X26.8.1">can not</cue> be explained by 
abnormalities in corticosteroid receptor charac-
teristics</xcope></xcope>.</sentence> 

Figure 1: An annotated sentence in the BioScope 
corpus. 

1) The negation signal itself and all of its an-
cestral constituents are non-arguments. 

2) If constituent X is an argument of the given 
negation signal, then X should be the high-
est constituent dominated by the scope of 
wordm, …, wordn. That is to say, X’s parent 
constituent must cross-bracket or include 
the scope of wordm, …, wordn. 

 
2 http://code.google.com/p/berkeleyparser/ 
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA  
4 If a negation signal consists of multiply words 
(e.g., rather than), the last word (e.g., than) is cho-
sen to represent the negation signal. 
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Figure 2: An illustration of a negation signal and its arguments in a parse tree. 
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The first rule ensures that no argument cov-

ers the negation signal while the second rule 
ensures no overlap between any two arguments. 
For example, in the sentence “These findings 
indicate that corticosteroid resistance can not 
be explained by abnormalities”, the negation 
signal “can not” has the negation scope “corti-
costeroid resistance can not be explained by 
abnormalities”. As shown in Figure 2, the node 
“RB7,7” (i.e., not) represents the negation signal 
“can not” while its arguments include three 
constituents {NP4,5, MD6,6, and VP8,11}. It is 
worth noting that according to the above rules, 
negation scope finding via shallow semantic 
parsing, i.e. determining the arguments of a 
given negation signal, is robust to some varia-
tions in parse trees. This is also empirically 
justified by our later experiments. For example, 
if the VP6,11 in Figure 2 is incorrectly expanded 
by the rule VP6,11→MD6,6+RB7,7+VB8,8+VP9,11, 
the negation scope of the negation signal “can 
not” can still be correctly detected as long as 
{NP4,5, MD6,6, VB8,8, and VP9,11} are predicted 
as the arguments of the negation signal “can 
not”. 

Compared with common shallow semantic 
parsing which needs to assign an argument 
with a semantic label, negation scope finding 
does not involve semantic label classification 
and thus could be divided into three consequent 
phases: argument pruning, argument identifica-
tion and post-processing. 

4.2 Argument Pruning 

Similar to the predicate-argument structures in 
common shallow semantic parsing, the nega-
tion signal-scope structures in negation scope 
finding can be also classified into several cer-
tain types and argument pruning can be done 
by employing several heuristic rules to filter 
out constituents, which are most likely 
non-arguments of a negation signal. Similar to 
the heuristic algorithm as proposed in Xue and 
Palmer (2004) for argument pruning in com-
mon shallow semantic parsing, the argument 
pruning algorithm adopted here starts from 
designating the negation signal as the current 
node and collects its siblings. It then iteratively 
moves one level up to the parent of the current 
node and collects its siblings. The algorithm 
ends when it reaches the root of the parse tree. 
To sum up, except the negation signal and its 
ancestral constituents, any constituent in the 
parse tree whose parent covers the given nega-
tion signal will be collected as argument can-
didates. Taking the negation signal node 
“RB7,7” in Figure 2 as an example, constituents 
{MD6,6, VP8,11, NP4,5, IN3,3, VBP2,2, and NP0,1} 
are collected as its argument candidates conse-
quently. 

4.3 Argument Identification 

Here, a binary classifier is applied to determine 
the argument candidates as either valid argu-
ments or non-arguments. Similar to argument 
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identification in common shallow semantic 
parsing, the structured syntactic information 
plays a critical role in negation scope finding.  

