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Abstract

Dynamic Programming (DP) is an important class of algorithms
widely used in many areas of speech and language processing. Recently
there have been a series of work trying to formalize many instances of
DP algorithms under algebraic and graph-theoretic frameworks. This
tutorial surveys two such frameworks, namely semirings and directed
hypergraphs, and draws connections between them. We formalize two
particular types of DP algorithms under each of these frameworks: the
Viterbi-style topological algorithms and the Dijkstra-style best-first
algorithms. Wherever relevant, we also discuss typical applications of
these algorithms in Natural Language Processing.

1 Introduction

Many algorithms in speech and language processing can be viewed as in-
stances of dynamic programming (DP) (Bellman, 1957). The basic idea of
DP is to solve a bigger problem by divide-and-conquer, but also reuses the
solutions of overlapping subproblems to avoid recalculation. The simplest
such example is a Fibonacci series, where each F (n) is used twice (if cached).
The correctness of a DP algorithm is ensured by the optimal substructure
property, which informally says that an optimal solution must contain op-
timal subsolutions for subproblems. We will formalize this property as an
algebraic concept of monotonicity in Section 2.

∗Survey paper to accompany the COLING 2008 tutorial on dynamic programming. The
material presented here is based on the author’s candidacy exam report at the University
of Pennsylvania. I would like to thank Fernando Pereira for detailed comments on an
earlier version of this survey. This work was supported by NSF ITR EIA-0205456.
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search space \ ordering topological-order best-first
graph + semirings (2) Viterbi (3.1) Dijkstra/A* (3.2)

hypergraph + weight functions (4) Gen. Viterbi (5.1) Knuth/A* (5.2)

Table 1: The structure of this paper: a two dimensional classification of dy-
namic programming algorithms, based on search space (rows) and propoga-
tion ordering (columns). Corresponding section numbers are in parentheses.

This report surveys a two-dimensional classification of DP algorithms
(see Table 1): we first study two types of search spaces (rows): the semir-
ing framework (Mohri, 2002) when the underlying representation is a di-
rected graph as in finite-state machines, and the hypergraph framework
(Gallo et al., 1993) when the search space is hierarchically branching as in
context-free grammars; then, under each of these frameworks, we study two
important types of DP algorithms (columns) with contrasting order of vis-
iting nodes: the Viterbi style topological-order algorithms (Viterbi, 1967),
and the Dijkstra-Knuth style best-first algorithms (Dijkstra, 1959; Knuth,
1977). This survey focuses on optimization problems where one aims to find
the best solution of a problem (e.g. shortest path or highest probability
derivation) but other problems will also be discussed.

2 Semirings

The definitions in this section follow Kuich and Salomaa (1986) and Mohri
(2002).

Definition 1. A monoid is a triple (A,⊗, 1) where ⊗ is a closed associative
binary operator on the set A, and 1 is the identity element for ⊗, i.e., for all
a ∈ A, a⊗ 1 = 1⊗ a = a. A monoid is commutative if ⊗ is commutative.

Definition 2. A semiring is a 5-tuple R = (A,⊕,⊗, 0, 1) such that

1. (A,⊕, 0) is a commutative monoid.

2. (A,⊗, 1) is a monoid.

3. ⊗ distributes over ⊕: for all a, b, c in A,

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c),

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

4. 0 is an annihilator for ⊗: for all a in A, 0⊗ a = a⊗ 0 = 0.
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Semiring Set ⊕ ⊗ 0 1 intuition/application
Boolean {0, 1} ∨ ∧ 0 1 logical deduction, recognition
Viterbi [0, 1] max × 0 1 prob. of the best derivation
Inside R+ ∪ {+∞} + × 0 1 prob. of a string
Real R ∪ {+∞} min + +∞ 0 shortest-distance
Tropical R+ ∪ {+∞} min + +∞ 0 with non-negative weights
Counting N + × 0 1 number of paths

Table 2: Examples of semirings

Table 2 shows some widely used examples of semirings and their appli-
cations.

