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Abstract

This paper presents a probabilistic model
for resolution of non-pronominal anaphora
in biomedical texts. The model seeks to
find the antecedents of anaphoric expres-
sions, both coreferent and associative ones,
and also to identify discourse-new expres-
sions. We consider only the noun phrases
referring to biomedical entities. The model
reaches state-of-the art performance: 56-
69% precision and 54-67% recall on coref-
erent cases, and reasonable performance
on different classes of associative cases.

1 Introduction

Inspired by Ge et al. (1998) probabilistic model for
pronoun resolution, we have developed a model for
resolution of non-pronominal anaphora in biomed-
ical texts.

The probabilistic model results from a simple
decomposition process applied to a conditional
probability equation that involves several param-
eters (features). The decomposition makes use
of Bayes’ theorem and independence assumptions,
and aims to decrease the impact of data sparse-
ness on the model, so that even small training cor-
pora can be viable. The decomposed model can
be understood as a more sophisticated version of
the naive-Bayes algorithm, since we consider the
dependence among some of the features instead
of full independence as in naive Bayes. Proba-
bilistic models can return a confidence measure
(probability) for each decision they make, while
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decision trees, for example, cannot. Another ad-
vantage of this type of model is the fact that they
consider the prior probability of each class, while
other machine-learning techniques such as SVMs
and neural networks do not.

Our model seeks to classify the relation between
an anaphoric expression and an antecedent candi-
date as coreferent, associative or neither. It com-
putes the probability of each pair of anaphor and
candidate for each class. The candidate with the
highest overall probability for each class is se-
lected as the antecedent for that class, or no an-
tecedent is selected if the probability of no relation
overcomes the positive probabilities; in this case,
the expression is considered to be new to the dis-
course.

Coreferent cases are the ones in which the
anaphoric expression and its antecedent refer to the
same entity in the real world, as below:

(1) “The expression of reaper has been
shown ... the gene encodes ...”

Associative cases are the ones in which the
anaphoric expression and its antecedent refer to
different entities, but where the antecedent plays
a role in defining the meaning of the anaphoric ex-
pression, as in Example 2:

(2) “Drosophila gene Bok interacts with
... expression of Bok protein
promotes apoptosis ...”

Discourse new cases usually consist of the first
mention of an entity in the text, so no antecedent
can be found for it.

We have focused on the biomedical domain for
two reasons. Firstly, there is a vast demand from
the biomedical field for information extraction ef-
forts (which require NLP processing, including
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anaphora resolution), in order to process the ex-
ponentially increasing number of journal publica-
tions, which are the major source of novel knowl-
edge to be extracted and condensed into domain
databases for easy access. Secondly, anaphora res-
olution can benefit from the several sources of re-
fined semantic knowledge that are not commonly
available for other domains, such as biomedical
databases, ontologies, and terminologies.

In the next section, we describe the anaphoric
relations that we found in biomedical texts, which
we are considering for the resolution process. In
Section 3 we describe our probabilistic model, and
in Section 4 the corpus created for training it.
In Section 5 we present and discuss the results
achieved by the model, and compare it with a base-
line system and a decision-tree-based system.

2 Anaphora cases in biomedical text

Biomedical texts differ from other genres of text
(e.g. newswire, fiction) in several points. Differ-
ent types of NPs have a particular distribution in
biomedical articles. For example, pronouns are
very rare, accounting for a very small percentage
of the noun phrases1; on the other hand, proper
names occur very often, given the frequent men-
tion of gene and protein names and the names of
other biomedical entities. A system for anaphora
resolution in the biomedical domain can benefit
from focusing on the most common types of noun
phrases, that is, non-pronominal ones.

In biomedical articles, the reader needs back-
ground knowledge to understand the underlying
relation between the entities mentioned in the text
in order to understand the text. For instance, in Ex-
ample 2 the reader is expected to know that a gene
encodes a protein (which usually carries its name),
so that he/she can capture the anaphoric relation
and understand the sentence. This aspect empha-
sises the need for semantic information as part of
the anaphora resolution process.