Basic Features 

Table 1 lists the basic features for argument 
identification. These features are also widely 
used in common shallow semantic parsing for 
both verbal and nominal predicates (Xue, 2008; 
Li et al., 2009). 
Feature Remarks 
b1 Negation: the stem of the negation signal, 

e.g., not, rather_than. (can_not) 
b2 Phrase Type: the syntactic category of the

argument candidate. (NP) 
b3 Path: the syntactic path from the argument 

candidate to the negation signal. 
(NP<S>VP>RB) 

b4 Position: the positional relationship of the
argument candidate with the negation sig-
nal. “left” or “right”. (left) 

Table 1: Basic features and their instantiations for 
argument identification in negation scope finding, 
with NP4,5 as the focus constituent (i.e., the argu-
ment candidate) and “can not” as the given negation 
signal, regarding Figure 2. 

Additional Features 

To capture more useful information in the ne-
gation signal-scope structures, we also explore 
various kinds of additional features. Table 2 
shows the features in better capturing the de-
tails regarding the argument candidate and the 
negation signal. In particular, we categorize the 
additional features into three groups according 
to their relationship with the argument candi-
date (AC, in short) and the given negation sig-
nal (NS, in short). 

Some features proposed above may not be 
effective in argument identification. Therefore, 
we adopt the greedy feature selection algorithm 
as described in Jiang and Ng (2006) to pick up 
positive features incrementally according to 
their contributions on the development data. 
The algorithm repeatedly selects one feature 
each time which contributes most, and stops 
when adding any of the remaining features fails 
to improve the performance. As far as the ne-
gation scope finding task concerned, the whole 
feature selection process could be done by first 
running the selection algorithm with the basic 
features (b1-b4) and then incrementally picking 
up effective features from (ac1-ac6, AC1-AC2, 

ns1-ns4, NS1-NS2, nsac1-nsac2, and NSAC1 
-NSAC7). 
Feature Remarks 
argument candidate (AC) related 
ac1 the headword (ac1H) and its POS (ac1P). 

(resistance, NN) 
ac2 the left word (ac2W) and its POS (ac2P). 

(that, IN) 
ac3 the right word (ac3W) and its POS (ac3P). 

(can, MD) 
ac4 the phrase type of its left sibling (ac4L) 

and its right sibling (ac4R). (NULL, VP) 
ac5 the phrase type of its parent node. (S) 
ac6 the subcategory. (S:NP+VP) 
combined features (AC1-AC2) 
b2&fc1H, b2&fc1P 
negation signal (NS) related 
ns1 its POS. (RB) 
ns2 its left word (ns2L) and right word (ns2R). 

(can, be) 
ns3 the subcategory. (VP:MD+RB+VP) 
ns4 the phrase type of its parent node. (VP) 
combined features (NS1-NS2) 
b1&ns2L, b1&ns2R 
NS-AC-related 
nsac1 the compressed path of b3: compressing 

sequences of identical labels into one.  
(NP<S>VP>RB) 

nsac2 whether AC and NS are adjacent in posi-
tion. “yes” or “no”. (no) 

combined features (NSAC1-NSAC7) 
b1&b2, b1&b3, b1&nsac1, b3&NS1, b3&NS2, 
b4&NS1, b4&NS2 
Table 2: Additional features and their instantiations 
for argument identification in negation scope find-
ing, with NP4,5 as the focus constituent (i.e., the 
argument candidate) and “can not” as the given 
negation signal, regarding Figure 2. 

4.4 Post-Processing 

Although a negation signal in the BioScope 
corpus always has only one continuous block 
as its negation scope (including the negation 
signal itself), the negation scope finder may 
result in discontinuous negation scope due to 
independent prediction in the argument identi-
fication phase. Given the golden negation sig-
nals, we observed that 6.2% of the negation 
scopes predicted by our negation scope finder 
are discontinuous.  

Figure 3 demonstrates the projection of all 
the argument candidates into the word level. 
According to our argument pruning algorithm 
in Section 4.2, except the words presented by 
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the negation signal, the projection covers the 
whole sentence and each constituent (LACi or 
RACj in Figure 3) receives a probability distri-
bution of being an argument of the given nega-
tion signal in the argument identification phase. 

