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Abstract

We propose an approach to natural lan-
guage inference based on a model of nat-
ural logic, which identifies valid infer-
ences by their lexical and syntactic fea-
tures, without full semantic interpretation.
We greatly extend past work in natural
logic, which has focused solely on seman-
tic containment and monotonicity, to in-
corporate both semantic exclusion and im-
plicativity. Our system decomposes an in-
ference problem into a sequence of atomic
edits linking premise to hypothesis; pre-
dicts a lexical entailment relation for each
edit using a statistical classifier; propagates
these relations upward through a syntax
tree according to semantic properties of in-
termediate nodes; and composes the result-
ing entailment relations across the edit se-
quence. We evaluate our system on the
FraCaS test suite, and achieve a 27% re-
duction in error from previous work. We
also show that hybridizing an existing RTE
system with our natural logic system yields
significant gains on the RTE3 test suite.

1 Introduction

A necessary (if not sufficient) condition for true
natural language understanding is a mastery of
open-domain natural language inference (NLI):
the task of determining whether a natural-language
hypothesis can be inferred from a given premise.
Indeed, NLI can enable more immediate applica-
tions, such as semantic search and question an-
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swering (Harabagiu and Hickl, 2006). In recent
years a spectrum of approaches to robust, open-
domain NLI have been explored within the con-
text of the Recognizing Textual Entailment chal-
lenge (Dagan et al., 2005). Up to now, the most
successful approaches have used fairly shallow
semantic representations, relying on measures of
lexical or semantic overlap (Jijkoun and de Ri-
jke, 2005), pattern-based relation extraction (Ro-
mano et al., 2006), or approximate matching of
predicate-argument structure (Hickl et al., 2006).
Such methods, while robust and often effective,
are at best partial solutions, unable to explain even
simple forms of logical inference. For example,
most shallow approaches would fail to license the
introduction of large in the following example:

(1) Every firm saw costs grow more than expected,
even after adjusting for inflation.
Every large firm saw costs grow.

At the other extreme, some researchers have ap-
proached NLI as logical deduction, building on
work in theoretical semantics to translate sentences
into first-order logic (FOL), and then applying
a theorem prover or model builder (Akhmatova,
2005; Fowler et al., 2005). Regrettably, such ap-
proaches tend to founder on the myriad complexi-
ties of full semantic interpretation, including tense,
aspect, causality, intensionality, modality, vague-
ness, idioms, indexicals, ellipsis, and many other
issues. (What is the right FOL representation of
(1), for example?) FOL-based systems that have
attained high precision (Bos and Markert, 2006)
have done so at the cost of very poor recall.

This work explores a middle way, by develop-
ing a computational model of what Lakoff (1970)
called natural logic, which characterizes valid pat-
terns of inference in terms of syntactic forms re-
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sembling natural language as much as possible.1

For example, natural logic might sanction (1) by
observing that: in ordinary (upward monotone)
contexts, deleting modifiers preserves truth; in
downward monotone contexts, inserting modifiers
preserves truth; and every is downward monotone
in its restrictor NP. A natural logic system can thus
achieve the expressivity and precision needed to
handle a great variety of simple logical inferences,
while sidestepping the difficulties of full semantic
interpretation.

2 A theory of natural logic

The natural logic approach originated in traditional
logic (e.g., Aristotle’s syllogisms), and was re-
vived in a formal form by van Benthem (1986) and
Sánchez Valencia (1991), who proposed a natural
logic based on categorial grammar to handle infer-
ences involving containment relations and upward
and downward monotonicity, such as (1). Their
monotonicity calculus explains inferences involv-
ing even nested inversions of monotonicity, but be-
cause it lacks any representation of exclusion (as
opposed to containment), it cannot explain simple
inferences such as (38) and (205) in table 2, below.

Another model which arguably follows the nat-
ural logic tradition (though not presented as such)
was developed by Nairn et al. (2006) to explain in-
versions and nestings of implicative (and factive)
predicates, as in Ed did not forget to force Dave to
leave |= Dave left. Their implication projection al-
gorithm bears some resemblance to the monotonic-
ity calculus, but does not incorporate containment
relations or explain interactions between implica-
tives and monotonicity, and thus fails to license
John refused to dance |= John didn’t tango.

