
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 361–368
Manchester, August 2008

Japanese Dependency Parsing Using a Tournament Model

Masakazu IwatateandMasayuki AsaharaandYuji Matsumoto
Nara Institute of Science and Technology, Japan

8916-5, Takayama, Ikoma, Nara, Japan, 630-0192
{masakazu-i, masayu-a, matsu }@is.naist.jp

Abstract

In Japanese dependency parsing, Kudo’s
relative preference-based method (Kudo
and Matsumoto, 2005) outperforms both
deterministic and probabilistic CKY-based
parsing methods. In Kudo’s method, for
each dependent word (or chunk) a log-
linear model estimates relative preference
of all other candidate words (or chunks) for
being as its head. This cannot be consid-
ered in the deterministic parsing methods.
We propose an algorithm based on a tour-
nament model, in which the relative pref-
erences are directly modeled by one-on-
one games in a step-ladder tournament. In
an evaluation experiment withKyoto Text
Corpus Version 4.0, the proposed method
outperforms previous approaches, includ-
ing the relative preference-based method.

1 Introduction

The shared tasks of multi-lingual dependency pars-
ing took place at CoNLL-2006 (Buchholz and
Marsi, 2006) and CoNLL-2007 (Nivre et al.,
2007). Many language-independent parsing al-
gorithms were proposed there. The algorithms
need to adapt to various dependency structure
constraints according to target languages: projec-
tive vs. non-projective, head-initial vs. head-final,
and single-rooted vs. multi-rooted. Eisner (1996)
proposed a CKY-likeO(n3) algorithm. Yamada
and Matsumoto (2003) proposed a shift-reduce-
like O(n2) deterministic algorithm. Nivre et al.
(2003; 2004) also proposed a shift-reduce-like

c⃝2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

人だ。

hito-da.
(man .)

読まない

yomanai
(doesn’t read)

本を

hon-wo
(books)

(a) “He is a man who doesn’t read books.”

読まない。

yomanai.
(doesn’t read .)

本を

hon-wo
(books)

彼は

kare-wa
(He)

(b) “He doesn’t read books.”

彼は

kare-wa
(He)

Figure 1: Examples of Japanese sentences.

O(n) deterministic algorithm for projective lan-
guages. The model is enhanced for non-projective
languages by Nivre and Nilsson (2005). McDon-
ald et al. (2005) proposed a method based on
search of maximum spanning trees employing the
Chu-Liu-Edmonds algorithm (hereafter “CLE al-
gorithm ”) (Chu and Liu, 1965; Edmonds, 1967).
Most Japanese dependency parsers are based on
bunsetsu units, which are similar concept to En-
glish base phrases. The constraints in Japanese
dependency structure are stronger than those in
other languages. Japanese dependency structures
have the following constraints: head-final, single-
head, single-rooted, connected, acyclic and projec-
tive. Figure 1 shows examples of Japanese sen-
tences and their dependency structures. Each box
represents abunsetsu. A dependency relation is
represented by an edge from a dependent to its
head. Though sentence (a) is similar to sentence
(b), the syntactic structures of these two are differ-
ent, especially because “kare-wa” directly depends
on “yomanai” in (b) but not in (a).

In dependency parsing of Japanese, determin-
istic algorithms outperform probabilistic CKY
methods. Kudo and Matsumoto (2002) applied the

361

cascaded chunking algorithm (hereafter “CC al-
gorithm ”) to Japanese dependency parsing. Ya-
mada’s method (Yamada and Matsumoto, 2003)
employed a similar algorithm. Sassano (2004)
proposed a linear-order shift-reduce-like algorithm
(hereafter “SR algorithm”), which is similar to
Nivre’s algorithm (Nivre, 2003). These determin-
istic algorithms are biased to select nearer candi-
date heads since they examine the candidates se-
quentially, and once they find a plausible one they
never consider further candidates.

We experimented the CLE algorithm with
Japanese dependency parsing, and found that the
CLE algorithm is comparable to or in some cases
poorer than the deterministic algorithms in our ex-
periments. Actually, the CLE algorithm is not suit-
able for some of the constraints in Japanese depen-
dency structures: head-final and projective. First,
head-final means that dependency relation always
goes from left to right. Second, since the CLE al-
gorithm may produce non-projective dependency
trees, we need to conduct projectivity check in the
algorithm.

