
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 617–624
Manchester, August 2008

Investigating Statistical Techniques for Sentence-Level Event
Classification

Martina Naughton
School of Computer Science,
University College Dublin,
Belfield, Dublin 4, Ireland

Nicola Stokes
NICTA Victoria Laboratory,

University of Melbourne,
Victoria, Australia

Joe Carthy
School of Computer Science
University College Dublin
Belfield, Dublin 4, Ireland

Abstract

The ability to correctly classify sentences
that describe events is an important task for
many natural language applications such
as Question Answering (QA) and Sum-
marisation. In this paper, we treat event
detection as a sentence level text classifi-
cation problem. We compare the perfor-
mance of two approaches to this task: a
Support Vector Machine (SVM) classifier
and a Language Modeling (LM) approach.
We also investigate a rule based method
that uses hand crafted lists of terms derived
from WordNet. These terms are strongly
associated with a given event type, and can
be used to identify sentences describing in-
stances of that type. We use two datasets in
our experiments, and evaluate each tech-
nique on six distinct event types. Our re-
sults indicate that the SVM consistently
outperform the LM technique for this task.
More interestingly, we discover that the
manual rule based classification system is
a very powerful baseline that outperforms
the SVM on three of the six event types.

1 Introduction

Event detection is a core Natural Language Pro-
cessing (NLP) task that focuses on the automatic
identification and classification of various event
types in text. This task has applications in au-
tomatic Text Summararisation and Question An-
swering (QA). For example, event recognition is
a core task in QA since the majority of web user

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

questions have been found to relate to events and
situations in the world (Saurı́ et al., 2005). For
complex questions such as How many people were
killed in Baghdad in March?, QA systems often
rely on event detection systems to identify all rel-
evant events in a set of documents before formu-
lating an answer. More recently, much research in
summarisation has focused on the use of phrasal
concepts such as events to represent sentences in
extractive summarisation systems. Specifically,
(Filatova and Hatzivassiloglou, 2004) use event-
based features to represent sentences and shows
that this approach improves the quality of the final
summaries when compared with a baseline bag-of-
words approach.

In this paper, we investigate the use of statistical
methods for identifying the sentences in a docu-
ment that describe one or more instances of a spec-
ified event type. We treat this task as a text classi-
fication problem where each sentence in a given
document is either classified as containing an in-
stance of the target event or not. We view this
task as a filtering step in a larger pipeline NLP ar-
chitecture (e.g. a QA system) which helps speed
up subsequent processing by removing irrelevant,
non-event sentences.

Two event detection approaches are explored in
this paper. More specifically, we train a Support
Vector Machine (SVM) using a variety of term,
lexical and additional event based features to en-
code each train/test instance. We also adopt a prob-
abilistic language modeling approach that captures
how text within sentences that describe event in-
stances is likely to be generated. We estimate a
series of models using three well-known smooth-
ing approaches, including LaPlace, Jelinek-Mercer
and Absolute Discounting Smoothing. Their over-
all behavior on classification performance is ex-

617

amined. One advantage of language modeling for
text classification is that instead of explicitly pre-
computing features and selecting a subset based
on arbitrary decisions (as is often the case with
standard classification learning approaches such as
an SVM), the language modeling approach simply
considers all terms occurring in the text as candi-
date features, and implicitly considers the contri-
bution of every feature in the final model. Thus,
language modeling approaches avoids a potentially
error-prone feature selection process.

Event classification at a sentence level is a chal-
lenging task. For example, if the target event is
“Die”, we want our system to extract sentences
like “5 people were killed in the explosion.” and
“A young boy and his mother were found dead on
Wednesday evening.”. However, it also needs to
detect complex cases like: “An ambulance rushed
the soldier to hospital, but efforts to save him
failed.” and reject instances like “Fragmentation
mines have a killing range of 100 feet.”. It seems
intuitive that a naı̈ve system that selects only sen-
tences that contain terms with senses connected
with death like “kill”, “die” or “execute” as pos-
itive instances would catch many positive cases.
However, there are instances where this approach
would fail. In this work we evaluate the effective-
ness of such a shallow NLP approach, by devel-
oping a manual rule based system that finds sen-
tences connected to a target event type using a
hand crafted list of terms created with senses found
in WordNet.