Another aspect affecting the anaphoric relations
in biomedical texts are the writing conventions
adopted in the biomedical domain to distinguish
between the mention of a gene name and the men-
tion of the protein encoded by that gene. The
most usual convention is writing gene names with
lowercase italicised letters and protein names with
non-italicised uppercase letters. The existence of

1About 3% of the noun phrases according to the corpus
presented in Section 4.

such conventions allows for constructions where
the reader keeps the conventions in mind to under-
stand the text, as below.

(3) “Drosophila has recently been
shown also to have a CED-4/Apaf-1
homolog, named Dark/HAC-1/Dapaf-1.
... Loss of function mutations in
dark/hac-1/dapaf-1 result in ...”

Among the associative cases present in biomed-
ical text, we were able to distinguish two main
types of relations. The first, which we call “bio-
type” relations, are associative relations between
biomedical entities with different semantic types,
which we call biotypes (e.g. gene, gene product,
part of gene). This is the case of Example 2 and 32.
If we take into account the specific biotype of the
entities that are involved in a biotype relation, it is
possible to determine a WordNet-like semantic re-
lation behind the anaphora relation. For example,
a biotype relation between a ‘gene’ and a ‘variant’
of gene can be considered an hyponymy relation,
the relation between a ‘gene’ and a transcript (part
of gene) can be seen as a meronymy relation.

The second type of associative relation is more
common to other domains as well, we call it “set-
member” relation. It consists of cases where the
anaphor refers to a set that contains the antecedent,
or vice-versa, as in Examples 4 and 5.

(4) ...ced-4 and ced-9...the genes...

(5) ...the mammalian anti-apoptotic
protein Bcl-2...Bcl-2 family...

3 The resolution model

Our probabilistic model aims to find the clos-
est coreferent and/or associative antecedent for all
non-pronominal NPs that refer to biomedical enti-
ties. Among non-pronominal NPs we distinguish
proper names, definite NPs (e.g. “the gene”),
demonstrative NPs (e.g. “this gene”), indefinite
NPs (e.g. “a gene”), quantified NPs (e.g. “four
genes”, “some genes”) and other NPs.

We consider the three classes of anaphoric rela-
tions mentioned above: coreferent, associative bio-
type, and associative set-member.

We have chosen 11 features to describe the
anaphoric relations between two noun phrases.
The features are presented in Table 1. Most fea-
tures are domain-independent, while one, gp, is

2Associative relations between proper names are not
known to happen in other domains, and are made possible
in the biomedical domain given the existence of naming con-
ventions.
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specific for the biomedical domain. Our feature set
covers the basic aspects that influence anaphoric
relations: the form of the anaphor’s NP, string
matching, semantic class matching, number agree-
ment, and distance.

Given these features, for each antecedent candi-
date a of an anaphor A, we compute the probabil-
ity P of an specific class of anaphoric relation C

between a and A. P is defined as follows:

P (C = ‘class’|fA, fa, hma,A, hmma,A, mma,A,

numa,A, sra, bma,A, gpa,A, da,A, dma,A)

For each pair of a given anaphor and an an-
tecedent candidate we compute P for C=‘coreferent’,
C=‘biotype’, and C=‘set-member’. We also compute
C=‘none’, that represents the probability of no rela-
tion between the NPs.

We decompose the probability P and assume in-
dependence among some of the features in order
to handle the sparseness of the training data. In
the following equations, we omit the subscripted
indexes of the relational features for clarity.

