
Coling 2008: Companion volume – Posters and Demonstrations, pages 51–54
Manchester, August 2008

Scaling up Analogical Learning

Philippe Langlais
Universit́e de Montŕeal / Dept. I.R.O.
C.P. 6128, Qúebec, H3C3J7, Canada
felipe@iro.umontreal.ca

François Yvon
Univ. Paris Sud 11 & LIMSI-CNRS

F-91401 Orsay, France
yvon@limsi.fr

Abstract

Recent years have witnessed a growing in-
terest in analogical learning for NLP ap-
plications. If the principle of analogical
learning is quite simple, it does involve
complex steps that seriously limit its ap-
plicability, the most computationally de-
manding one being the identification of
analogies in the input space. In this study,
we investigate different strategies for ef-
ficiently solving this problem and study
their scalability.

1 Introduction

Analogical learning (Pirrelli and Yvon, 1999) be-
longs to the family of lazy learning techniques
(Aha, 1997). It allows to map forms belong-
ing to an input spaceI into forms of anoutput
spaceO, thanks to a set of known observations,
L = {(i, o) : i ∈ I, o ∈ O}. I(u) andO(u)
respectively denote the projection of an observa-
tion u into the input space and output space: if
u ≡ (i, o), thenI(u) ≡ i andO(u) ≡ o. For an
incomplete observationu ≡ (i, ?), the inference of
O(u) involves the following steps:

1. building EI(u) the set of analogical triplets
of I(u), that isEI(u) = {(s, v, w) ∈ L3 :
[I(s) : I(v) = I(w) : I(u)]}

2. building the set of solutions to the target equa-
tions formed by projecting source triplets:
EO(u) = {t ∈ O : [O(s) : O(v) = O(w) :
t] ,∀(s, v, w) ∈ EI(u)}

3. selecting candidates amongEO(u).

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

where[x : y = z : t] denotes ananalogical pro-
portion, that is a relation between these four items,
meaning that “x is to y asz is to t”, in a sense to
be specified. See (Lepage, 1998) or (Stroppa and
Yvon, 2005) for possible interpretations.

Analogical learning has recently regained some
interest in the NLP community. Lepage and De-
noual (2005) proposed a machine translation sys-
tem entirely based on the concept offormal anal-
ogy, that is, analogy on forms. Stroppa and
Yvon (2005) applied analogical learning to sev-
eral morphological tasks also involving analogies
on words. Langlais and Patry (2007) applied it to
the task of translating unknown words in several
European languages, an idea investigated as well
by Denoual (2007) for a Japanese to English trans-
lation task.

If the principle of analogical learning is quite
simple, it does involve complex steps that seriously
limit its applicability. As a matter of fact, we are
only aware of studies where analogical learning is
applied to restricted tasks, either because they ar-
bitrarily concentrate on words (Stroppa and Yvon,
2005; Langlais and Patry, 2007; Denoual, 2007)
or because they focus on limited data (Lepage and
Denoual, 2005; Denoual, 2007).

In this study, we investigate different strategies
for making step 1 of analogical learning tractable.
We propose a data-structure and algorithms that
allow to control the balance between speed and
recall. For very high-dimensional input spaces
(hundreds of thousand of elements), we propose
a heuristic which reduces computation time with a
limited impact on recall.

2 Identifying input analogical relations

2.1 Existing approaches

A brute-force approach for identifying the input
triplets that define an analogy with the incomplete
observationu = (t , ?) consists in enumerating

51

triplets in the input space and checking for an ana-
logical relation with the unknown formt :

EI(u) = { 〈x, y, z〉 : 〈x, y, z〉 ∈ I3,
[x : y = z : t] }

This amounts to checko(|I|3) analogies, which is
manageable for toy problems only.

Langlais and Patry (2007) deal with an input
space in the order of tens of thousand forms (the
typical size of a vocabulary) using following strat-
egy for EI(u). It consists in solving analogical
equations[y : x = t : ?] for some pairs〈x, y〉
belonging to the neighborhood1 of I(u), denoted
N (t). Those solutions that belong to the input
space are thez-forms retained.