We use two datasets in our experiments. The
first is the ACE 2005 Multilingual Training Corpus
(Walker et al., 2006) that was annotated for 33 dif-
ferent event types. However, within the ACE data
the number of instances referring to each event
type is somewhat limited. For this reason, we se-
lect the six types with the highest frequency in the
data. These include “Die”, “Attack”, “Transport”,
“Meet”, “Injure” and “Charge-indict” types. The
second corpus is a collection of articles from the
Iraq Body Count (IBC) database1 annotated for
the “Die” event. This dataset arose from a larger
humanitarian project that focuses on the collec-
tion of fatalities statistics from unstructured news
data. We use this additional corpus to augment the
amount of data used for training and testing the
“Die” event type, and to investigate the use of extra
training data on overall classification performance.

1http://www.iraqbodycount.org/

Overall, our results demonstrate that the trained
SVM proves to be more effective than the LM
based approach for this task across all event types.
We also show that our baseline system, a hand
crafted rule-based system, performs surprisingly
well. The remainder of this paper is organised as
follows. Section 2 covers related work. We con-
tinue with details of the datasets used in the exper-
iments in Section 3. Section 4 describes our event
classification approaches while Section 5 presents
their results. We conclude with a discussion of ex-
perimental observations and opportunities for fu-
ture work in Section 6.

2 Background and Related Work

Event detection, in the context of news stories, has
been an active area of research for the best part of
ten years. For example, the NIST sponsored Topic
Detection and Tracking (TDT) project, which be-
gan in 1998 investigated the development of tech-
nologies that could detect novel events in seg-
mented or unsegmented news streams, and track
the progression of these event over time (Allan et
al., 1998). Although this project ended in 2004,
event detection is still investigated by more re-
cently established projects such as the Automatic
Content Extraction (ACE) program, and in do-
mains outside of news text such as Biomedical
Text Processing (Murff et al., 2003).

The aim of the TDT First Story Detection (FSD)
or New Event Detection (NED) task was to flag
documents that discuss breaking news stories as
they arrive on a news stream. Dragon Systems
adopted a LM approach to this task (Allan et al.,
1998; Yamron et al., 2002) building discriminator
topic models from the collection and representing
documents using unigram term frequencies. Then
they used a single-pass clustering algorithm to de-
termine the documents that describe new events.
The overall goal of the TDT Event Tracking task
was to track the development of specific events
over time. However, these TDT tasks were some-
what restrictive in the sense that detection is car-
ried out at document level. Our work differs from
TDT research since event detection is performed
at a sentence level where the amount of data to
build discriminate models for recognising event in-
stances is far more limited.

The goal of the ACE Event Detection and
Recognition task is to identify all event instances
(as well as the attributes and participants of each

618

Table 1: ACE Corpus Statistics
Die Injure Attack Meet Transport Charge-Indict

Number of Documents 154 50 235 84 181 43
Avg. document length 29.19 29.74 29.62 31.41 32.78 14.81
Avg. event instances per document 2.31 1.64 3.55 1.55 2.55 1.72
Avg. event instances per sentence 1.13 1.11 1.12 1.02 1.08 1.03