P (C|fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm)

=

P (C)P (fA, fa, hm, hmm,mm,

num, sr, bm, gp, d, dm|C)

P (fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm)
(1)

Equation 1 is obtained by applying Bayes’ theo-
rem to the initial equation. P (C) is the prior prob-
ability of each class, it will encode the distribution
of the classes in the training data. As the denom-
inator contains feature values that change accord-
ing to the candidate being considered, we cannot
eliminate it in the usual fashion, so we keep it in
order to normalise P across all candidates. From
this equation, we then selectively apply the chain
rule to both numerator and denominator until we
get to the following equation:

=

P (C) P (fA|C) P (fa|C, fA) P (d, dm|C, fA, fa)

P (sr|C, fA, fa, d, dm) P (bm, gp|C, fA, fa, d, dm, sr)

P (num|C, fA, fa,d, dm, sr, bm, gp)

P (hm, hmm, mm|C, fA,fa, d, dm, sr, bm, gp, num)

P (fA) P (fa|fA) P (d, dm|fA, fa)

P (sr|fA, fa, d, dm) P (bm, gp|fA, fa, d, dm, sr)

P (num|fA, fa, d, dm, sr, bm, gp)

P (hm, hmm, mm|fA, fa, d, dm, sr, bm, gp, num)
(2)

Following the decomposition, we eliminate
some of the dependencies among the features that

we consider unnecessary3. We consider that the
lexical features hm, hmm, and mm are not depen-
dent on distance d or dm, nor on sr, gp or num,
so:

P (hm, hmm, mm|C, fA, fa, d, dm, sr, bm, gp, num) ∝
P (hm, hmm, mm|C, fA, fa, bm)

We model num as independent from d, dm, sr,
bm, and gp, so:

P (num|C, fA, fa, d, dm, sr, bm, gp) ∝
P (num|C, fA, fa)

We also assume the semantic features bm, and
gp as independent from all features but C:

P (bm, gp|C, fA, fa, d, dm, sr) ∝ P (bm, gp|C)

We also assume sr to be independent of fA and
fa:

P (sr|C, fA, fa, d, dm) ∝ P (sr|C, d, dm)

The final equation then becomes:

P (C|fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm) =

P (C) P (fA|C) P (fa|C, fA) P (d, dm|C, fA, fa)

P (sr|C, d, dm) P (bm, gp|C) P (num|C, fA, fa)

P (hm, hmm, mm|C, fA, fa, bm)

P (fA) P (fa|fA) P (d, dm|fA, fa)

P (sr|d, dm) P (bm, gp) P (num|fA, fa)

P (hm, hmm,mm|fA, fa, bm)

(3)

4 Training

There are very few biomedical corpora annotated
with anaphora information, and all of them are
built from paper abstracts (Cohen et al., 2005), in-
stead of full papers. As anaphora is a phenomenon
that develops through a text, we believe that short
abstracts are not the best source to work with and
decided to concentrate on full papers.

In order to collect the statistics to train our
model, we have manually annotated anaphoric re-
lations between biomedical entities in 5 full-text
articles (approx. 33,300 words)4, which are part of
the Drosophila molecular biology literature. The
corpus and annotation process are described in
(Gasperin et al., 2007). To the best of our knowl-
edge, this corpus is the first corpus of biomedical
full-text articles to be annotated with anaphora in-
formation.

3For brevity, we only show this process for the numerator,
although the same is assumed for the denominator.

4Corpus available via the FlySlip project website
http://www.wiki.cl.cam.ac.uk/rowiki/NaturalLanguage/FlySlip
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Feature Possible values
fA Form of noun phrase of the anaphor A: ‘pn’, ‘defnp’, ‘demnp’, ‘indefnp’, ‘quantnp’, or ‘np’.
fa Form of noun phrase of the antecedent candidate a: same values as for fA.

hma,A Head-noun matching: ‘yes’ if the anaphor’s and the candidate’s head nouns match, ‘no’ otherwise.
hmma,A Head-modifier matching: ‘yes’ if the anaphor’s head noun matches any of the candidate’s pre-modifiers, or

vice-versa, ‘no’ otherwise.
mma,A Modifier matching: ‘yes’ if anaphor and candidate have at least one head modifier in common, ‘no’ otherwise.
numa,A Number agreement: ‘yes’ if anaphor and candidate agree in number, ‘no’ otherwise.

sra,A Syntactic relation between anaphor and candidate: ‘none’, ‘apposition’, ‘subj-obj’, ‘pp’, and few others.
bma,A Biotype matching: ‘yes’ if anaphor’s and candidate’s biotype (semantic class) match, ‘no’ otherwise.
gpa,A is biotype gene or product? ‘yes’ if the anaphor biotype or candidate biotype is gene or product, ‘no’ otherwise.