Kudo and Matsumoto (2005) proposed a rela-
tive preference-based method (hereafter “relative
preference method”). They defined the parsing
algorithm as series of selection steps of the most
likely head for eachbunsetsuout of all candidates.
The method has so far achieved the highest ac-
curacy in the experiments withKyoto Text Cor-
pus Version 3.0data 1, since other deterministic
methods do not consider relative preference among
candidate heads but solely consider whether the
focused-on pair ofbunsetsu’sis in a dependency
relation or not.

We propose a model that takes abunsetsuand
two candidate heads into consideration and se-
lects the better candidate head out of those two.
This step is repeated in a step ladder tournament
to get the best candidate head (hereafter we call
this model as a “tournament model”). The tour-
nament model was first introduced by Iida et al.
(2003) for coreference resolution. We applied this
model to selecting the most plausible candidate
head for eachbunsetsuexcept for the sentence final
one.

Section 2 describes the tournament model com-
paring with previous research. Section 3 describes

1Note: Sassano’s SR algorithm is the highest by exper-
iment with the smaller dataKyoto Text Corpus Version 2.0
Relative preference method and SR algorithm are not com-
pared directly with the same data.

人だ。

hito-da.
(man .)

本を

hon-wo
(books)

彼は

kare-wa
(He)

Focused-on
dependent

Its candidate heads

The most likely
candidate head

読まない

yomanai
(doesn’t read)

Figure 2: Example of a tournament.

how the tournament model is applied to Japanese
dependency parsing. Section 4 shows the results
of evaluation experiments. Section 5 shows our
current and future work, and Section 6 gives con-
clusions of this research.

2 Tournament Model

The tournament model was first introduced by
Iida et al. (2003) for coreference resolution. The
model chooses the most likely candidate in a step-
ladder tournament, that is a sequence of one-on-
one games between candidate referents for a given
anaphoric expression. In each game, the winner is
chosen by a binary classifier such as SVMs.

We applied the tournament model to Japanese
dependency parsing taking into consideration
Japanese constraints. The projective constraint is
easily met. When selecting candidate heads for the
focused-on dependent, we only consider those can-
didates that introduce no crossing dependency.

Figure 2 illustrates a tournament. The focused-
on dependentbunsetsuis “kare-wa”, and the can-
didate heads are the threebunsetsu’son the right-
hand side: “hon-wo”, “ yomanai” and “hito-da”.
The first game is “hon-wo” vs. “yomanai”. Then
the next game is the winner of the first game vs.
“hito-da”. The winner of the second game (i.e.,
“hito-da”) is chosen as the most likely candidate
of the dependent, “kare-wa”.

In the tournament model, the most likely head of
a given bunsetsu is determined by a series of one-
on-one games in a tournament. Below, we present
the advantages of the tournament model by com-
parison with the previous methods.

2.1 Scope of Feature Views

The CC algorithm and SR algorithm consider only
a pair ofbunsetsu’s– a dependent and its candidate

362

head – in the parsing action determination (here-
after “2-tuple model”). The same 2-tuple may or
may not have a dependency relation when they ap-
pear in different context. For example, both (a)
and (b) in Figure 1 include the twobunsetsu’s,
“kare-wa” and “yomanai”; in (b) they have a de-
pendency relation, but not in (a). The 2-tuple mod-
els and relative preference method cannot discrim-
inate between these two patterns without consider-
ing contextual features2. The tournament model
can be regarded as a “3-tuple model,” which con-
siders threebunsetsu’s– a dependent and two can-
didate heads. The discriminative performance of
the 3-tuple model is greater than the 2-tuple mod-
els, since it directly compares two candidate heads
and selects the one that is more plausible than the
other candidate. Consider Figure 1 again. In (a),
“kare-wa” does not depend on “yomanai” because
there is anotherbunsetsu“hito-da” which is a more
plausible head. 2-tuple models may use this infor-
mation as a contextual feature, but the effect is in-
direct. On the other hand, the tournament model
directly compares these candidates and always se-
lects the better one. The situation becomes crucial
when the true head appears outside of the context
window of the current candidate. 2-tuple models
have to select the head without consulting such in-
formation. The advantage of the tournament model
is its capability of deferring the decision by al-
ways keeping the current best candidate head. On
the other hand, a disadvantage of the tournament
model is its space and time complexity. The size of
features is larger since they come from threebun-
setsu’s. The size of training instances is also larger.