We propose a new model of natural logic which
generalizes the monotonicity calculus to cover in-
ferences involving exclusion, and (partly) unifies
it with Nairn et al.’s model of implicatives. We
(1) augment the set of entailment relations used
in monotonicity calculus to include representations
of exclusion; (2) generalize the concept of mono-
tonicity to one of projectivity, which describes how
the entailments of a compound expression depend
on the entailments of its parts; and (3) describe a
weak proof procedure based on composing entail-
ment relations across chains of atomic edits.

1Natural logic should not be confused with natural deduc-
tion, a proof system for first-order logic.

Entailment relations. We employ an inventory
of seven mutually exclusive basic entailment rela-
tions, defined by analogy with set relations: equiv-
alence (couch = sofa); forward entailment (crow
@ bird) and its converse (European A French);
negation, or exhaustive exclusion (human ˆ non-
human); alternation, or non-exhaustive exclusion
(cat | dog); cover, or non-exclusive exhaustion (an-
imal ` nonhuman); and independence (hungry #
hippo), which covers all other cases. As in the
monotonicity calculus, we define these relations
for expressions of every semantic type: sentences,
common and proper nouns, transitive and intran-
sitive verbs, adjectives, and so on. For example,
among generalized quantifiers, we find that all =
every, every @ some, someˆno, no | every, at least
four ` at most six, and most # ten or more.2

Projectivity. In order to explain the entailments
of a compound expression as a function of the
entailments of its parts, we categorize semantic
functions according to their projectivity class, a
concept which generalizes both Sánchez Valen-
cia’s monotonicity classes (upward, downward,
and non-monotone) and the nine implication sig-
natures of Nairn et al. The projectivity class of
a function f describes how the entailment rela-
tion between f(x) and f(y) depends on the en-
tailment relation between x and y. Consider sim-
ple negation (not). Like most functions, it projects
= and # without change (not happy = not glad
and isn’t swimming # isn’t hungry). As a down-
ward monotone function, it swaps @ and A (didn’t
kiss A didn’t touch). But we can also establish
that it projects ˆ without change (not human ˆ not
nonhuman) and swaps | and ` (not French ` not
German, not more than 4 | not less than 6). By
contrast, an implicative like refuse, though it also
swaps @ and A (refuse to tango A refuse to dance),
projects ˆ as | (refuse to stay | refuse to go) and
projects both | and ` as # (refuse to tango #
refuse to waltz).

Projectivity thus allows us to determine the en-
tailments of a compound expression recursively,
by propagating entailments upward through a se-
mantic composition tree according to the projec-
tivity class of each node on the path to the root. For
example, the semantics of Nobody can enter with-

2Some of these assertions assume existential import, i.e.,
that the predicates to which the quantifiers are applied have
non-empty denotations. This assumption, standard in tradi-
tional logic, seems justifiable in the context of informal natu-
ral language inference (Böttner, 1988).
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out a shirt might be represented by the tree (no-
body (can ((without (a shirt)) enter))). Since shirt
@ clothes, and since without is downward mono-
tone, we have without shirt A without clothes.
Since nobody is also downward monotone, it fol-
lows that Nobody can enter without a shirt @ No-
body can enter without clothes.

Inference. Let x′ = e(x) be the result of ap-
plying an atomic edit e (the insertion, deletion, or
substitution of a subexpression) to a compound ex-
pression x. The entailment relation between x and
x′ is found by projecting the entailment relation
generated by e upward through x’s semantic com-
position tree. Substitutions generate relations ac-
cording to the meanings of the substituends. Most
deletions generate the @ relation (red socks @
socks). (Insertions are symmetric: they typically
generate A.) However, some items have special
behavior. For example, deleting (or inserting) not
generatesˆ (not hungryˆhungry).

If two expressions are connected by a chain of
atomic edits, we can determine the entailment re-
lation between them by composing (as in Tarskian
relation algebra) the entailment relations generated
by each edit. The result may be a basic entailment
relation, or may be a union of such relations, with
larger unions conveying less information about en-
tailment. This possibility, coupled with the need
to find a chain of atomic edits which preserves rel-
evant entailment relations, limits the power of the
proof procedure described.