This feature is mainly to distinguish which pairs can hold biotype relations.
da,A Distance in sentences between the anaphor and the candidate.

dma,A Distance in number of entities (markables) between the anaphor and the candidate.

Table 1: Feature set

Before annotating anaphora, we have prepro-
cessed the articles in order to (1) tag gene names,
(2) identify all NPs, and (3) classify the NPs ac-
cording to their domain type, which we call bio-
type. To tag all gene names in the corpus, we
have applied the gene name recogniser developed
by Vlachos et al. (2006). To identify all NPs, their
subconstituents (head, modifiers, determiner) and
broader pre- and post-modification patterns, we
have used the RASP parser (Briscoe et al., 2006).
To classify the NPs according to their type in
biomedical terms, we have adopted the Sequence
Ontology (SO)5 (Eilbeck and Lewis, 2004). SO
is a fine-grained ontology, which contains the
names of practically all entities that participate in
genomic sequences, besides the relations among
these entities (e.g. is-a, part-of, derived-from re-
lations). We derived from SO seven biotypes to
be used to classify the entities in the text, namely:
“gene”, “gene product”, “part of gene”, “part of
product”, “gene variant”, “gene subtype”, and
“gene supertype”. We also created the biotype
“other-bio” to be associated with noun phrases that
contain a gene name (identified by the gene name
recogniser) but whose head noun does not fit any
of the other biotypes. All NPs were tagged with
their biotypes, and NPs for which no biotypes were
found were excluded.

The gene-name tags, NP boundaries and bio-
types resulting from the preprocessing phase were
revised and corrected by hand before the anaphoric
relations were annotated.

For each biotyped NP we annotated its closest
coreferent antecedent (if found) and its closest as-
sociative antecedent (if found), from one of the as-
sociative classes. From our annotation, we can in-

5http://www.sequenceontology.org/

fer coreference chains by merging the coreferent
links between mentions of a same entity.

The annotated relations, and the features de-
rived from them, are used as training data for the
probabilistic model above. We have also consid-
ered negative training samples, which result from
the absence of an anaphoric relation between a
NP that precedes an anaphoric expression and was
not marked as its antecedent (nor marked as part
of the same coreference chain of its antecedent).
The negative samples outnumber considerably the
number of positive samples (annotated cases). Ta-
ble 2 presents the distribution of the cases among
the classes of anaphora relations.

We note that around 80% of the definite NPs are
anaphoric in our corpus, instead of the 50% pre-
sented in (Vieira and Poesio, 2000) for newspa-
per texts. Nearly all demonstrative NPs (93%) are
anaphoric. More than 70% of the proper names
take part in coreference relations, as they inher-
ently refer to a specific named entity, but never-
theless 5% of them take part in associative biotype
relations, due to the fact that a gene and the protein
it synthesizes usually share the same name. 44% of
quantified NPs take part in set-member relations,
as they usually refer to more than one entity. Fi-
nally 51% of indefinite NPs are discourse new.

To balance the ratio between positive and nega-
tive training samples, we have clustered the neg-
ative samples and kept only a portion of each
cluster, proportional to its size. All negative
samples that have the same values for all fea-
tures are grouped together (consequently, a clus-
ter is formed by a set of identical samples) and
only 1

10 of each cluster members is kept, re-
sulting in 85,314 negative samples. This way,
small clusters (with less than 10 members), which
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Class/NPs pn defnp demnp indefnp quantnp other np Total
coreferent 689 429 70 40 54 396 1678

biotype 43 102 3 8 4 114 274
set-member 151 126 26 14 68 158 543

discourse new 63 107 0 72 38 156 436
none 873,731

Table 2: Training instances, according to anaphoric class and to NP form

are likely to represent noisy samples (similar to
positive ones), are eliminated, and bigger clus-
ters are shrunk; however the shape of the dis-
tribution of the negative samples is preserved.
For example, our biggest cluster (feature values
are: fA=‘pn’, fa=‘pn’, hm=‘no’, hmm=‘no‘,
mm=‘no’, bm=‘yes’, gp=‘yes’, num=‘yes’,
sr=‘none’, d=‘16<’, dm=‘50<’) with 33,998 in-
stances is reduced to 3,399 – still considerably
more numerous than any positive sample.