Definition 3. A semiring (A,⊕,⊗, 0, 1) is commutative if its multiplicative
operator ⊗ is commutative.

For example, all the semirings in Table 2 are commutative.

Definition 4. A semiring (A,⊕,⊗, 0, 1) is idempotent if for all a in A,
a⊕ a = a.

Idempotence leads to a comparison between elements of the semiring.

Lemma 1. Let (A,⊕,⊗, 0, 1) be an idempotent semiring, then the relation
≤ defined by

(a ≤ b)⇔ (a⊕ b = a)

is a partial ordering over A, called the natural order over A.

However, for optimization problems, a partial order is often not enough
since we need to compare arbitrary pair of values, which requires a total
ordering over A.

Definition 5. An idempotent semiring (A,⊕,⊗, 0, 1) is totally-ordered if its
natural order is a total ordering.

An important property of semirings when dealing with optimization
problems is monotonicity, which justifies the optimal subproblem property
in dynamic programming (Cormen et al., 2001) that the computation can
be factored (into smaller problems).

Definition 6. Let K = (A,⊕,⊗, 0, 1) be a semiring, and ≤ a partial order-
ing over A. We say K is monotonic if for all a, b, c ∈ A

(a ≤ b)⇒ (a⊗ c ≤ b⊗ c)

(a ≤ b)⇒ (c⊗ a ≤ c⊗ b)
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Lemma 2. Let (A,⊕,⊗, 0, 1) be an idempotent semiring, then its natural
order is monotonic.

In the following section, we mainly focus on totally-ordered semirings
(whose natural order is monotonic).

Another (optional) property is superiority which corresponds to the non-
negative weights restriction in shortest-path problems. When superiority
holds, we can explore the vertices in a best-first order as in the Dijkstra
algorithm (see Section 3.2).

Definition 7. Let K = (A,⊕,⊗, 0, 1) be a semiring, and ≤ a partial order-
ing over A. We say K is superior if for all a, b ∈ A

a ≤ a⊗ b, b ≤ a⊗ b.

Intuitively speaking, superiority means the combination of two elements
always gets worse (than each of the two inputs). In shortest-path problems,
if you traverse an edge, you always get worse cost (longer path). In Table 2,
the Boolean, Viterbi, and Tropical semirings are superior while the Real
semiring is not.

Lemma 3. Let (A,⊕,⊗, 0, 1) be a superior semiring with a partial order ≤
over A, then for all a ∈ A

1 ≤ a ≤ 0.

Proof. For all a ∈ A, we have 1 ≤ 1⊗ a = a by superiority and 1 being the
identity of ⊗; on the other hand, we have a ≤ 0⊗ a = 0 by superiority and
0 being the annihilator of ⊗.

This property, called negative boundedness in (Mohri, 2002), intuitively
illustrates the direction of optimization from 0, the initial value, towards as
close as possible to 1, the best possible value.

3 Dynamic Programming on Graphs

Following Mohri (2002), we next identify the common part shared between
these two algorithms as the generic shortest-path problem in graphs.

Definition 8. A (directed) graph is a pair G = (V, E) where V is the set
of vertices and E the set of edges. A weighted (directed) graph is a graph
G = (V, E) with a mapping w : E → A that assigns each edge a weight from
the semiring (A,⊕,⊗, 0, 1).

Definition 9. The backward-star BS (v) of a vertex v is the set of incoming
edges and the forward-star FS (v) the set of outgoing edges.
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Definition 10. A path π in a graph G is a sequence of consecutive edges,
i.e. π = e1e2 · · · ek where ei and ei+1 are connected with a vertex. We define
the weight (or cost) of path π to be

w(π) =
k⊗

i=1

w(ei) (1)

We denote P (v) to be the set of all paths from a given source vertex s
to vertex v. In the remainder of the section we only consider single-source
shortest-path problems.