Implicatives. The account of implicatives and
factives given by Nairn et al. hinges on a classi-
fication of implicative and factive operators into
nine implication signatures, according to their
implications—positive (+), negative (–), or null
(◦)—in both positive and negative contexts. Thus
refuse has implication signature –/◦, because it car-
ries a negative implication in a positive context (re-
fused to dance implies didn’t dance), and no impli-
cation in a negative context (didn’t refuse to dance
implies neither danced nor didn’t dance).

Most of the phenomena observed by Nairn et al.
can be explained within our framework by spec-
ifying, for each signature, the relation generated
when an operator of that signature is deleted from a
compound expression. For example, deleting sig-
nature –/◦ generates | (Jim refused to dance | Jim
danced); under negation, this is projected as `
(Jim didn’t refuse to dance ` Jim didn’t dance).

By contrast, deleting signature ◦/– generates A
(Jim attempted to dance A Jim danced); under
negation, this is projected as @ (Jim didn’t attempt
to dance @ Jim didn’t dance).3

We can also account for monotonicity ef-
fects of implicative and factive operators
by describing the projectivity properties of
each implication signature: signatures +/–,
+/◦, and ◦/– are upward monotone (attempt
to tango @ attempt to dance); signatures
–/+, –/◦, and ◦/+ are downward monotone (refuse
to dance @ refuse to tango); and signatures +/+,
–/–, and ◦/◦ are non-monotone (think dancing is
fun # think tangoing is fun).

3 The NatLog system

Our implementation of natural logic, the NatLog
system, uses a multi-stage architecture like those
of (Marsi and Krahmer, 2005; MacCartney et al.,
2006), comprising (1) linguistic analysis, (2) align-
ment, (3) lexical entailment classification, (4) en-
tailment projection, and (5) entailment composi-
tion. We’ll use the following inference as a run-
ning example:

(2) Jimmy Dean refused to move without blue jeans.
James Dean didn’t dance without pants.

The example is admittedly contrived, but it com-
pactly exhibits containment, exclusion, and im-
plicativity. How the NatLog system handles this
example is depicted in table 1.

Linguistic analysis. Relative to other NLI sys-
tems, the NatLog system does comparatively lit-
tle linguistic pre-processing. We rely on the Stan-
ford parser (Klein and Manning, 2003), a Penn
Treebank-trained statistical parser, for tokeniza-
tion, lemmatization, part-of-speech tagging, and
phrase-structure parsing.

By far the most important analysis performed
at this stage, however, is projectivity marking, in
which we compute the effective projectivity for
each token span in each input sentence. In the
premise of (2), for example, we want to determine
that the effective projectivity is upward monotone

3Factives, however, do not fit as neatly as implicatives:
For example, deleting signature +/+ generates @ (Jim forgot
that dancing is fun @ dancing is fun); yet under negation, this
is projected not as A, but as | (Jim didn’t forget that danc-
ing is fun | dancing isn’t fun). The problem arises because the
implication carried by a factive is not an entailment, but a pre-
supposition. As is well known, the projection behavior of pre-
suppositions differs from that of entailments (van der Sandt,
1992). In the current work, we set presuppositions aside.
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premise Jimmy Dean refused to move without blue jeans
hypothesis James Dean did n’t dance without pants
edit index 1 2 3 4 5 6 7 8
edit type SUB DEL INS INS SUB MAT DEL SUB

lex features str sim=0.67 implic:+/◦ cat:aux cat:neg hyponym hypernym
lex entrel = | = ˆ A = @ @

projectivity ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑
atomic entrel = | = ˆ @ = @ @
composition = | | @ @ @ @ @

Table 1: An example of the operation of the NatLog model.

unary operator: without
pattern: IN < /ˆ[Ww]ithout$/
argument 1: projectivity ↓ on dominating PP

pattern: __ > PP=proj

binary operator: most
pattern: JJS < /ˆ[Mm]ost$/ !> QP
argument 1: projectivity 6↑↓ on dominating NP

pattern: __ >+(NP) (NP=proj !> NP)
argument 2: projectivity ↑ on dominating S

pattern: __ >> (S=proj !> S)