 Since a negation signal is deemed inside of its 
negation scope in the BioScope corpus, our 
post-processing algorithm first includes the 
negation signal in its scope and then starts to 
identify the left and the right scope boundaries, 
respectively. 

As shown in Figure 3, the left boundary has 
m+1 possibilities, namely the negation signal 
itself, the leftmost word of constituent LACi 
(1<=i<=m). Supposing LACi receives prob-
ability of Pi being an argument, we use the fol-
lowing formula to determine LACk* whose 
leftmost word represents the boundary of the 
left scope. If k*=0, then the negation signal 
itself represents its left boundary. 

( )*

1 1
arg max 1

k m

i i
k i i k

k P
= = +

= ∗∏ ∏ P−

                                                          

 

Similarly, the right boundary of the given 
negation signal can be decided. 

5 Experimentation 

We have evaluated our shallow semantic pars-
ing approach to negation scope finding on the 
BioScope corpus. 

5.1 Experimental Settings 

Following the experimental setting in Morante 
and Daelemans (2009), the abstracts subcorpus 
is randomly divided into 10 folds so as to per-
form 10-fold cross validation, while the per-
formance on both the papers and clinical re-
ports subcorpora is evaluated using the system 
trained on the whole abstracts subcorpus. In 
addition, SVMLight5 is selected as our classi-
fier. In particular, we adopt the linear kernel 
and the training parameter C is fine-tuned to 
0.2. 

 

1

5 http://svmlight.joachims.org/ 

The evaluation is made using the accuracy. 
We report the accuracy using three measures: 
PCLB and PCRB, which indicate the percent-
ages of correct left boundary and right bound-
ary respectively, PCS, which indicates the per-
centage of correct scope as a whole.  

LACm   ….   LAC1 RAC1   ….   RACn

m n 

Figure 3: Projecting the left and the right argument 
candidates into the word level. 

5.2 Experimental Results on Golden Parse 
Trees 

In order to select beneficial features from the 
additional features proposed in Section 4.3, we 
randomly split the abstracts subcorpus into 
training and development datasets with propor-
tion of 4:1. After performing the greedy feature 
selection algorithm on the development data, 
features {NSAC5, ns2R, NS1, ac1P, ns3, 
NSAC7, ac4R} are selected consecutively for 
argument identification. Table 3 presents the 
effect of selected features in an incremental 
way on the development data. It shows that the 
additional features significantly improve the 
performance by 11.66% in PCS measure from 
74.93% to 86.59% ( ). 2; 0.0pχ <

 
Feature PCLB PCRB PCS 
Baseline 84.26 88.92 74.93 
+NSAC5 90.96 88.92 81.34 
+ns2R 91.55 88.92 81.92 
+NS1 92.42 89.50 83.09 
+ac1P 93.59 89.50 84.26 
+ns3 93.88 90.09 84.84 
+NSAC7 94.75 89.80 85.42 
+ac4R 95.04 90.67 86.59 

Table 3: Performance improvement (%) of includ-
ing the additional features in an incremental way on 
the development data (of the abstracts subcorpus). 

However, Table 3 shows that the additional 
features behave quite differently in terms of 
PCLB and PCRB measures. For example, 
PCLB measure benefits more from features 
NSAC5, ns2R, NS1, ac1P, and NSAC7 while 
PCRB measure benefits more from features 
NS1 and ac4R. It also shows that the features 
(e.g., NSAC5, ns2R, NS1, NSAC7) related to 
neighboring words of the negation signal play a 
critical role in recognizing both left and right 
boundaries. This may be due to the fact that 
neighboring words usually imply sentential 
information. For example, “can not be” indi-
cates a passive clause while “did not” indicates 
an active clause. Table 3 also shows that the 
recognition of left boundaries is much easier 
than that of right boundaries. This may be due 
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to the fact that 83.6% of negation signals have 
themselves as the left boundaries in the ab-
stracts subcorpus.  

gument candidate is outside or cross-brackets 
with the golden negation scope, then it is a 
non-argument. The oracle performance is pre-
sented in the rows of oracle in Table 5 and Ta-
ble 6. 