Definition 11. The best weight δ(v) of a vertex v is the weight of the best
path from the source s to v:1

δ(v) =

{
1 v = s⊕

π∈P (v) w(π) v �= s
(2)

For each vertex v, the current estimate of the best weight is denoted
by d(v), which is initialized in the following procedure:

procedure Initialize(G, s)
for each vertex v �= s do

d(v)← 0
d(s)← 1

The goal of a shortest-path algorithm is to repeatedly update d(v) for
each vertex v to some better value (based on the comparison ⊕) so that
eventually d(v) will converge to δ(v), a state we call fixed. For example, the
generic update along an incoming edge e = (u, v) for vertex v is2

d(v) ⊕ = d(u)⊗ w(e) (3)

Notice that we are using the current estimate of u to update v, so if
later on d(u) is updated we have to update d(v) as well. This introduces the
problem of cyclic updates, which might cause great inefficiency. To alleviate
this problem, in the algorithms presented below, we will not trigger the
update until u is fixed, so that the u→ v update happens at most once.

3.1 Viterbi Algorithm for DAGs

In many NLP applications, the underlying graph exhibits some special struc-
tural properties which lead to faster algorithms. Perhaps the most common

1By convention, if P (v) = Ø, we have δ(v) = 0.
2Here we adopt the C notation where a ⊕ = b means the assignment a ← a⊕ b.
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of such properties is acyclicity, as in Hidden Markov Models (HMMs). For
acyclic graphs, we can use the Viterbi (1967) Algorithm 3 which simply
consists of two steps:

1. topological sort

2. visit each vertex in the topological ordering and do updates

The pseudo-code of the Viterbi algorithm is presented in Algorithm 1.

Algorithm 1 Viterbi Algorithm.
1: procedure Viterbi(G, w, s)
2: topologically sort the vertices of G
3: Initialize(G, s)
4: for each vertex v in topological order do
5: for each edge e = (u, v) in BS (v) do
6: d(v)⊕ = d(u)⊗ w(e)

The correctness of this algorithm (that d(v) = δ(v) for all v after ex-
ecution) can be easily proved by an induction on the topologically sorted
sequence of vertices. Basically, at the end of the outer-loop, d(v) is fixed to
be δ(v).

This algorithm is widely used in the literature and there have been some
alternative implementions.
Variant 1. If we replace the backward-star BS (v) in line 5 by the forward-
star FS (v) and modify the update accordingly, this procedure still works
(see Algorithm 2 for pseudo-code). We refer to this variant the forward-
update version of Algorithm 1.4 The correctness can be proved by a similar
induction (that at the beginning of the outer-loop, d(v) is fixed to be δ(v)).

Algorithm 2 Forward update version of Algorithm 1.
1: procedure Viterbi-Forward(G, w, s)
2: topologically sort the vertices of G
3: Initialize(G, s)
4: for each vertex v in topological order do
5: for each edge e = (v, u) in FS (v) do
6: d(u)⊕ = d(v)⊗ w(e)

3Also known as the Lawler (1976) algorithm in the theory community, but he considers
it as part of the folklore.

4This is not to be confused with the forward-backward algorithm (Baum, 1972). In
fact both forward and backward updates here are instances of the forward phase of a
forward-backward algorithm.
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Variant 2. Another popular implemention is memoized recursion (Cormen
et al., 2001), which starts from a target vertex t and invokes recursion on
sub-problems in a top-down fashion. Solved sub-problems are memoized to
avoid duplicate calculation.

The running time of the Viterbi algorithm, regardless of which imple-
mention, is O(V + E) because each edge is visited exactly once.

It is important to notice that this algorithm works for all semirings as
long as the graph is a DAG, although for non-total-order semirings the
semantics of δ(v) is no longer “best” weight since there is no comparison.
See Mohri (2002) for details.

Example 1 (Counting). Count the number of paths between the source
vertex s and the target vertex t in a DAG.

Solution Use the counting semiring (Table 2).