Table 2: IBC Corpus Statistics
IBC Corpus

Number of Documents 332
Number of Sources 77
Avg. document length 25.98
Avg. events per document 4.6
Avg. events per sentence 1.14

instance) of a pre-specified set of event types. An
ACE event is defined as a specific occurence in-
volving zero or more ACE entities2, values and
time expressions. Two spans of text are used to
identify each event: the event trigger and the event
mention. An event trigger or anchor is the word
that most clearly expresses its occurrence. In many
cases, this will be the main verb in the event men-
tion. It can also appear as a noun (“The meeting
lasted 5 hours.”) or an adjective (“the dead men
. . . ”). The event mention is the sentence that de-
scribes the event. Even though the task of iden-
tifying event mentions is not directly evaluated in
ACE, systems still need to identify them so that
the various attributes and participants within the
mention can be extracted. The algorithms evalu-
ated in this paper can also be applied to the detec-
tion of event mentions that contain the ACE events.
Overall five sites participated in this task in 2005.
The most similar work to that describe in this pa-
per is detailed in (Ahn, 2006), who treats the task
of finding all event triggers (used to identify each
event) as a word classification task where the task
is to classify every term in a document with a la-
bel defined by 34 classes. Features used included
various lexical, WordNet, dependency and related
entity features.

3 Corpora

The ACE 2005 Multilingual Corpus was annotated
for Entities, Relations and Events. It consists of
articles originating from six difference sources in-
cluding Newswire (20%), Broadcast News (20%),
Broadcast Conversation (15%), Weblog (15%),

2An ACE Entity is an entity identified using guidelines
outlined by ACE Entity Detection and Recognition task.

Usenet Newsgroups (15%) and Conversational
Telephone Speech (15%). Statistics on the docu-
ments in this collection are presented in Table 1.
We evaluate our methods on the following event
types which have a high number of instances in the
collection: “Die”, “Attack”, “Transport”, “Meet”,
“Injure” and “Charge-indict”.

The data we use from the IBC database con-
sists of Newswire articles gathered from 77 differ-
ent news sources. Statistics describing this dataset
are contained in Table 2. To obtain a gold standard
set of annotations for articles in the IBC corpus,
we asked ten volunteers to mark up all the “Die”
event instances. To maintain consistency across
both datasets, events in the IBC corpus were iden-
tified in a manner that conforms to the ACE an-
notation guidelines. In order to approximate the
level of inter-annotation agreement achieved for
the IBC corpus, two annotators were asked to an-
notate a disjoint set of 250 documents. Inter-rater
agreements were calculated using the kappa statis-
tic that was first proposed by (Cohen, 1960). Using
the annotated data, a kappa score of 0.67 was ob-
tained, indicating that while the task is difficult for
humans the data is still useful for our training and
test purposes. Discrepancies were adjudicated and
resolved by an independent volunteer.

4 Event Detection as Classification

We treat the task of determining whether a given
sentence describes an instance of the target event
as a binary text classification task where it is as-
signed one of the following classes:

• On-Event Sentence: a sentence that contains
one or more instances of the target event type.

• Off-Event Sentence: a sentence that does not
contain any instances of the target event type.

4.1 A Machine Learning Approach
In an attempt to develop a gold standard ap-
proach for this task we use Support Vector Ma-
chines (SVM) to automatically classify each in-
stance as either an “on-event” or “off-event” sen-
tence. SVMs have been shown to be robust in

619

classification tasks involving text where the dimen-
sionality is high (Joachims, 1998). Each sentence
forms a train/test instance for our classifier and is
encoded using the following set of features.
Terms: Stemmed terms with a frequency in the
training data greater than 2 were used as a term
feature. Stopwords were not used as term features.
Noun Chunks: All noun chunks (e.g. “ameri-
can soldier”) with a frequency greater than 2 in the
training data were also used as a feature.
Lexical Information: The presence or absence of
each part of speech (POS) tag and chunk tag was
used as a feature. We use the Maximum Entropy
POS tagger and Chunker that are available with the
C&C Toolkit (Curran et al., 2007). The POS Tag-
ger uses the standard set of grammatical categories
from the Penn Treebank and the chunker recog-
nises the standard set of grammatical chunk tags:
NP, VP, PP, ADJP, ADVP and so on.
Additional Features: We added the following
additional features to the feature vector: sen-
tence length, sentence position, presence/absence
of negative terms (e.g. no, not, didn’t, don’t, isn’t,
hasn’t), presence/absence of a modal terms (e.g.
may, might, shall, should, must, will), a looka-
head feature that indicates whether the next sen-
tence is an event sentence, a look-back feature in-
dicating whether or not the previous sentence is
an event sentence and the presence/absence of a
time-stamp. Time-stamps were identified using in-
house software developed by the Language Tech-
nology Group at the University of Melbourne3.