Table 4 presents the performance on the ab-
stracts subcorpus by performing 10-fold 
cross-validation. It shows that the additional 
features significantly improve the performance 
over the three measures ( ). 2; 0.0pχ <

Table 5 and Table 6 show that: 
1) Automatic syntactic parsing lowers the per-

formance of negation scope finding on the 
abstracts subcorpus in all three measures (e.g. 
from 83.10 to 81.84 in PCS). As expected, 
the parser trained on the whole GTB1.0 
corpus works better than that trained on 
6,691 sentences (e.g. 64.02 Vs. 62.70, and 
89.79 Vs. 85.21 in PCS measure on the full 
papers and the clinical reports subcorpora, 
respectively). However, the performance de-
crease shows that negation scope finding is 
not as sensitive to automatic syntactic pars-
ing as common shallow semantic parsing, 
whose performance might decrease by about 
~10 in F1-measure (Toutanova et al., 2005). 
This indicates that negation scope finding 
via shallow semantic parsing is robust to 
some variations in the parse trees. 

1
Feature PCLB PCRB PCS 
Baseline 84.29 87.82 74.05 
+selected features 93.06 88.96 83.10 

Table 4: Performance (%) of negation scope finding 
on the abstracts subcorpus using 10-fold 
cross-validation.  

5.3 Experimental Results on Automatic 
Parse Trees 

The GTB1.0 corpus contains 18,541 sentences 
in which 11,850 of them (63.91%) overlap with 
the sentences in the abstracts subcorpus6. In 
order to get automatic parse trees for the sen-
tences in the abstracts subcorpus, we train the 
Berkeley parser with the remaining 6,691 sen-
tences in GTB1.0. The Berkeley parser trained 
on 6,691 sentences achieves the performance of 
85.22 in F1-measure on the other sentences in 
GTB1.0. For both the full papers and clinical 
reports subcorpora, we get their automatic 
parse trees by using two Berkeley parsers: one 
trained on 6,691 sentences in GBT1.0, and the 
other trained on all the sentences in GTB1.0.  

2) autoparse(test) consistently outperforms 
autoparse(t&t) on both the abstracts and the 
full papers subcorpora. However, it is sur-
prising to find that autoparse(t&t) achieves 
better performance on the clinical reports 
subcorpus than autoparse(test). This may be 
due to the special characteristics of the 
clinical reports subcorpus, which mainly 
consists of much shorter sentences with 6.6 
words per sentence on average, and better 
adaptation of the argument identification 
classifier to the variations in the automatic 
parse trees. 

To test the performance on automatic parse 
trees, we employ two different configurations. 
First, we train the argument identification clas-
sifier on the abstracts subcorpus using auto-
matic parse trees produced by Berkeley parser 
trained on 6,691 sentences. The experimental 
results are presented in the rows of auto-
parse(t&t) in Table 5 and Table 6. Then, we 
train the argument identification classifier on 
the abstracts subcorpus using golden parse 
trees. The experimental results are presented in 
the rows of autoparse(test) in Table 5 and Ta-
ble 6.  

3) The performance on all three subcorpora 
indicates that the recognition of right 
boundary is much harder than that of left 
boundary. This may be due to the longer 
right boundary on an average. Our statistics 
shows that the average left/right boundaries 
are 1.1/6.9, 0.1/3.7, and 1.2/6.5 words on the 
abstracts, the full papers and the clinical re-
ports subcorpora, respectively. 

We also report an oracle performance to ex-
plore the best possible performance of our sys-
tem by assuming that our negation scope finder 
can always correctly determine whether a can-
didate is an argument or not. That is, if an ar-

4) The oracle performance is less sensitive to 
automatic syntactic parsing. In addition, 
given the performance gap between the per-
formance of our negation scope finder and 
the oracle performance, there is still much 
room for further performance improvement. 