Example 2 (Longest Path). Compute the longest (worst cost) paths from
the source vertex s in a DAG.

Solution Use the semiring (R ∪ {−∞}, max, +,−∞, 0).

Example 3 (HMM Tagging). See Manning and Schütze (1999, Chap. 10).

3.2 Dijkstra Algorithm

The well-known Dijkstra (1959) algorithm can also be viewed as dynamic
programming, since it is based on optimal substructure property, and also
utilizes the overlapping of sub-problems. Unlike Viterbi, this algorithm does
not require the structural property of acyclicity; instead, it requires the
algebraic property of superiority of the semiring to ensure the correctness of
best-first exploration.

Algorithm 3 Dijkstra Algorithm.
1: procedure Dijkstra(G, w, s)
2: Initialize(G, s)
3: Q← V [G] � prioritized by d-values
4: while Q �= Ø do
5: v ← Extract-Min(Q)
6: for each edge e = (v, u) in FS (v) do
7: d(u)⊕ = d(v)⊗ w(e)
8: Decrease-Key(Q, u)

The time complexity of Dijkstra Algorithm is O((E + V ) log V ) with a
binary heap, or O(E+V log V ) with a Fibonacci heap (Cormen et al., 2001).
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Since Fibonacci heap has an excessively high constant overhead, it is rarely
used in real applications and we will focus on the more popular binary heap
case below.

For problems that satisfy both acyclicity and superiority, which include
many applications in NLP such as HMM tagging, both Dijkstra and Viterbi
can apply (Nederhof, 2003). So which one is better in this case?

From the above analysis, the complexity O((V + E) log V ) of Dijkstra
look inferior to Viterbi’s O(V +E) (due to the overhead for maintaining the
priority queue), but keep in mind that we can quit as long as the solution
for the target vertex t is found, at which time we can ensure the current
solution for the target vertex is already optimal. So the real running time of
Dijkstra depends on how early the target vertex is popped from the queue,
or how good is the solution of the target vertex compared to those of other
vertices, and whether this early termination is worthwhile with respect to
the priority queue overhead. More formally, suppose the complete solution
is ranked rth among V vertices, and we prefer Dijkstra to be faster, i.e.,

r

V
(V + E) log r < (V + E),

then we have
r log r < V (4)

as the condition to favor Dijkstra to Viterbi. However, in many real-world
applications (especially AI search, NLP parsing, etc.), often times the com-
plete solution (a full parse tree, or a source-sink path) ranks very low among
all vertices (Eq. 4 does not hold), so normally the direct use of Dijkstra does
not bring speed up as opposed to Viterbi. To alleviate this problem, there
is a popular technique named A* (Hart et al., 1968) described below.

3.2.1 A* Algorithm for State-Space Search

We prioritize the queue using a combination

d(v)⊗ ĥ(v)

of the known cost d(v) from the source vertex, and an estimate ĥ(v) of the
(future) cost from v to the target t:

h(v) =

{
1 v = t⊕

π∈P (v,t) w(π) v �= t
(5)

where P (v, t) is the set of paths from v to t. In case where the estimate ĥ(v)
is admissible, namely, no worse than the true future cost h(v),

ĥ(v) ≤ h(v) for all v,
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we can prove that the optimality of d(t) when t is extracted still holds. Our
hope is that

d(t)⊗ ĥ(t) = d(t)⊗ 1 = d(t)

ranks higher among d(v) ⊗ ĥ(v) and can be popped sooner. The Dijkstra
Algorithm is a special case of the A* Algorithm where ĥ(v) = 1 for all v.

4 Hypergraphs

Hypergraphs, as a generalization of graphs, have been extensively stud-
ied since 1970s as a powerful tool for modeling many problems in Discrete
Mathematics. In this report, we use directed hypergraphs (Gallo et al., 1993)
to abstract a hierarchically branching search space for dynamic program-
ming, where we solve a big problem by dividing it into (more than one)
sub-problems. Classical examples of these problems include matrix-chain
multiplication, optimal polygon triangulation, and optimal binary search
tree (Cormen et al., 2001).