In the past, feature selection methods have been
found to have a positive effect on classification ac-
curacy of text classification tasks. To examine the
effects of such techniques on this task, we use In-
formation Gain (IG) to reduce the number of fea-
tures used by the classifier by a factor of 2.

4.2 Language Modeling Approaches
The Language modeling approach presented here
is based on Bayesian decision theory. Consider the
situation where we wish to classify a sentence sk

into a category c ∈ C = {C1 C|C|}. One
approach is to choose the category that has the
largest posterior probability given the training text:

c∗ = arg max
c∈C

{Pr(c|sk)} (1)

Specifically, we construct a language model
LM(ci) for each class ci. All models built

3http://www.cs.mu.oz.au/research/lt/

are unigram models that use a maximum like-
lihood estimator to approximate term probabili-
ties. According to this model (built from sentences
{s1 . . . sm} belonging to class ci in the training
data) we can calculate the probability that term w
was generated from class ci as:

P (w|LM(ci)) =
tf(w, ci)
|ci| (2)

where tf(w, ci) is the term frequency of term w in
ci (that is, {s1 . . . sm}) and |ci| is the total number
of terms in class ci. We make the usual assump-
tions that word co-occurences are independent. As
a result, the probability of a sentence is the product
of the probabilities of its terms. We calculate the
probability that a given test sentence sk belongs to
class ci as follows:

P (sk|LM(ci)) =
∏

w∈sk

P (w|LM(ci)) (3)

However, this model will generally under-
estimate the probability of any unseen word in the
sentence, that is terms that do not appear in the
training data used to build the language model. To
combat this, smoothing techniques are used to as-
sign a non-zero probability to the unseen words,
which improves the accuracy of the overall term
probability estimation. Many smoothing meth-
ods have been proposed over the years, and in
general, they work by discounting the probabili-
ties of seen terms and assign this extra probability
mass to unseen words. In IR, it has been found
that the choice of smoothing method significantly
affects retrieval performance (Zhai and Lafferty,
2001; Kraaij and Spitters, 2003). For this reason,
we experiment with the Laplace, Jelinek-Mercer
and Absolute Discounting Smoothing methods,
and compare their effects on classification perfor-
mance in Section 5.

For this classification task, we normalise all
numeric references, locations, person names and
organisations to “DIGIT”, “LOC”, “PER”, and
“ORG” respectively. This helps to reduce the di-
mensionality of our models, and improve their
classification accuracy, particular in cases where
unseen instances of these entities occur in the test
data.

4.3 Baseline Measures
We compare the performance our ML and LM ap-
proaches to the following plausible baseline sys-
tems: Random assigns each instance (sentence)

620

randomly to one of the possible classes. While
Majority Class Baseline assigns each instance to
the class that is most frequent in the training data.
In our case, this is the “off-event” class.

According to the ACE annotation guidelines4

event instances are identified in the text by find-
ing event triggers that explicitly mark the occur-
rence of the event. As a result, each event instance
tagged in our datasets have a corresponding trigger
that the annotators used to identify it. For exam-
ple, terms like “killing”, “death” and “murder” are
common triggers used to identify the “Die” event
type. Therefore, we expect that a system that se-
lects sentences containing one or more candidate
trigger terms as positive “on-event” sentences for
a given event type, would be a suitable baseline
for this task. To investigate this further we add the
following baseline system:
Manual Trigger-Based Classification: For each
event type, we use WordNet to manually create
a list of terms that are synonyms or hyponyms
(is a type of) of the event type. For example, in
the case of the “Meet” and “Die” events common
trigger terms include {“encounter”, “visit”, “re-
unite”} and {“die”, “suicide”, “assassination”} re-
spectively. We classify each sentence for a given
event type as follows: if a sentence contains one
or more terms in the trigger list for that event type
then it is assigned to the “on-event” class for that
type. Otherwise it is assigned to the “off-event”
class. Table 3 contains the number of trigger terms
used for each event5.