Figure 1: Some projectivity operator definitions.

for Jimmy Dean and refused to, downward mono-
tone for move and without, and upward monotone
for blue and jeans. Our choice of a Treebank-
trained parser (driven by the goal of broad cov-
erage) complicates this effort, because the nesting
of constituents in phrase-structure parses does not
always correspond to the structure of idealized se-
mantic composition trees. Our solution is imper-
fect but effective. We define a list of operator types
affecting projectivity (e.g., implicatives like refuse
to, prepositions like without), and for each type we
specify its arity and a Tregex tree pattern (Levy and
Andrew, 2006) which permits us to identify its oc-
currences in our Treebank parses. We also specify,
for each argument position of each type, both the
projectivity class and another Tregex pattern which
helps us to determine the sentence span over which
the operator’s effect is projected. (Figure 1 shows
some example definitions.) The marking process
computes these projections, performs projectivity
composition where needed, and marks each token
span with its final effective projectivity.

Alignment. Next, we establish an alignment be-
tween the premise P and hypothesis H , repre-
sented by a sequence of atomic edits over spans
of word tokens. This alignment representation
is symmetric and many-to-many, and is general
enough to include various other alignment repre-

sentations as special cases. We define four edit
types: deletion (DEL) of a span from P , insertion
(INS) of a span into H , substitution (SUB) of an H
span for a P span, and match (MAT) of an H span
to a P span. Each edit is parameterized by the to-
ken indices at which it operates, and edit indices
may “cross”, permitting representation of move-
ment. The first four lines of table 1 depict a possi-
ble alignment for our example problem.

An alignment decomposes an inference problem
into a sequence of atomic inference problems, one
for each atomic edit. Note that edits are ordered,
and that this ordering defines a path from P to H
through intermediate forms. (Edit order need not
correspond to sentence order, though it does in our
example.) The relative ordering of certain kinds
of edits (e.g., the insertion of not) may influence
the effective projectivity applicable for other edits;
consequently, the NatLog system can reorder edits
to maximize the benefit of the projectivity marking
performed during linguistic analysis.

This paper does not present new algorithms for
alignment; we focus instead on identifying en-
tailment relations between aligned sentence pairs.
The experiments described in sections 4 and 5 use
alignments from other sources.

Lexical entailment classification. Much of the
heavy lifting in the NatLog system is done by the
lexical entailment model, which uses a classifier
to predict an entailment relation for each atomic
edit based solely on features of the lexical items in-
volved, independent of context. (For example, this
model should assign the entailment relation A to
the edit SUB(move, dance), regardless of whether
the effective projectivity at the locus of the edit is
upward monotone, downward monotone, or some-
thing else.) In the case of a SUB edit, the features
include:
• WordNet-derived measures of synonymy,

hyponymy, and antonymy between sub-
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stituends;
• other features indicating semantic related-

ness: the WordNet-based Jiang-Conrath mea-
sure (Jiang and Conrath, 1997) and a feature
based on NomBank (Meyers et al., 2004);
• string similarity features based on Leven-

shtein string-edit distance between lemmas;
• lexical category features, indicating whether

the substituends are prepositions, possessives,
articles, auxiliaries, pronouns, proper nouns,
operator adjectives, punctuation, etc.;
• quantifier category features, which identify

classes of quantifiers with similar properties;
• a feature for unequal numeric expressions
For DEL edits, we use only the lexical cate-

gory features and a feature based on a custom-
built resource which maps implicatives and fac-
tives to their implication signatures. (As noted in
section 2, however, most DEL edits just have @ as
the target lexical entailment relation.) INS edits are
treated symmetrically.

The model uses a decision tree classifier trained
on 2,449 hand-annotated training examples (1,525
SUB edits and 924 DEL/INS edits). The decision
tree is minimally pruned, and contains about 180
leaves. When tested on the training data, the clas-
sifier achieves >99% accuracy, indicating that our
feature representation successfully captures nearly
all relevant distinctions between examples.