Definition 12. A (directed) hypergraph is a pair H = 〈V, E〉 with a set
R, where V is the set of vertices, E is the set of hyperedges, and R is the
set of weights. Each hyperedge e ∈ E is a triple e = 〈T (e), h(e), fe〉, where
h(e) ∈ V is its head vertex and T (e) ∈ V ∗ is an ordered list of tail vertices.
fe is a weight function from R|T (e)| to R.

Note that our definition differs slightly from the classical definitions of
Gallo et al. (1993) and Nielsen et al. (2005) where the tails are sets rather
than ordered lists. In other words, we allow multiple occurrences of the same
vertex in a tail and there is an ordering among the components. We also
allow the head vertex to appear in the tail creating a self-loop which is ruled
out in (Nielsen et al., 2005).

Definition 13. We denote |e| = |T (e)| to be the arity of the hyperedge5.
If |e| = 0, then fe() ∈ R is a constant (fe is a nullary function) and we
call h(e) a source vertex. We define the arity of a hypergraph to be the
maximum arity of its hyperedges.

A hyperedge of arity one degenerates into an edge, and a hypergraph of
arity one is standard graph.

Similar to the case of graphs, in many applications presented below,
there is also a distinguished vertex t ∈ V called target vertex.

We can adapt the notions of backward- and forward-star to hypergraphs.
5The arity of e is different from its cardinality defined in (Gallo et al., 1993; Nielsen et

al., 2005) which is |T (e)|+ 1.
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Definition 14. The backward-star BS (v) of a vertex v is the set of incoming
hyperedges {e ∈ E | h(e) = v}. The in-degree of v is |BS(v)|. The forward-
star FS (v) of a vertex v is the set of outgoing hyperedges {e ∈ E | v ∈ T (e)}.
The out-degree of v is |FS(v)|.
Definition 15. The graph projection of a hypergraph H = 〈V, E, t,R〉 is a
directed graph G = 〈V, E′〉 where

E′ = {(u, v) | ∃e ∈ BS(v), s.t. u ∈ T (e)}.

A hypergraph H is acyclic if its graph projection G is acyclic; then a topo-
logical ordering of H is an ordering of V that is a topological ordering in G.

4.1 Weight Functions and Semirings

We also extend the concepts of monotonicity and superiority from semirings
to hypergraphs.

Definition 16. A function f : Rm → R is monotonic with regarding to �,
if for all i ∈ 1..m

(ai � a′i)⇒ f(a1, · · · , ai, · · · , am) � f(a1, · · · , a′i, · · · , am).

Definition 17. A hypergraph H is monotonic if there is a total ordering �
on R such that every weight function f in H is monotonic with regarding
to �. We can borrow the additive operator ⊕ from semiring to define a
comparison operator

a⊕ b =

{
a a � b,

b otherwise.

In this paper we will assume this monotonicity, which corresponds to
the optimal substructure property in dynamic programming (Cormen et al.,
2001).

Definition 18. A function f : Rm → R is superior if the result of function
application is worse than each of its argument:

∀i ∈ 1..m, ai � f(a1, · · · , ai, · · · , am).

A hypergraph H is superior if every weight function f in H is superior.
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4.2 Derivations

To do optimization we need to extend the notion of paths in graphs to hy-
pergraphs. This is, however, not straightforward due to the assymmetry of
the head and the tail in a hyperedge and there have been multiple propos-
als in the literature. Here we follow the recursive definition of derivations
in (Huang and Chiang, 2005). See Section 6 for the alternative notion of
hyperpaths.

Definition 19. A derivation D of a vertex v in a hypergraph H, its size
|D| and its weight w(D) are recursively defined as follows:

• If e ∈ BS(v) with |e| = 0, then D = 〈e, ε〉 is a derivation of v, its size
|D| = 1, and its weight w(D) = fe().