Table 3: Trigger term lists for the six event types used in the
experiments.

Event Type Number of triggers terms
Die 29
Transport 14
Meet 12
Injure 10
Charge-Indict 8
Attack 8

5 Evaluation Methodology & Results

A standard measure for classification performance
is classification accuracy. However for corpora
where the class distribution is skewed (as is the
case in our datasets where approx. 90% of the in-

4Available at http://projects.ldc.upenn.
edu/ace/annotation/

5The lists of the trigger terms used for each event type are
available at http://inismor.ucd.ie/˜martina/

stances belong to the “off-event” class) this mea-
sure can be misleading. So instead we have used
precision, recall and F1 to evaluate each technique.
If a is the number of sentences correctly classi-
fied by a system to class i, b is the total num-
ber of sentences classified to class i by a system,
and c is the total number of human-annotated sen-
tences in class i. Then the precision and recall
for class i can be defined as follows: Preci = a

b ,
Recalli = a

c . Finally, F1 (the harmonic mean be-
tween precision and recall) for class i is defined as
F1i = 2×Preci×Recalli

Preci+Recalli
. In the results presented in

this section we present the precision recall and F1
for each class as well as the overall accuracy score.

Results: In our experiments we use a relatively
efficient implementation of an SVM called the Se-
quential Minimal Optimisation (SMO) algorithm
(Platt, 1999) which is provided by the Weka frame-
work (Witten and Frank, 2000). Results presented
in this section are divided into two parts. In the
first part, all results were obtained using the IBC
dataset where the target event type is “Die”. We
provide a more detailed comparison of the perfor-
mance of each algorithm using this type as more
data was available for it. In the second section,
we examine the effectiveness of each approach for
all six event types (listed in Section 3) using the
ACE data. All reported scores were generated us-
ing 50:50 randomly selected train/test splits aver-
aged over 5 runs.

As part of the first set of results Table 4
shows the precision, recall and F1 achieved for
the “on-event” and “off-event” classes as well
as the overall classification accuracy obtained by
each approach. Two variations of the SVM were
built. The first version (denoted in the table
by SVM(All Features IG)) was built using all
terms, nouns chunks, lexical and additional fea-
tures to encode each train/test instance where the
features were reduced using IG. In the second
version, the same features were used but no fea-
ture reduction was carried out (denoted in the
table by SVM(All Features)). LangModel(JM),
LangModel(DS) and LangModel(LP) represent
language models smoothed using Jelinek-Mercer,
Discount Smoothing and LaPlace techniques re-
spectively. Overall these results suggest that the
SVM using IG for feature selection is the most ef-
fective method for correctly classifying both “on-
event” and “off-event” sentences. Specifically, it
achieves 90.23% and 96.70% F1 score for these

621

Table 4: % Precision, Recall and F1 for both classes as well as the classification accuracy achieved by all algorithms using a
50:50 train/test split where the target event type is “Die”.

Algorithm On-Event Class Off-Event Class AccuracyPrecision Recall F1 Precision Recall F1
SVM(All Features IG) 90.61 89.87 90.23 96.15 97.26 96.70 94.60

SVM(All Features) 89.63 88.52 89.06 96.08 96.49 96.28 94.45
Trigger-Based Classification 83.10 93.34 87.92 97.25 93.24 95.20 93.09

LangModel(DS) 63.11 82.4 71.46 93.13 83.16 87.86 82.98
LangModel(JM) 59.46 86.01 70.31 94.22 79.53 86.25 81.22
LangModel(LP) 59.22 79.56 67.89 91.89 80.88 86.03 80.54

Majority Class (“off-event”) 0.0 0.0 0.0 74.50 100.00 85.38 74.17
Random 26.57 51.73 35.10 75.58 50.0 60.18 50.34

Table 5: % F1 for both classes achieved by the SVM using
different combinations of features.