2.2 Relative Position in a Sentence

We name the two candidate heads in the 3-tuple
model as “the nearer candidate head” and “the far-
ther candidate head.” The dependent, the nearer
candidate head and the farther candidate head ap-
pear in this order in Japanese sentences. The order
defines the relative position of the contextual fea-
tures. The distance between the dependent and a
candidate head is another feature to represent the
relative position. In previous research, the distance
has been represented by feature buckets, such as 1,
2-5, or 6+. While for some dependents and their
heads whether the distance is 1 or not is impor-
tant, absolute distance is not so important since

2Contextual features are features neither in the dependent
nor in the candidate head(s).

Japanese is a free-order language. Relative posi-
tions are more informative since some dependents
tend to appear closer to other dependents, such
as objects that tend to appear closer to predicates
compared with other complements. The tourna-
ment model represents both the distance and rela-
tive position as features.

The deterministic algorithms are biased to select
nearer candidate heads. As most dependent and
head pairs appear within a close window, this ten-
dency does not cause many errors; deterministic
algorithms are weak at finding correct heads that
appear in a long distance as pointed out in Kudo
and Matsumoto (2005).

2.3 Relative Preferences

What the dependency parsers try to learn is rela-
tive preference ofbunsetsudependency, i.e., how
a dependent selects its head among others. The
relative preference method (Kudo and Matsumoto,
2005) learns the relative preferences among the
candidate heads by a discriminative framework.
The relative preferences are learned with the log-
linear model so as to give larger probability to
the correct dependent-head pair over any other
candidates. McDonald’s method (2005) with the
CLE algorithm learns the relative preferences by
a perceptron algorithm – MIRA (Crammer and
Singer, 2003), so that the correct dependent-head
link receives a higher score. The tournament
model learns which candidate is more likely to be
the head between two candidates in a one-on-one
game in a tournament. Therefore, all of those pars-
ing algorithms try to learn the way to give the high-
est preference to the correct dependent-head pair
among all possibilities though in different settings.

While the relative preference method and Mc-
Donald’s method consider all candidate heads in-
dependently in a discriminative model, the tour-
nament model evaluates which candidate is more
likely to be the head between the latest winner and
the new candidate. The latest winner has already
defeated all of the preceding candidates. If the
new candidate beats the latest winner, it becomes
the new winner, meaning that it is the most pre-
ferred candidate among others so far considered.
Through this way of comparison with the runner-
up candidates, the tournament model uses richer
information in learning relative preferences than
the models in which all candidates are indepen-
dently considered.

363

// N: # of bunsetsu’s in input sentence
// true_head[j]: bunsetsu j’s head at
// training data
// gen(j,i1,i2,LEFT): generate
// an example where bunsetsu j is
// dependent of i1
// gen(j,i1,i2,RIGHT): generate
// an example where bunsetsu j is
// dependent of i2

for j = 1 to N-1 do
h = true_head[j];
for i = j+1 to h-1 do

gen(j,i,h,RIGHT);
for i = h+1 to N do

gen(j,h,i,LEFT);
end-for;

Figure 3: Pseudo code of training example gener-
ation procedure.

3 Proposed Algorithm

3.1 Training Example Generation Algorithm

As shown in Figure 3, for each dependent, we gen-
erate pairs of the correct head and all other candi-
date heads. On the example generation, the proce-
dure does not take into account the projective con-
straint; allbunsetsu’son the right-hand side of the
focused-on dependent are candidate heads.

Table 1 shows all examples generated from two
sentences shown in Figure 1. 2-tuple models gen-
erate training examples formed as (dependent, can-
didate). So, from the sentences of Figure 1, it gen-
erates opposite classes to the pair (kare-wa, hito-
da). On the other hand, the examples generated by
the tournament model do not contain such incon-
sistency.

3.2 Parsing Algorithm

The tournament model has quite wide freeness in
the parsing steps. We introduce one of the tour-
nament algorithms, in which the dependents are
picked from right to left; and the games of the tour-
nament are performed from left to right. This pars-
ing algorithm takes into account the projective and
head-final constraints.

This algorithm is shown in Figure 4. The over-
all parsing process moves from right to left. On
selecting the head for a dependent all of thebun-
setsu’s to the right of the dependent have already
been decided. In Figure 4, the array “head ”
stores the parsed results and ensures that only non-
crossing candidate heads are taken into considera-
tion.