• If e ∈ BS(v) where |e| > 0 and Di is a derivation of Ti(e) for 1 ≤
i ≤ |e|, then D = 〈e, D1 · · ·D|e|〉 is a derivation of v, its size |D| =

1 +
∑|e|

i=1 |Di| and its weight w(D) = fe(w(D1), . . . , w(D|e|)).

The ordering on weights in R induces an ordering on derivations: D � D′

iff w(D) � w(D′).

We denote D(v) to be the set of derivations of v and extend the best
weight in definition 11 to hypergraph:

Definition 20. The best weight δ(v) of a vertex v is the weight of the best
derivation of v:

δ(v) =

{
1 v is a source vertex⊕

D∈D(v) w(D) otherwise
(6)

4.3 Related Formalisms

Hypergraphs are closely related to other formalisms like AND/OR graphs,
context-free grammars, and deductive systems (Shieber et al., 1995; Neder-
hof, 2003).

In an AND/OR graph, the OR-nodes correspond to vertices in a hy-
pergraph and the AND-nodes, which links several OR-nodes to another
OR-node, correspond to a hyperedge. Similarly, in context-free grammars,
nonterminals are vertices and productions are hyperedges; in deductive sys-
tems, items are vertices and instantied deductions are hyperedges. Table 3
summarizes these correspondences. Obviously one can construct a corre-
sponding hypergraph for any given AND/OR graph, context-free grammar,
or deductive system. However, the hypergraph formulation provides greater
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hypergraph AND/OR graph context-free grammar deductive system
vertex OR-node symbol item

source-vertex leaf OR-node terminal axiom
target-vertex root OR-node start symbol goal item
hyperedge AND-node production instantiated deduction

({u1, u2}, v, f) v
f→ u1 u2

u1 : a u2 : b

v : f(a, b)

Table 3: Correspondence between hypergraphs and related formalisms.

modeling flexibility than the weighted deductive systems of Nederhof (2003):
in the former we can have a separate weight function for each hyperedge,
where as in the latter, the weight function is defined for a deductive (tem-
plate) rule which corresponds to many hyperedges.

5 Dynamic Programming on Hypergraphs

Since hypergraphs with weight functions are generalizations of graphs with
semirings, we can extend the algorithms in Section 3 to the hypergraph case.

5.1 Generalized Viterbi Algorithm

The Viterbi Algorithm (Section 3.1) can be adapted to acyclic hypergraphs
almost without modification (see Algorithm 4 for pseudo-code).

Algorithm 4 Generalized Viterbi Algorithm.
1: procedure General-Viterbi(H)
2: topologically sort the vertices of H
3: Initialize(H)
4: for each vertex v in topological order do
5: for each hyperedge e in BS (v) do
6: e is ({u1, u2, · · · , u|e|}, v, fe)
7: d(v)⊕ = fe(d(u1), d(u2), · · · , d(u|e|))

The correctness of this algorithm can be proved by a similar induction.
Its time complexity is O(V + E) since every hyperedge is visited exactly
once (assuming the arity of the hypergraph is a constant).

The forward-update version of this algorithm, however, is not as trivial
as the graph case. This is because the tail of a hyperedge now contains
several vertices and thus the forward- and backward-stars are no longer
symmetric. The naive adaption would end up visiting a hyperedge many
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times. To ensure that a hyperedge e is fired only when all of its tail vertices
have been fixed to their best weights, we maintain a counter r[e] of the
remaining vertices yet to be fixed (line 5) and fires the update rule for e
when r[e] = 0 (line 9). This method is also used in the Knuth algorithm
(Section 5.2).