Features F1(On-Event) F1(Off-Event)
terms 89.52 96.43
terms + nc 89.58 96.31
terms + nc + lex 89.62 96.44
All Features 90.23 96.70

classes respectively. When IG is not used we see a
marginal decrease of approx. 1% in these scores.
The fact that both versions of the SVM obtain
approx. 90% F1 scores for the “on-event” class
is extremely encouraging when you consider the
large skew in class distribution that is present here
(i.e., the majority of training instances belong to
the“off-event” class).

To examine the effects of the various features on
overall performance, we evaluated the SVM using
different feature combinations. These results are
shown in Table 5 where “terms”, “nc”, and “lex”
denote the terms, noun chunks and lexical feature
sets respectively. “All Features” includes these fea-
tures and the “Additional Features” described in
Section 4.1. One obvious conclusion from this ta-
ble is that terms alone prove to be the most valu-
able features for this task. Only a little increase in
performance is achieved by adding the other fea-
ture sets.

The graphs in Figure 1 shows the % F1 of both
classes achieved by all methods using varying lev-
els of training data. From these graphs we see
that the SVM obtains over 80% F1 for the “on-
event” class and over 90% F1 for the “off-event”
class when only 10% of the training data is used.
These results increase gradually when the amount
of training data increases. For levels of train-
ing data greater than 30% the SVM consistency
achieves higher F1 scores for both classes than all
other methods for this task.

In general, the language modeling based tech-

niques are not as effective as the SVM approach
for this classification task. However, from Ta-
ble 4 we see that all language models achieve ap-
prox. 70% F1 for the “on-event” class and ap-
prox. 86% F1 for the “off-event” class when only
50% of the IBC data is used to build the mod-
els. This is encouraging since they require little
or no feature engineering and less time to train.
Models smoothed with the Laplace method tend to
have the least impact out of the three model vari-
ations. This is due to the fact that this method
assigns the same probability to all unseen terms.
Thus, a term like “professor” that may only occur
once in the dataset has the same likelihood of oc-
curring in an “on-event” sentence as a term like
“kill” that has a very high frequency in the dataset.
In contrast, the Jelinek-Mercer and Absolute Dis-
counting smoothing methods estimate the proba-
bility of unseen terms according to a background
model built using the entire collection. Therefore,
the probabilities assigned to unseen words is pro-
portional to their global distribution in the entire
corpus. Consequently, the probabilities assigned
to unseen terms tend to be more reliable approxi-
mations of true term probabilities.

Overall, the trigger-based classification base-
line approach performs very well achieving simi-
lar scores to the SVM. This suggests that select-
ing sentences with terms associated with the target
event is an effective way of solving this problem.
That said, it still makes mistakes that the SVM and
language models have the ability to correct. For
example, many sentences that contain terms like
“suicide” and “killing” as part of a noun phase (e.g.
“suicide driver” or “killing range”) do not report a
death. The trigger classification baseline will clas-
sify these as an “on-event” instances whereas the
SVM correctly places them in the “off-event” cat-
egory. More interesting are the cases missed by
the trigger classification baseline and SVM that are

622

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90

F1
(O

n-
E

ve
nt

)

Percentage Training

SVM
Trigger-Based Classificaton

LangModel(LP)
LangModel(JM)
LangModel(DS)

Random

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90

F1
(O

ff
-E

ve
nt

)

Percentage Training

SVM
Trigger-Based Classificaton

LangModel(LP)
LangModel(JM)
LangModel(DS)