EI(u) = { 〈x, y, z〉 : 〈x, y〉 ∈ N (t)2,
[y : x = t : z] }

This strategy (hereafter namedLP) directly fol-
lows from a symmetrical property of an analogy
([x : y = z : t] ⇔ [y : x = t : z]), and reduces
the search procedure to the resolution of a number
of analogical equations which is quadratic with the
number of pairs〈x, y〉 sampled.

2.2 Exhaustive tree-count search

The strategy we propose here exploits a prop-
erty on character counts that an analogical relation
must fulfill (Lepage, 1998):

[x : y = z : t] ⇒ |x|c + |t |c = |y|c + |z|c ∀c ∈ A
whereA is the alphabet on which the forms are
built, and |x|c stands for the number of occur-
rences of characterc in x. In the sequel, we de-
noteC(〈x, t〉) = {〈y, z〉 ∈ I2 : |x|c + |t |c =
|y|c + |z|c ∀c ∈ A} the set of pairs that satisfy
the count property with respect to〈x, t〉 .

The strategy we propose consists in first select-
ing anx-form in the input space. This enforces a
set of necessary constraints on the counts of char-
acters that any two formsy andz must satisfy for
[x : y = z : t] to be true. By considering all forms
x in turn,2 we collect a set of candidate triplets for
t . A verification of those that define witht a anal-
ogy must then be carried out. Formally, we built:

EI(u) = { 〈x, y, z〉 : x ∈ I,
〈y, z〉 ∈ C(〈x, t〉),
[x : y = z : t] }

1The authors proposed to samplex andy among the clos-
est forms in terms of edit-distance toI(u) .

2Anagram forms do not have to be considered separately.

This strategy will only work if (i) the number
of quadruplets to check is much smaller than the
number of triplets we can form in the input space
(which happens to be the case in practice), and if
(ii) we can efficiently identify the pairs〈y, z〉 that
satisfy a set of constraints on character counts. To
this end, we propose to organize the input space
thanks to a data structure called atree-count(see
Section 3), which is easy to built and supports effi-
cient runtime retrieval.

2.3 Sampled tree-count search

As shown in (Langlais and Yvon, 2008), using
tree-count to constraint the search allows toex-
haustivelysolve step 1 for reasonably large input
spaces. Computing analogies in very large input
space (hundreds of thousand forms) however re-
mains computationally demanding, as the retrieval
algorithm must be carried outo(I) times. In this
case, we propose to sample thex-forms:

EI(u) = { 〈x, y, z〉 : x ∈ N (t),
〈y, z〉 ∈ C(〈x, t〉),
[x : y = t : z] }

There is unfortunately no obvious way of se-
lecting a good subsetN (t) of input forms, as
analogies does not necessarily entail the similar-
ity of “diagonal” forms, as illustrated by the anal-
ogy [une pomme verte : des pommes vertes =
une voiture rouge : des voitures rouges], which
involves singular/plural commutations in French
nominal groups. In this situation, randomly se-
lecting a subset of the input space seems to be a
reasonable strategy (hereafterRAND).

For some analogies however, the first and
last forms share some sequences of charac-
ters. This is obvious in[dream : dreamer =
dreams : dreamers], but can be more subtle, as
in our first example[This guy drinks too much :
This boat sinks = These guys drank too much :
These boats sank] where the diagonal terms
share some n-grams reminiscent of the number
(This/These) and tense (drink /drank) commuta-
tions involved.