Algorithm 5 Forward update version of Algorithm 4.
1: procedure General-Viterbi-Forward(H)
2: topologically sort the vertices of H
3: Initialize(H)
4: for each hyperedge e do
5: r[e]← |e| � counter of remaining tails to be fixed
6: for each vertex v in topological order do
7: for each hyperedge e in FS (v) do
8: r[e]← r[e]− 1
9: if r[e] == 0 then � all tails have been fixed

10: e is ({u1, u2, · · · , u|e|}, h(e), fe)
11: d(h(e))⊕ = fe(d(u1), d(u2), · · · , d(u|e|))

5.1.1 CKY Algorithm

The most widely used algorithm for parsing in NLP, the CKY algorithm
(Kasami, 1965), is a specific instance of the Viterbi algorithm for hyper-
graphs. The CKY algorithm takes a context-free grammar G in Chomsky
Normal Form (CNF) and essentially intersects G with a DFA D representing
the input sentence to be parsed. The resulting search space by this intersec-
tion is an acyclic hypergraph whose vertices are items like (X, i, j) and whose
hyperedges are instantiated deductive steps like ({(Y, i, k)(Z, k, j)}, (X, i, j), f)
for all i < k < j if there is a production X → Y Z. The weight function f is
simply

f(a, b) = a⊗ b⊗ w(X → Y Z).

The Chomsky Normal Form ensures acyclicity of the hypergraph but
there are multiple topological orderings which result in different variants of
the CKY algorithm, e.g., bottom-up CKY, left-to-right CKY, and right-to-
left CKY, etc.

5.2 Knuth Algorithm

Knuth (1977) generalizes the Dijkstra algorithm to what he calls the gram-
mar problem, which essentially corresponds to the search problem in a mono-
tonic superior hypergraph (see Table 3). However, he does not provide

13

13



an efficient implementation nor analysis of complexity. Graehl and Knight
(2004) present an implementation that runs in time O(V log V + E) using
the method described in Algorithm 5 to ensure that every hyperedge is vis-
ited only once (assuming the priority queue is implemented as a Fibonaaci
heap; for binary heap, it runs in O((V + E) log V )).

Algorithm 6 Knuth Algorithm.
1: procedure Knuth(H)
2: Initialize(H)
3: Q← V [H] � prioritized by d-values
4: for each hyperedge e do
5: r[e]← |e|
6: while Q �= Ø do
7: v ← Extract-Min(Q)
8: for each edge e in FS (v) do
9: e is ({u1, u2, · · · , u|e|}, h(e), fe)

10: r[e]← r[e]− 1
11: if r[e] == 0 then
12: d(h(e))⊕ = fe(d(u1), d(u2), · · · , d(u|e|))
13: Decrease-Key(Q, h(e))

5.2.1 A* Algorithm on Hypergraphs

We can also extend the A* idea to hypergraphs to speed up the Knuth
Algorithm. A specific case of this algorithm is the A* parsing of Klein
and Manning (2003) where they achieve significant speed up using carefully
designed heuristic functions. More formally, we first need to extend the
concept of (exact) outside cost from Eq. 5:

α(v) =

{
1 v = t⊕

D∈D(v,t) w(D) v �= t
(7)

where D(v, t) is the set of (partial) derivations using v as a leaf node.
This outside cost can be computed from top-down following the inverse
topological order: for each vertex v, for each incoming hyperedge e =
({u1, . . . , u|e|}, v, fe) ∈ BS (v), we update

α(ui) ⊕ = fe(d(u1) . . . d(ui−1), α(v), d(ui+1) . . . d(u|e|)) for each i.

Basically we replace d(ui) by α(v) for each i. In case weight functions are
composed of semiring operations, as in shortest paths (+) or probabilistic
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grammars (×), this definition makes sense, but for general weight functions
there should be some formal requirements to make the definition sound.
However, this topic is beyond the scope of this paper.