Lexical features and lexical entailment relations
for our example appear on lines 5 and 6 of table 1.

Entailment projection. The lexical entailment
relations generated by each atomic edit can now be
projected upward to determine the corresponding
atomic entailment relations, that is, the entailment
relations between successive intermediate forms
on the path from P to H , as defined by the align-
ment. Strictly speaking, the effective projectivity
for a particular edit should be computed based on
the intermediate form upon which the edit oper-
ates, since the projectivity properties of this form
can depend on preceding edits. However, the Nat-
Log system minimizes the need to compute projec-
tivity in intermediate forms by reordering the edits
in an alignment in such a way that effective projec-
tivity can, in most cases, simply be taken from the
projectivity marking of P and H performed during
the linguistic analysis stage.

The effective projectivity and resulting atomic
entailment relation for each edit in our running ex-
ample are depicted in lines 7 and 8 of table 1. For

all (non-MAT) edits but one, the effective projec-
tivity is upward monotone, so that the atomic en-
tailment relation is identical with the lexical en-
tailment relation. However, the SUB(move, dance)
edit occurs in a downward monotone context, so
that the lexical relation A is converted to @ at the
atomic level.

Entailment composition. Finally, the atomic
entailment relations predicted for each edit are
combined, via relation composition, to produce an
overall prediction for the inference problem. Re-
lation composition is deterministic, and for the
most part follows intuitive rules: @ composed with
@ yields @; A composed with A yields A; #
composed with any relation yields #; = com-
posed with any relation yields that relation, and
so on. Composition tends to “degenerate” towards
#, in the sense that the composition of a chain
of randomly-selected relations tends toward # as
the chain grows longer. This chaining of entail-
ments across edits can be compared to the method
presented in (Harmeling, 2007); however, that ap-
proach assigns to each edit merely a probability of
preserving truth, not an entailment relation.

The last line of table 1 shows the cumulative
composition of the atomic entailment relations in
the line above. Particular noteworthy is the fact
that | andˆcompose to yield @. (To illustrate: if A
excludes B (fish | human) and B is the negation of
C (human ˆ nonhuman), then A entails C (fish @
nonhuman).) The final entailment relation in this
line, @, is NatLog’s final (and correct) answer for
our example problem.

4 Evaluating on FraCaS problems

The FraCaS test suite (Cooper et al., 1996) con-
tains 346 NLI problems, divided into nine sections,
each focused on a specific category of semantic
phenomena (listed in table 3). Each problem con-
sists of one or more premise sentences, a question
sentence, and one of three answers: yes (the union
of @ and =), no (the union of | and )̂, or unknown
(the union of A, `, and #). Table 2 shows some
example problems.

To facilitate comparison with previous work, we
have evaluated our system using a version of the
FraCas data prepared by (MacCartney and Man-
ning, 2007), in which multiple-premise problems
(44% of the total) and problems lacking a hypoth-
esis or a well-defined answer (3% of the total) are
excluded; question sentences have been converted
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§ ID Premise Hypothesis Ans
1 38 No delegate finished the report. Some delegate finished the report on time. no
1 48 At most ten commissioners spend time at home. At most ten c...s spend a lot of time at home. yes
2 83 Either Smith, Jones or Anderson signed the contract. Jones signed the contract. unk
5 205 Dumbo is a large animal. Dumbo is a small animal. no
6 233 ITEL won more orders than APCOM. ITEL won some orders. yes
9 335 Smith believed that ITEL had won the contract in 1992. ITEL won the contract in 1992. unk

Table 2: Illustrative examples from the FraCaS test suite

System # P % R % Acc %
most common class 183 55.74 100.00 55.74
MacCartney07 183 68.89 60.78 59.56
NatLog 183 89.33 65.69 70.49

§ Section # P % R % Acc %
1 Quantifiers 44 95.24 100.00 97.73
2 Plurals 24 90.00 64.29 75.00
3 Anaphora 6 100.00 60.00 50.00
4 Ellipsis 25 100.00 5.26 24.00
5 Adjectives 15 71.43 83.33 80.00
6 Comparatives 16 88.89 88.89 81.25
7 Temporal 36 85.71 70.59 58.33
8 Verbs 8 80.00 66.67 62.50
9 Attitudes 9 100.00 83.33 88.89
1, 2, 5, 6, 9 108 90.38 85.45 87.04

Table 3: Performance on FraCaS problems (three-
way classification). The columns show the number
of problems, precision and recall for the yes class,
and accuracy. Results for NatLog are broken out
by section.

to declarative hypotheses; and alignments between
premise and hypothesis have been automatically
generated and manually corrected.