// N: # of bunsetsu’s in
// input sentence
// head[]: (analyzed-) head of bunsetsu
// classify(j,i1,i2): ask SVM
// which candidate (i1 or i2) is
// more likely for head of j.
// return LEFT if i1 wins.
// return RIGHT if i2 wins.

head[] = {2,3,...,N-1,N,EOS};
for j = N-1 downto 1 do

h = j+1;
i = head[h];
while i != EOS do

if classify(j,h,i)==RIGHT
then h = i;

i = head[i];
end-while;
head[j] = h;

end-for;

Figure 4: Pseudo code of parsing algorithm.

Note that the structure of the tournament has lit-
tle effect on the results (< 0.1) in our preliminary
experiments. We tried2 × 2 options: the depen-
dents are picked from right to left or from left to
right; and the games of the tournament are per-
formed from right to left or from left to right. We
choose the most natural combination for Japanese
dependency parsing, which is easy to implement.

4 Experiment

4.1 Settings

We implemented the tournament model, the CC al-
gorithm (Kudo and Matsumoto, 2002), SR algo-
rithm (Sassano, 2004) and CLE algorithm (Mc-
Donald et al., 2005) with SVM classifiers. We
evaluated dependency accuracy and sentence accu-
racy usingKyoto Text Corpus Version 4.0, which is
composed by newspaper articles. Dependency ac-
curacy is the percentage of correct dependencies
out of all dependency relations. Sentence accuracy
is the percentage of sentences in which all depen-
dencies are determined correctly. Dependency ac-
curacy is calculated excluding the rightmostbun-
setsuof each sentence.3 Sentences that consist of
onebunsetsuare not used in our experiments.

We use January 1st to 8th (7,587 sentences) for
the training data. We use January 9th (1,213 sen-
tences), 10th (1,479 sentences) and 15th (1,179
sentences) for the test data. We use TinySVM4

as a binary classifier. Cubic polynomial kernel is
3Most research such as Kudo’s (2005) uses this criteria.
4http://chasen.org/ ∼taku/software/

TinySVM/

364

Sentence Focused-on dependentLeft(Nearer) candidate Right(Farther) candidateClass label
(a) kare-wa hon-wo hito-da. RIGHT
(a) kare-wa yomanai hito-da. RIGHT
(a) hon-wo yomanai hito-da. LEFT
(b) kare-wa hon-wo yomanai. RIGHT

Table 1: Generated examples from sentences in Figure 1.

used for the kernel function. Cost of constraint vi-
olation is 1.0. These SVM settings are the same
as previous research (Kudo and Matsumoto, 2002;
Sassano, 2004). All experiments were performed
on Dual Core Xeon 3GHz x 2 Linux machines.

4.2 Features

Here we describe features used in our experiments.
Note that for the tournament model, features cor-
responding to candidates are created for each of
the nearer and farther candidates. We define the
information of a word as the following features:
lexical forms, coarse-grained POS tags, full POS
tags and inflected forms. We also define theinfor-
mationof abunsetsuas wordinformationfor each
of syuji andgokei. Syuji is the head content word
of the bunsetsu, defined as the rightmost content
word. Gokeiis the representative function word of
the bunsetsu, defined as the rightmost functional
word.

Existence of punctuations or brackets, whether
the bunsetsuis the first bunsetsu in the sentence,
and whether it is the final bunsetsu in the sentence
are also members ofinformationof abunsetsu.

Standard features are the following:Informa-
tion of the dependent and the candidate heads, dis-
tance between the dependent and the candidate
heads (1, 2-5 or 6+bunsetsu’s), all punctuations,
brackets and all particles between the dependent
and the candidate heads.

Additional features are the following: All case
particles in the dependent and the candidate heads,
informationof the leftmost word in the candidate
heads, and the lexical form of the neighboringbun-
setsuto the right of the candidate heads.

Case particle features are the following: All
case particles appearing in the candidates’ depen-
dent. These features are intended to take into con-
sideration the correlation between the case parti-
cles in the dependent of a head. When the head is
a verb, it has a similar effect of learning case frame
information.