We thus propose a sampling strategy (hereafter
EV) which selectsx-forms that share witht some
sequences of characters. To this end, input forms
are represented in a vector space whose dimen-
sions are frequent charactern-grams, retaining the
k -most frequentn-grams, wheren ∈ [min ; max].
A form is thus encoded as a binary vector of

52

dimensionk , in which ith coefficient indicates
whether the form contains an occurrence of theith
n-gram.3 At runtime, we select theN forms that
are the closest to a given formt , according to a
distance4. Figure 1 illustrates some forms selected
by this process. For comparison purposes, we also
tested a sampling strategy which consists in select-
ing thex-forms that are closest to the source form
t , according to the usual edit-distance (hereafter
ED).

establish a report – order to establish a – has
tabled this report – is about the report – basis
of the report – other problem is that – problem
that arises – problem is that those

Figure 1: The 8 nearest neighbors ofto establish
a report in a vector space computed from an input
space of over a million phrases.

3 The tree-count data-structure

A tree-count is a tree which encodes a set of forms.
Nodes are labeled by an alphabetical symbol and
contain a (possibly empty) set of pointers to forms.
A vertice from a noden labeledc to a nodem is
weighted by the count ofc in the forms encoded
by m, that is, the set of forms that can be reached
from this node and its descendants. Thus, a path
in a tree-count represents a set of constraints on
the counts of the characters encountered along this
path. This structure allows for instance the identi-
fication of anagrams in a set of forms: it suffices to
search the tree-count for nodes that contain more
than one pointer to forms in the vocabulary.

An example of a tree-count is provided in Fig-
ure 2 for a small set of forms. The node double
circled in this figure is labeled by the characterd
and encodes the 6 input forms that contain 1 oc-
currence of ’o ’ and 1 occurrence of ’s ’. One form
is os, referenced by the pointerm, the other five
forms are found by descending the tree from this
node; among whichgods anddogs, two anagrams
encoded by the leave which set of pointers isb, k.

3.1 Construction time

The construction of a tree-count from a set of
forms only needs an arbitrary order on the char-
acters of the alphabet. This is the order in which
we will encounter them while descending the

3Typical values aremin=max=3 andk=20 000 .
4We used the Manhattan distance in this study.

ηu

λp

a,l

βa

n

θg

b,k

c

κ k

µ y

f,i

g,h

ε s

ι l

e,j

dm

d
ζ m

δ tγ s

α o

0

1 2
1

1 1

1

1

1
0

0 1

1

1

21

1
20

1

Figure 2: The tree-count encoding the set:
{soup(a), gods(b), odds(c), sos(d), solo(e),
tokyo(f), moot(g), moto(h), kyoto(i), oslo(j),
dogs(k), opus(l), os(m), a(n)}. The character la-
beling a node is represented in a box; the counts of
each character labels each vertice. Roman letters
in nodes represent pointers to input forms; greek
symbols label internal nodes.

tree. The lack of space prevents us to report the
construction algorithm (see (Langlais and Yvon,
2008)), but it is important to note that it only in-
volves a simple traversal of the input forms and is
therefore time efficient. Also worth mentioning,
our construction procedure only stores necessary
nodes. This means that when enumerating char-
acters in order, we only store zero-count nodes as
required. As a result, the depth of a tree-count is
typically much lower than the size of the alphabet.

3.2 Retrieval time

The retrieval ofC(〈x, t〉) can be performed by
traversing the tree-count while maintaining afron-
tier, that is, the set of pairs of nodes in the tree-
count that satisfy the constraints on counts encoun-
tered so far. Imagine, for instance, that we are
looking for the pairs of forms that contain exactly
3 occurrences of characterso, 2 of characterss
and 1 characterl , and no other character. Start-
ing from the root node labelled byo, there is only
one pair of nodes that satisfy the constraint ono:
the frontier is therefore{(γ, δ)}. The constraint
on s leads to the frontier{(d, ι)} (since the count
of t must be null). Finally, descending this node
yields the frontier{(m, (e, j))}, which identifies
the pairs(os, solo) and (os, oslo) to be the only

53

ones satisfying the initial set of constraints.
The complexity of retrieval is mainly dominated

by the size of the frontier built while traversing a
tree-count. In practice, because of the sparsity of
the space we manipulate in NLP applications, re-
trieval is also a fast operation.