6 Extensions and Discussions

In most of the above we focus on optimization problems where one aims
to find the best solution. Here we consider two extensions of this scheme:
non-optimization problems where the goal is often to compute the summa-
tion or closure, and k-best problems where one also searches for the 2nd,
3rd, through kth-best solutions. Both extensions have many applications
in NLP. For the former, algorithms based on the Inside semiring (Table 1),
including the forward-backward algorithm (Baum, 1972) and Inside-Outside
algorithm (Baker, 1979; Lari and Young, 1990) are widely used for unsu-
pervised training with the EM algorithm (Dempster et al., 1977). For the
latter, since NLP is often a pipeline of several modules, where the 1-best
solution from one module might not be the best input for the next module,
and one prefers to postpone disambiguation by propogating a k-best list of
candidates (Collins, 2000; Gildea and Jurafsky, 2002; Charniak and John-
son, 2005; Huang and Chiang, 2005). The k-best list is also frequently used
in discriminative learning to approximate the whole set of candidates which
is usually exponentially large (Och, 2003; McDonald et al., 2005).

6.1 Beyond Optimization Problems

We know that in optimization problems, the criteria for using dynamic pro-
gramming is monotonicity (definitions 6 and 16). But in non-optimization
problems, since there is no comparison, this criteria is no longer applica-
ble. Then when can we apply dynamic programming to a non-optimization
problem?

Cormen et al. (1990) develop a more general criteria of closed semir-
ing where ⊕ is idempotent and infinite sums are well-defined and present a
more sophisticated algorithm that can be proved to work for all closed semir-
ings. This definition is still not general enough since many non-optimization
semirings including the Inside semiring are not even idempotent. Mohri
(2002) solves this problem by a slightly different definition of closedness
which does not assume idempotence. His generic single-source algorithm
subsumes many classical algorithms like Dijkstra, Bellman-Ford (Bellman,
1958), and Viterbi as specific instances.

It remains an open problem how to extend the closedness definition to
the case of weight functions in hypergraphs.
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6.2 k-best Extensions

The straightforward extension from 1-best to k-best is to simply replace the
old semiring (A,⊕,⊗, 0, 1) by its k-best version (Ak,⊕k,⊗k, 0k

, 1k) where
each element is now a vector of length k, with the ith component represent
the ith-best value. Since ⊕ is a comparison, we can define ⊕k to be the
top-k elements of the 2k elements from the two vectors, and ⊗k the top-k
elements of the k2 elements from the cross-product of two vectors:

a⊕k b = ⊕′
k({ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k})

a⊗k b = ⊕′
k{ai ⊗ bj | 1 ≤ i, j ≤ k}

where ⊕′
k returns the ordered list of the top-k elements in a set. A similar

construction is obvious for the weight functions in hypergraphs.
Now we can re-use the 1-best Viterbi Algorithm to solve the k-best

problem in a generic way, as is done in (Mohri, 2002). However, some more
sophisticated techniques that breaks the modularity of semirings results in
much faster k-best algorithms. For example, the Recursive Enumeration Al-
gorithm (REA) (Jiménez and Marzal, 1999) uses a lazy computation method
on top of the Viterbi algorithm to efficiently compute the ith-best solution
based on the 1st, 2nd, ..., (i − 1)th solutions. A simple k-best Dijkstra
algorithm is described in (Mohri and Riley, 2002).

For the hypergraph case, the REA algorithm has been adapted for k-best
derivations (Jiménez and Marzal, 2000; Huang and Chiang, 2005). Applica-
tions of this algorithm include k-best parsing (McDonald et al., 2005; Mohri
and Roark, 2006) and machine translation (Chiang, 2007). It is also imple-
mented as part of Dyna (Eisner et al., 2005), a generic langauge for dynamic
programming. The k-best extension of the Knuth Algorithm is studied by
Huang (2005). A separate problem, k-shortest hyperpaths, has been studied
by Nielsen et al. (2005).

Eppstein (2001) compiles an annotated bibliography for k-shortest-path
and other related k-best problems.

7 Conclusion

This report surveys two frameworks for formalizing dynamic programming
and presents two important classes of DP algorithms under these frame-
works. We focused on 1-best optimization problems but also discussed other
scenarios like non-optimization problems and k-best solutions. We believe
that a better understanding of the theoretical foundations of DP is benefitial
for NLP researchers.
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