Standard and additional features are introduced

by Sassano (2004). The case particle feature is
newly introduced in this paper. Features corre-
sponding to the already-determined dependency
relation are calleddynamicfeatures, and the other
contextual features are calledstaticfeatures. Stan-
dard and additional features are static features,
and case particle features are dynamic features.
Whether a dynamic feature is available for a pars-
ing algorithm depends on the parsing order of the
algorithm.

4.3 Parsing Accuracy

The parsing accuracies of our model and previ-
ous models are summarized in Table 2. Note that,
since the CLE algorithm is non-deterministic and
dynamic features are not available for this algo-
rithm, we use only astandard and additionalfea-
ture set instead of anall feature set. By McNemar
test (p < 0.01) on the dependency accuracy, the
tournament model significantly outperforms most
of other methods except for the SR algorithm on
January 10th data with all features (p = 0.083)
and the CC algorithm on January 10th data with
all features (p = 0.099). The difference between
the tournament models with all features and with
the standard feature only is significant except for
on January 9th data (p = 0.25).

The highest dependency accuracy reported for
January 9th ofKyoto Text Corpus Version 2.0is
89.56% by Sassano(2004)’s SR algorithm.5

Since we don’t have the outputs of Sassano’s ex-
periments, we cannot do a McNemar test between
the tournament model and Sassano’s results. Our
model outperforms Sassano’s results by the depen-
dency accuracy, but the difference between these
two is not significant by prop test (p = 0.097).

When we add the additional and case particle
features, the improvement of our model is less than
that of other algorithms. This is interpreted that
our model can consider richer contextual informa-

5This accuracy in Sassano (2004) is not forKyoto Text
Corpus Version 4.0but Version 2.0The feature set of Sas-
sano’s experiment is also different from our experiment.

365

Method Features Jan. 9th Jan.10th Jan. 15th
Tournament Standard feature only 89.89/49.63 89.63/48.34 89.40/49.70

All features 90.09/49.71 90.11/49.02 90.35/52.59
SR algorithm Standard feature only 88.18/45.92 88.80/44.76 88.03/47.24
(Sassano, 2004) All features 89.22/47.90 89.79/47.87 89.55/49.79
CC algorithm Standard feature only 88.17/45.92 88.80/44.76 88.00/47.24
(Kudo and Matsumoto, 2002)All features 89.22/47.90 89.80/47.94 89.53/49.79
CLE algorithm Standard feature only 88.64/45.34 88.16/43.14 88.07/45.21
(McDonald et al., 2005) Standard and Additional 89.21/46.83 89.05/45.03 88.90/48.43

Table 2: Dependency and sentence accuracy [%] using 7,587 sentences as training data.

tion within the algorithm itself than other models.
This result also shows that the accuracies of the

SR algorithm and CC algorithm are comparable
when using the same features. However, this does
not mean that their substantial power is compara-
ble because the parsing order limits the available
dynamic features.

4.4 Parsing Speed

Parsing time and the size of the training exam-
ples are shown in Table 3. All features were
used. The column “# Step” represents the number
of SVM classification steps in parsing all the test
data. Time complexity of the tournament model
and CC algorithm areO(n2) and that of the SR al-
gorithm isO(n). The tournament model needs 1.7
times more SVM classification steps and is 4 times
slower than the SR algorithm. The reason for this
difference in steps (x1.7) and time (x4) is the num-
ber of training examples and features in the SVM
classification.

4.5 Comparison to Relative Preference
Method

We performed another experiment under the same
settings as Kudo’s (2005) to compare the tourna-
ment model and relative preference method. The
corpus isKyoto Text Corpus Version 3.0since
Kudo and Matsumoto (2005) used this corpus.
Training data is articles from January 1st to 11th
and editorials from January to August (24,263 sen-
tences). Test data is articles from January 14th
to 17th and editorials from October to December
(9,287 sentences). We did not perform parameter
engineering by development data, although Kudo
and Matsumoto (2005) performed it. The criteria
for dependency accuracy are the same as the exper-
iments above. However, the criteria for sentence
accuracy in this section include all sentences, even

if the length is one as Kudo and Matsumoto (2005)
did.