4 Checking for an analogy

Stroppa (2005) provides a dynamic programming
algorithm for checking that a quadruplet is an anal-
ogy, whose complexity iso(|x| × |y| × |z| × |t |).5
Depending on the application, a large number of
calls to this algorithm must be performed during
step 1 of analogical learning. The following prop-
erty helps cutting down the computations:

[x : y = z : t] ⇒
(x[1] ∈ {y[1], z[1]}) ∨ (t [1] ∈ {y[1], z[1]})
(x[$] ∈ {y[$], z[$]}) ∨ (t [$] ∈ {y[$], z[$]})

where•[$] denotes the last character of•. A simple
and efficient trick consists in calling the analogy
checking routine only for those triplets that pass
this test.

5 Discussion

We investigated the aforementioned search strate-
gies by translating 1 000 new words (resp. phrases)
thanks to a translation table populated with pairs of
words (resp. pairs of phrases). We studied the scal-
ability of each strategy by varying the size of the
transfer table (small, medium, large). Precise fig-
ures can be found in (Langlais and Yvon, 2008);
we summarize here the main outcomes.

On theword-task, we compared the tree-count
search strategy to theLP one. On the largest word-
set (84 000 input words), the former (exact) strat-
egy could find an average of 34 597 input analogies
for 964 test-words at an average response time of
1.2 seconds per word, while with the latter strat-
egy, an average of 56 analogies could be identified
for 890 test-words, in an average of 6.3 seconds.

On thesequence-task, where input spaces are
much larger, we compared the various sampling
strategies presented in Section 2.3. We setN, the
number of sampled input forms, to103 for all
sampling strategies. On the medium size dataset
(293 000 input phrases), bothED and RAND per-
form badly compared toEV. With the two for-
mer filtering strategies, we could at best identify

5In this study, we used the definition of a formal analogy
provided by Stroppa and Yvon (2005). Lepage (1998) pro-
poses a less general definition, which is faster to check.

17 input analogies for 38% of the test-phrases (at
an average response time of 9 seconds), while with
EV, an average 46 analogies could be identified for
75% of the test-phrases (in 3 seconds on average).

Finally, we checked that the approach we pro-
posed scales to very large datasets (several mil-
lions of input phrases), which to the best of our
knowledge is simply out of the reach of existing
approaches. This opens up interesting prospects
for analogical learning, such as enriching a phrase-
based table of the kind being used in statistical ma-
chine translation.

Acknowledgment

This study has been accomplished while the first
author was visiting T́elécom ParisTech.

References

Aha, David A. 1997. Editorial.Artificial Intelligence
Review, 11(1-5):7–10. Special Issue on Lazy Learn-
ing.

Denoual, Etienne. 2007. Analogical translation of
unknown words in a statistical machine translation
framework. In Machine Translation Summit, XI,
Copenhagen, Sept. 10-14.

Langlais, Philippe and Alexandre Patry. 2007. Trans-
lating unknown words by analogical learning. In
EMNLP-CoNLL, pages 877–886, Prague, Czech Re-
public, June.

Langlais, Philippe and François Yvon. 2008. Scaling
up analogies. Technical report, Télécom ParisTech,
France.

Lepage, Yves and́Etienne Denoual. 2005. Purest
ever example-based machine translation: Detailed
presentation and assessment.Machine Translation,
29:251–282.

Lepage, Yves. 1998. Solving analogies on words: an
algorithm. InCOLING-ACL, pages 728–734, Mon-
treal, Canada.

Pirrelli, Vitto and François Yvon. 1999. The hidden
dimension: a paradigmatic view of data-driven NLP.
Journal of Experimental & Theroretical Artifical In-
telligence, 11:391–408.

Stroppa, Nicolas and François Yvon. 2005. An ana-
logical learner for morphological analysis. In9th
Conf. on Computational Natural Language Learning
(CoNLL), pages 120–127, Ann Arbor, MI, June.

Stroppa, Nicolas. 2005.Définitions et caract́erisations
de mod̀elesà base d’analogies pour l’apprentissage
automatique des langues naturelles. Ph.D. thesis,
ENST, Paris, France, Nov.

54