                                                           
6 There are a few cases where two sentences in the 
abstracts subcorpus map into one sentence in GTB. 
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 Abstracts Papers Clinical 
 PCLB PCRB PCS PCLB PCRB PCS PCLB PCRB PCS 
autoparse(t&t) 91.97 87.82 80.88 85.45 67.20 59.26 97.48 88.30 85.89
autoparse(test) 92.71 88.33 81.84 87.57 68.78 62.70 97.48 87.73 85.21
oracle 99.72 94.59 94.37 98.94 84.13 83.33 99.89 98.39 98.39

Table 5: Performance (%) of negation scope finding on the three subcorpora by using automatic parser trained 
with 6,691 sentences in GTB1.0.  

 Papers Clinical 
 PCLB PCRB PCS PCLB PCRB PCS 
autoparse(t&t) 85.98 67.99 60.32 97.48 92.66 90.48 
autoparse(test) 87.83 70.11 64.02 97.36 92.20 89.79 
oracle 98.94 83.86 83.07 99.77 97.94 97.82 

Table 6: Performance (%) of negation scope finding on the two subcorpora by using automatic parser trained 
with all the sentences in GTB1.0.  

 

Method Abstracts Papers Clinical 
M et al. (2008) 57.33 n/a n/a 
M & D (2009) 73.36 50.26 87.27 
Our baseline 73.42 53.70 88.42 
Our final system 81.84 64.02 89.79 
Table 7: Performance comparison over the PCS 
measure (%) of our system with other 
state-of-the-art ones.  

Table 7 compares our performance in PCS 
measure with related work. It shows that even 
our baseline system with four basic features as 
presented in Table 1 performs better than 
Morante et al. (2008) and Morante and Daele-
mans(2009). This indicates the appropriateness 
of our simplified shallow semantic parsing ap-
proach and the effectiveness of structured syn-
tactic information on negation scope finding. It 
also shows that our final system significantly 
outperforms the state-of-the-art ones using a 
chunking approach, especially on the abstracts 
and full papers subcorpora. However, the im-
provement on the clinical reports subcorpus is 
less apparent, partly due to the fact that the 
sentences in this subcorpus are much simpler 
(with average length of 6.6 words per sentence) 
and thus a chunking approach can achieve high 
performance. Following are two typical sen-
tences from the clinical reports subcorpus, 
where the negation scope covers the whole sen-
tence (except the period punctuation). Such 
sentences account for 57% of negation sen-
tences in the clinical reports subcorpus. 

 

6 Conclusion 

In this paper we have presented a simplified 
shallow semantic parsing approach to negation 
scope finding by formulating it as a shallow 
semantic parsing problem, which has been ex-
tensively studied in the past few years. In par-
ticular, we regard the negation signal as the 
predicate while mapping the negation scope 
into several constituents which are deemed as 
arguments of the negation signal. Evaluation on 
the Bioscope corpus shows the appropriateness 
of our shallow semantic parsing approach and 
that structured syntactic information plays a 
critical role in capturing the domination rela-
tionship between a negation signal and its ne-
gation scope. It also shows that our parsing 
approach much outperforms the state-of-the-art 
chunking ones. To our best knowledge, this is 
the first research on exploring negation scope 
finding via shallow semantic parsing. 

Future research will focus on joint learning 
of negation signal and its negation scope find-
ings. Although Morante and Daelemans (2009) 
reported the performance of 95.8%-98.7% on 
negation signal finding, it lowers the perform-
ance of negation scope finding by about 
7.29%-16.52% in PCS measure.  
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(1) No evidence of focal pneumonia . 
 
(2) No findings to account for symptoms . 

678



References 
Xavier Carreras and Lluís Màrquez. 2005. Introduc-

tion to the CoNLL-2005 Shared Task: Semantic 
Role Labeling. In Proceedings of CoNLL 2005.  