The results are shown in Table 4. Note that
Kudo and Matsumoto (2005) and our feature sets
are different. Only the CC Algorithm is tested with
both feature sets. Our feature set looks better than
Kudo’s. By McNemar test (p < 0.01) on the de-
pendency accuracy, the tournament model outper-
forms both the SR and CC algorithms significantly.
Since we don’t have the outputs of relative prefer-
ence methods, we cannot do a McNemar test be-
tween the tournament model and the relative pref-
erence methods. By prop test (p < 0.01) on the
dependency accuracy, our model significantly out-
performs the relative preference method of Kudo
and Matsumoto (2005). Though our model outper-
forms the “combination” model of Kudo and Mat-
sumoto (2005) by the dependency accuracy, the
difference between these two is not significant by
prop test (p = 0.014). 6

Note that, a log-linear model is used in Kudo’s
experiment. The log-linear model has shorter
training time than SVM. The log-linear model re-
quires feature combination engineering by hand,
while SVMs automatically consider the feature
combination by the use of polynomial kernels.

5 Discussion and Future Work

In our error analysis, many errors are observed in
coordination structures. Sassano (2004) reported
that introduction of features of coordinatedbun-

6The “combination” model is the combination of the CC
algorithm and relative preference method. In Kudo’s exper-
iment, whereas the relative preference method outperforms
the CC algorithm for long-distance relations, it is reversed for
short-distance relations. They determined the optimal combi-
nation (the threshold set atbunsetsulength 3) using the devel-
opment set. In our experiment, the tournament model outper-
forms the CC and SR algorithms for relations of all lengths.
Therefore, the tournament model doesn’t need such ad hoc
combination.

366

Method # Step Time[s] # Example # Feature
Tournament 26396 371 374579 56165
SR algorithm (Sassano, 2004) 15641 80 94669 37183
CC algorithm (Kudo and Matsumoto, 2002)18922 99 112759 37183

Table 3: Parsing time and the size of the training examples.

Method Features Dep. Acc. Sentence Acc.
Tournament All 91.96 57.44
SR algorithm (Sassano, 2004) All 91.48 55.67
CC algorithm (Kudo and Matsumoto, 2002) All 91.47 55.65
Combination – CC and Relative preference Kudo’s (2005) 91.66 56.30
Relative preference (Kudo and Matsumoto, 2005)Kudo’s (2005) 91.37 56.00
CC algorithm (Kudo and Matsumoto, 2002) Kudo’s (2005) 91.23 55.59

Table 4: Dependency and sentence accuracy [%] using 24,263 sentences as training data with all features:
comparison with Kudo(2005)’s experiments.

setsuimproves accuracy. InKyoto Text Corpus
Version 4.0, coordination and apposition are anno-
tated with different types of dependency relation.
We did not use this information in parsing. A sim-
ple extension is to include those dependency types.
Another extension is to employ a coordination ana-
lyzer as a separate process as proposed by Shimbo
and Hara (2007).

Incorporating co-occurrence information will
also improve the parsing accuracy. One usage of
such information is verb-noun co-occurrence in-
formation that would represent selectional prefer-
ence for case-frame information. Abekawa and
Okumura (2006) proposed a reranking method
of k-best dependency analyzer outputs using co-
occurrence information. We have already devel-
oped a method to outputk-best dependency trees.
One of our future works is to test the reranking
method using co-occurrence information on thek-
best dependency trees.

Multilingual parsing is another goal. Japanese
is a strict head-final language. However, most lan-
guages do not have such constraint. A different
parsing algorithm should be employed for other
less constrained languages so as to relax this con-
straint. A simple solution is to introduce a discrim-
ination model according to whether the head is on
the left-hand-side or on the right-hand-side of a de-
pendent. Existence of projective constraint does
not matter for the tournament model. The tourna-
ment model can be extended to relax the projec-
tive constraint. The preliminary results for English
are shown in our CoNLL Shared Task 2008 report

(Watanabe et al., 2008). The unlabeled syntac-
tic dependency accuracy of 90.73% for WSJ data
shows that the model is also effective in other (not
strictly head final, non-projective) languages. In
parsing word sequences,O(n2) time complexity
becomes a serious problem compared to parsing
bunsetsusequences. Since abunsetsuis a base
phrase in Japanese, the number ofbunsetsu’sis
much less than the number of words. One solution
is to perform base phrase chunking in advance and
to apply dependency parsing on the base phrase se-
quences.

A reviewer pointed out similarities between our
model and RankSVM. RankSVM compares pairs
of elements to find out relative ordering between
elements. Our tournament model is a special case
where two elements are compared, but with a spe-
cific viewpoint of a focused dependent.