Results are shown in table 3. We achieve over-
all accuracy of 70.49%, representing a 27% error
reduction from (MacCartney and Manning, 2007).
In the section concerning quantifiers, which is both
the largest and the most amenable to natural logic,
all problems but one are answered correctly.4 We
also answer all but one problems correctly in the
(admittedly small) section on attitudes, which in-
volves implicatives and factives. Unsurprisingly,
performance is mediocre in four sections concern-
ing semantic phenomena (e.g., ellipsis) not rele-
vant to natural logic and not modeled by the sys-
tem. But in the other five sections (about 60%
of the problems), we achieve accuracy of 87.04%,
an error reduction of 61% from (MacCartney and

4In fact, the sole exception is disputable, since it hinges on
whether many refers to proportion (apparently, the view held
by the FraCaS authors) or absolute quantity.

guess
yes no unk total

yes 67 4 31 102
answer no 1 16 4 21

unk 7 7 46 60
total 75 27 81 183

Table 4: Confusions on FraCaS data (all sections)

Manning, 2007). What’s more, precision is high in
nearly every section: even outside its areas of ex-
pertise, the system rarely predicts entailment when
none exists.

Since the NatLog system was developed with
FraCaS problems in mind, these results do not con-
stitute a proper evaluation on unseen test data. On
the other hand, the system does no training on Fra-
CaS data, and has had no opportunity to learn its
biases. (Otherwise, accuracy on §4 could not fall
so far below the baseline.) The system not only an-
swers most problems correctly, but usually does so
for valid reasons, particular within its areas of ex-
pertise. All in all, the results fulfill our main goal
in testing on FraCaS: to demonstrate the represen-
tational and inferential adequacy of our model of
natural logic.

The confusion matrix shown in table 4 reveals
an interesting property of the NatLog system. The
commonest confusions are those where the answer
is yes but we guess unknown. This reflects both
the bias toward yes in the FraCaS data, and the
system’s tendency to predict unknown (entailment
relation #) when confused: given the composition
rules for entailment relations, the system can pre-
dict yes only if all atomic-level predictions are ei-
ther @ or =.

5 Evaluating on RTE problems

NLI problems from the PASCAL RTE Challenge
(Dagan et al., 2005) differ from FraCaS problems
in several important ways. (See table 5 for ex-
amples.) Instead of textbook examples of seman-
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ID Premise Hypothesis Answer
71 As leaders gather in Argentina ahead of this weekends

regional talks, Hugo Chávez, Venezuela’s populist pres-
ident is using an energy windfall to win friends and pro-
mote his vision of 21st-century socialism.

Hugo Chávez acts as Venezuela’s president. yes

788 Democrat members of the Ways and Means Committee,
where tax bills are written and advanced, do not have
strong small business voting records.

Democrat members had strong small business
voting records.

no

Table 5: Illustrative examples from the RTE3 development set

tic phenomena, RTE problems are more natural-
seeming, with premises collected “in the wild”
from newswire. The premises are much longer,
averaging 35 words (vs. 11 words for FraCaS).
Also, RTE aims at binary classification: the RTE
no combines the no and unk answers in FraCaS.