Random

Figure 1: % F1 for the on-event (top) and off-event (bottom)
classes for all methods using varying levels of training data
where the target event is “Die”.

corrected by the language models. These include
sentences like “Three bodies were found yesterday
in central Baghdad.” and “If the Americans have
killed them, then why dont they show the tape.”. In
fact, it turns out that over 50% of the errors pro-
duced by the SVM and manual trigger-based ap-
proach when the target event is “Die” are classified
correctly by the language models. Although this is
encouraging, the overall error rate of the language
modeling approach is too high to rely on it alone.
However, this evidence suggests that it may prove
useful in the future to somehow combine the pre-
dictions of all three approaches in a way that im-
proves overall classification performance.

We now move on to the second part of the exper-
iments. Here, we present the results for six event
types (as listed in Section 3) using only data from
ACE corpus. Figure 2 shows the % F1 of the “on-
event” class achieved by all approaches for each
event type. We have omitted the % F1 scores for
the “off-event” class as they do not vary signifi-
cantly across event types and are similar to those
reported in Table 4. The SVM, language mod-
els, trigger-based and random baselines achieve

0

20

40

60

80

100

Die Charge-Indict Meet Attack Injure Transport

F1
(O

n-
E

ve
nt

)

ACE Event Types

SVM
Trigger-Based Classificaton

LangModel(LP)
LangModel(JM)
LangModel(DS)

Random

Figure 2: % F1 of the “on-event” class achieved by
all methods for the six ACE event types.

approx. 96%, 95%, 86% and 60% “off-event” F1
scores respectively across all event types.

On the other hand, Figure 2 demonstrates that
the performance of each approach for the “on-
event” class varies considerably across the event
types. For instance, the trigger-based classification
baseline out-performs all other approaches achiev-
ing over 60% F1 score for the “Meet”, “Die” and
“Charge-Indict” types. However for events like
“Attack” and “Transport” this baselines F1 score
drops to approx. 20% thus achieving scores that
are only marginally above the random baseline. In-
terestingly, we notice that although it performs bet-
ter for events like “Meet” and “Charge-Indict”, the
number of trigger terms used to detect these types
is much smaller than the number used for the “At-
tack” and “Transport” types (see Table 3). This in-
dicates that event types where this simple baseline
performs well are those where the vocabulary used
to describe them is small. Event types where it
achieves poor results are broader types like “Trans-
port” and ”Attack” that cover a larger spectrum of
event instances from heterogeneous contexts and
situations. However, we see from Figure 2 that the
SVM performs well on such event types and as a
result out-performs the trigger-based selection pro-
cess by approximately a factor of 4 for the “Attack”
event and a factor of 2 for the “Transport” event.

When we compare both datasets we find that the
ACE data is made up of newswire articles, Broad-
cast news, broadcast conversational texts, weblogs,
usenet newsgroup texts and conversational tele-
phone speech that has been transcribed, whereas
the IBC corpus consists mainly of newswire arti-
cles reporting fatalities during the Iraqi War. As

623

a result, event instances in the ACE data describ-
ing the “Die” event type are likely to report fatali-
ties not only from Iraq but also from more diverse
contexts and situations. To investigate how perfor-
mance differs for the “Die” event type across these
datasets, we compare the IBC results in Table 4
with the ACE results in Figure 2. We find that the
F1 scores of the “off-event” class are not affected
much. However, the F1 scores for the “on-event”
class for the SVM and trigger-based baseline are
reduced by margins of approx. 12% and 5% re-
spectively. We also notice that the performance of
the unigram language models are reduced signifi-
cantly by a factor of 2 indicating that they struggle
to approximate accurate term probabilities when
the vocabulary is more diverse and the amount of
training data is limited.