6 Conclusions

We proposed a Japanese dependency parsing al-
gorithm using the tournament model. The tour-
nament model is a 3-tuplebunsetsumodel and
improves discriminative performance of selecting
correct head compared with the conventional 2-
tuple models. The most likely candidate head is
selected by one-on-one games in the step-ladder
tournament. The proposed model considers the
relative position between the nearer and farther
candidates. The model also considers all candi-
date heads, which are not considered in determin-
istic parsing algorithms. The tournament model
is robust for the free-order language. The accu-

367

racy of our model significantly outperforms that
of the previous methods in most experiment set-
tings. Even though the problem of parsing speed
remains, our research showed that considering
two or more candidate heads simultaneously can
achieve more accurate parsing.

References

Abekawa, Takeshi and Manabu Okumura. 2006.
Japanese Dependency Parsing Using Co-occurrence
Information and a Combination of Case Elements.
In Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Lin-
guistics (COLING-ACL 2006), pages 833–840.

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-
X Shared Task on Multilingual Dependency Parsing.
In CoNLL-2006: Proceedings of the Tenth Confer-
ence on Computational Natural Language Learning,
pages 149–164.

Chu, Yoeng-Jin and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph.Science
Sinica, 14:1396–1400.

Crammer, Koby and Yoram Singer. 2003. Ultraconser-
vative Online Algorithms for Multiclass Problems.
Journal of Machine Learning Research, 3:951–991.

Edmonds, Jack. 1967. Optimum branchings.Jour-
nal of Research of the Natural Bureau of Standards,
71B:233–240.

Eisner, Jason M. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
COLING-96: Proceedings of the 16th Conference on
Computational Linguistics - Volume 1, pages 340–
345.

Iida, Ryu, Kentaro Inui, Hiroya Takamura, and Yuji
Matsumoto. 2003. Incorporating Contextual Cues
in Trainable Models for Coreference Resolution. In
EACL Workshop ‘The Computational Treatment of
Anaphora’.

Kudo, Taku and Yuji Matsumoto. 2002. Japanese De-
pendency Analysis Using Cascaded Chunking. In
CoNLL-2002: Proceedings of the Sixth Conference
on Computational Language Learning, pages 1–7.

Kudo, Taku and Yuji Matsumoto. 2005. Japanese De-
pendency Parsing Using Relative Preference of De-
pendency (in Japanese).Information Processing So-
ciety of Japan, Journal, 46(4):1082–1092.

McDonald, Ryan, Koby Crammer, and Fernando
Pereira. 2005. Online Large-Margin Training of
Dependency Parsers. InACL-2005: Proceedings of
43rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 523–530.

Nivre, Joakim and Jens Nilsson. 2005. Psuedo-
Projective Dependency Parsing. InACL-2005: Pro-
ceedings of 43rd Annual Meeting of the Association
for Computational Linguistics, pages 99–106.

Nivre, Joakim and Mario Scholz. 2004. Deterministic
Dependency Parsing of English Text. InCOLING-
2004: Proceedings of the 20th International Confer-
ence on Computational Linguistics, pages 64–70.

Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 Shared Task on De-
pendency Parsing. InCoNLL-2007: Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL-
2007, pages 915–932.

Nivre, Joakim. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. InIWPT-2003: 8th In-
ternational Workshop on Parsing Technology, pages
149–160.

Sassano, Manabu. 2004. Linear-Time Dependency
Analysis for Japanese. InCOLING-2004: Proceed-
ings of the 20th International Conference on Com-
putational Linguistics, pages 8–14.

Shimbo, Masashi and Kazuo Hara. 2007. A Discrimi-
native Learning Model for Coordinate Conjunctions.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 610–619.

Watanabe, Yotaro, Masakazu Iwatate, Masayuki Asa-
hara, and Yuji Matsumoto. 2008. A Pipeline Ap-
proach for Syntactic and Semantic Dependency Pars-
ing. In Proceedings of the Twelfth Conference on
Computational Natural Language Learning (To Ap-
pear).

Yamada, Hiroyasu and Yuji Matsumoto. 2003. Statis-
tical Dependency Analysis with Support Vector Ma-
chines. InIWPT-2003: 8th International Workshop
on Parsing Technology, pages 195–206.

368