Due to the character of RTE problems, we do
not expect NatLog to be a good general-purpose
solution to solving all RTE problems. First, most
RTE problems depend on forms of inference, such
as paraphrase, temporal reasoning, or relation ex-
traction, which NatLog is not designed to address.
Second, in most RTE problems, the edit distance
between premise and hypothesis is relatively large.
More atomic edits means a greater chance that er-
rors made in lexical entailment classification or
projection will propagate, via entailment compo-
sition, to the system’s final output. Rather, in ap-
plying NatLog to RTE, we hope to make reliable
predictions on a subset of RTE problems, trading
recall for precision. If we succeed, then we may
be able to hybridize with a broad-coverage RTE
system to obtain better results than either system
individually—the same strategy that was adopted
by (Bos and Markert, 2006) for their FOL-based
system. For this purpose, we have chosen to use
the Stanford RTE system described in (de Marn-
effe et al., 2006). We also use the Stanford system
to generate alignments when evaluating NatLog on
RTE problems.

Table 6 shows the performance of NatLog
on RTE3 data. Relative to the Stanford sys-
tem, NatLog achieves high precision on its
yes predictions—above 70%—suggesting that hy-
bridizing may be effective. For comparison, the
FOL-based system reported in (Bos and Markert,
2006) attained a similarly high precision of 76%
on RTE2 problems, but was able to make a pos-
itive prediction in only about 4% of cases. Nat-
Log makes positive predictions far more often—in
about 25% of cases.

The Stanford system makes yes/no predictions

System Data % Yes P % R % Acc %
Stanford dev 50.25 68.66 66.99 67.25

test 50.00 61.75 60.24 60.50
NatLog dev 22.50 73.89 32.38 59.25

test 26.38 70.14 36.10 59.38
Hybrid, bal. dev 50.00 70.25 68.20 68.75

test 50.00 65.50 63.90 64.25
Hybrid, opt. dev 56.00 69.20 75.24 70.00

test 54.50 64.45 68.54 64.50

Table 6: Performance of various systems on RTE3
(two-way classification). The columns show the
data set used (800 problems each), the proportion
of yes predictions, precision and recall for the yes
class, and accuracy.

by thresholding a real-valued inference score. To
construct a hybrid system, we adjust the Stanford
inference scores by +∆ or −∆, depending on
whether or not NatLog predicts yes. We choose
∆ by optimizing development set accuracy, while
adjusting the threshold to generate balanced pre-
dictions (that is, equal numbers of yes and no pre-
dictions). As an additional experiment, we fix ∆
at this value and then adjust the threshold to op-
timize development set accuracy, resulting in an
excess of yes predictions. (Since this optimiza-
tion is based solely on development data, its use
on test data is fully legitimate.) Results for these
two cases are shown in table 6. The parameters
tuned on development data gave good results on
test data. The optimized hybrid system attained
an absolute accuracy gain of 4% over the Stanford
system, corresponding to an extra 32 problems an-
swered correctly. This result is statistically signifi-
cant (p < 0.05, McNemar’s test, 2-tailed).

The gains attributable to NatLog are exempli-
fied by problem 788 (table 5). NatLog sanctions
the deletion of a restrictive modifier and an appos-
itive from the premise, and recognizes that delet-
ing a negation generates a contradiction; thus it
correctly answers no. On the other hand, there
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are many RTE problems where NatLog’s precision
works against it. For example, NatLog answers no
to problem 71 because it cannot account for the
insertion of acts as in the hypothesis. Fortunately,
both the Stanford system and the hybrid system an-
swer this problem correctly.

6 Conclusion

We do not claim natural logic to be a universal
solution for NLI. Many important types of infer-
ence are not amenable to natural logic, includ-
ing paraphrase (Eve was let go |= Eve lost her
job), verb alternation (he drained the oil |= the
oil drained), relation extraction (Aho, a trader at
UBS, ... |= Aho works for UBS), common-sense
reasoning (the sink overflowed |= the floor got
wet), and so on.

Moreover, because natural logic has a weaker
proof theory than FOL, some inferences lie beyond
its deductive power. For example, it cannot explain
inferences involving De Morgan’s laws for quanti-
fiers, as in Not all birds fly = Some birds don’t fly.

However, by incorporating semantic contain-
ment, semantic exclusion, and implicativity, the
model of natural logic developed in this paper suc-
ceeds in explaining a great variety of everyday pat-
terns of inference. Ultimately, open-domain NLI
is likely to require combining disparate reasoners,
and a facility for natural logic inference is a good
candidate to be a component of such a solution.
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