6 Discussion

Sentence level event classification is an important
first step for many NLP applications such as QA
and summarisation systems. For each event type
used in our experiments we treated this as a binary
classification task and compared a variety of ap-
proaches for identifying sentences that described
instances of that type. The results showed that the
trained SVM was more effective than the language
modeling approaches across all event types. An-
other interesting contribution of this paper is that
the trigger-based classification baseline performed
better than expected. Specifically, for three of the
six event types it out-performed the trained SVM.
This suggests that although there are cases where
such terms appear in sentences that do not describe
instances of a given type (for instance, “The boy
was nearly killed.”), these cases are in the minor-
ity. However, the success of this baseline is some-
what dependent on the nature of the event in ques-
tion. For broader events like “Transport” and “At-
tack” where the trigger terms can be harder to pre-
dict, it performs quiet poorly. Therefore, as part
of future work, we hope to investigate ways of au-
tomating the creation of these term lists for a spec-
ified event type as this proved to be an effective
approach to this task.

Acknowledgements. This research was sup-
ported by the Irish Research Council for Science,
Engineering & Technology (IRCSET) and IBM
under grant RS/2004/IBM/1. The authors also
wishes to thank the members of the Language
Technology Research Group at the University of

Melbourne and NICTA for their helpful discus-
sions regarding this research.

References
Ahn, David. 2006. The stages of event extraction. In Pro-

ceedings of the ACL Workshop on Annotating and Reason-
ing about Time and Events, pages 1–8, Sydney, Australia,
July.

Allan, James, Jaime Carbonell, George Doddington, Jonathon
Yamron, and Yiming Yang. 1998. Topic detection and
tracking pilot study. final report.

Cohen, Jacob. 1960. A coeficient of agreement for nomi-
nal scales. Educational and Psychological Measurement,
20(1):37–46.

Curran, James, Stephen Clark, and Johan Bos. 2007. Lin-
guistically motivated large-scale nlp with c & c and boxer.
In Proceedings of the ACL 2007 Demonstrations Session
(ACL-07 demo), pages 29–32.

Filatova, Elena and Vasileios Hatzivassiloglou. 2004. Event-
based extractive summarization. In In Proceedings of ACL
Workshop on Summarization, pages 104 – 111.

Joachims, Thorsten. 1998. Text categorization with support
vector machines: learning with many relevant features. In
Nédellec, Claire and Céline Rouveirol, editors, Proceed-
ings of the 10th ECML, pages 137–142, Chemnitz, DE.
Springer Verlag, Heidelberg, DE.

Kraaij, Wessel and Martijn Spitters. 2003. Language models
for topic tracking. In Croft, Bruce and John Lafferty, edi-
tors, Language Models for Information Retrieval. Kluwer
Academic Publishers.

Murff, Harvey, Vimla Patel, George Hripcsak, and David
Bates. 2003. Detecting adverse events for patient safety
research: a review of current methodologies. Journal of
Biomedical Informatics, 36(1/2):131–143.

Platt, John. 1999. Fast training of support vector machines
using sequential minimal optimization. Advances in kernel
methods: support vector learning, pages 185–208.

Saurı́, Roser, Robert Knippen, Marc Verhagen, and James
Pustejovsky. 2005. Evita: a robust event recognizer for
qa systems. In HLT, pages 700–707.

Walker, Christopher., Stephanie. Strassel, Julie Medero, and
Linguistic Data Consortium. 2006. ACE 2005 Multilin-
gual Training Corpus. Linguistic Data Consortium, Uni-
versity of Pennsylvania.

Witten, Ian and Eibe Frank. 2000. Data mining: practical
machine learning tools and techniques with Java imple-
mentations. Morgan Kaufmann Publishers Inc.

Yamron, JP, L. Gillick, P. van Mulbregt, and S. Knecht. 2002.
Statistical models of topical content. The Kluwer Interna-
tional Series on Information Retrieval, pages 115–134.

Zhai, Chengxiang and John Lafferty. 2001. A study of
smoothing methods for language models applied to ad hoc
information retrieval. In Research and Development in In-
formation Retrieval, pages 334–342.

624