Wendy W. Chapman, Will Bridewell, Paul Hanbury, 
Gregory F. Cooper, and Bruce G. Buchanan. 
2001. A Simple Algorithm for Identifying Ne-
gated Findings and Diseases in Discharge Sum-
maries. Journal of Biomedical Informatics, 34: 
301-310. 

Nigel Collier, Hyun Seok Park, Norihiro Ogata, et 
al. 1999. The GENIA project: corpus-based 
knowledge acquisition and information extrac-
tion from genome research papers. In Proceed-
ings of EACL 1999.  

Daniel Gildea and Martha Palmer. 2002. The Ne-
cessity of Parsing for Predicate Argument Rec-
ognition. In Proceedings of ACL 2002. 

Ilya M. Goldin and Wendy W. Chapman. 2003. 
Learning to Detect Negation with ‘Not’ in Medi-
cal Texts. In Proceedings of SIGIR 2003. 

Yang Huang and Henry Lowe. 2007. A Novel Hy-
brid Approach to Automated Negation Detection 
in Clinical Radiology Reports. Journal of the 
American Medical Informatics Association, 14(3): 
304-311. 

Zheng Ping Jiang and Hwee Tou Ng. 2006. Seman-
tic Role Labeling of NomBank: A Maximum En-
tropy Approach. In Proceedings of EMNLP 
2006. 

Junhui Li, Guodong Zhou, Hai Zhao, Qiaoming Zhu, 
and Peide Qian. Improving Nominal SRL in 
Chinese Language with Verbal SRL Information 
and Automatic Predicate Recognition. In Pro-
ceedings of EMNLP 2009. 

Roser Morante, Anthony Liekens, and Walter 
Daelemans. 2008. Learning the Scope of Nega-
tion in Biomedical Texts. In Proceedings of 
EMNLP 2008. 

Roser Morante and Walter Daelemans. 2009. A 
Metalearning Approach to Processing the Scope 
of Negation. In Proceedings of CoNLL 2009. 

Arzucan Özgür; Dragomir R. Radev. 2009. Detect-
ing Speculations and their Scopes in Scientific 
Text. In Proceedings of EMNLP 2009. 

Slav Petrov and Dan Klein. 2007. Improved Infer-
ence for Unlexicalized Parsing. In Proceedings of 
NAACL 2007. 

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 
2005. The Necessity of Syntactic Parsing for 

Semantic Role Labeling. In Proceedings of IJCAI 
2005. 

György Szarvas, Veronika Vincze, Richárd Farkas, 
and János Csirik. 2008. The BioScope corpus: 
annotation for negation, uncertainty and their 
scope in biomedical texts. In Proceedings of 
BioNLP 2008. 

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and 
Jun’ichi Tsujii. 2005. Syntax Annotation for the 
GENIA Corpus. In Proceedings of IJCNLP 2005, 
Companion volume. 

Kristina Toutanova, Aria Haghighi, and Christopher 
D. Manning. 2005. Joint Learning Improves Se-
mantic Role Labeling. In Proceedings of ACL 
2005. 

Peter D. Turney. 2002. Thumbs Up or Thumbs 
Down? Semantic Orientation Applied to Unsu-
pervised Classification of Reviews. In Proceed-
ings of ACL 2002. 

Veronika Vincze, György Szarvas, Richárd Farkas, 
György Móra, and János Csirik. 2008. The Bio-
Scope corpus: biomedical texts annotated for 
uncertainty, negation and their scopes. BMC 
Bioinformatics, 9(Suppl 11):S9. 

Nianwen Xue and Martha Palmer. 2004. Calibrating 
Features for Semantic Role Labeling. In Pro-
ceedings of EMNLP 2004. 

Nianwen Xue. 2008. Labeling Chinese Predicates 
with Semantic Roles. Computational Linguistics, 
34(2):225-255. 

 
 

679