Other works have used a different strategy to re-
duce the imbalance between positive and negative
samples (Soon et al., 2001; Ng and Cardie, 2002;
Strube et al., 2002), where only samples composed
by a negative antecedent that is closer than the
annotated one are considered. We compare the
performance of both strategies in Section 5.1 and
show that ours is more effective. The higher the
number of negative samples, the higher the preci-
sion of the resolution, but the lower the recall.

5 Results

Given the small size of our corpus, we did not hold
out a test set. Instead, we have measured the av-
erage performance achieved by the model in a 10-
fold cross-validation setting, using the whole of the
annotated corpus.

We consider as antecedent candidates all noun
phrases that precede the anaphor. For a given
anaphor, we first select as antecedent according to
each anaphora class the candidate with the high-
est value for P for that class. We also compute
P(C=‘none’) for all candidates. If P(C=‘coreferent’) >

P(C=‘none’) for the selected coreferent antecedent,
it is kept as the resulting antecedent. The same is
tested for the selected associative antecedent with
the highest probability, independent of the type of
associative class. For set-member cases, where
an anaphor can have multiple antecedents, if more
than one candidate has an equally high probabil-
ity, all these candidates are kept. When no coref-
erent or associative antecedent is found (or when
P(C=‘none’) is higher on both cases) the anaphor is

classified as discourse new.
Table 3 presents the performance scores we

achieved for each anaphora class. The first col-
umn, ‘perfect’, shows the result of a strict evalu-
ation, where we consider as correct all pairs that
match exactly an antecedent-anaphor pair in the
annotated data. On the other hand, column ‘re-
laxed’ treats as correct also the pairs where the
assigned antecedent is not the exact match in the
annotated data but is coreferent with it.

It is clear that the results for coreferent cases
are much better than for associative cases, but the
latter are known to be more challenging. On top
of that, the ‘relaxed’ column shows considerable
improvements in comparison to ‘perfect’. That
means that several anaphors are being linked to the
correct coreference chain, despite not being linked
to the closest antecedent. This happens mainly in
cases where there is no string matching between
the closest antecedent and the anaphor, causing an
earlier mention of the same entity with matching
head and/or modifiers to get higher probability. We
believe we can approximate ‘perfect’ to ‘relaxed’
results if we extend the string matching features to
represent the whole coreference chain, that is, con-
sider a positive matching when the anaphor match
any of the elements in a chain, similarly to the idea
presented in (Yang et al., 2004).

We believe that the lower overall performance
for associative cases is due to the difficulty of se-
lecting features that capture all aspects involved in
associative relations. Our set of features is clearly
failing to cover some of these aspects, and a deeper
feature study should be the best way to boost the
scores. However, despite lower, these performance

Perfect RelaxedClass
P R F P R F

coreferent 56.3 54.7 55.5 69.4 67.4 68.3
biotype 28.5 35.0 31.4 31.2 37.9 34.2

set-member 35.4 38.2 36.7 38.5 41.5 40.0
discourse new 44.3 53.4 48.4 44.3 53.4 48.4

Table 3: Performance of the probabilistic model
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scores are higher that the ones from previous ap-
proaches for newspaper texts, which used for in-
stance the WordNet (Poesio et al., 1997) or the
Internet (Bunescu, 2003) as source of semantic
knowledge.

We have analysed our features and observed
that the string matching features hm, hmm, and
mm, the number agreement feature num, bio-
type matching bm, and distance in markables dm
are the core features and achieve reasonable per-
formance. However, fA and fa play an impor-
tant role, they increase the precision of corefer-
ent cases and boost considerably the performance
of the associative ones. This is due to the differ-
ent distribution of NP types across the relations as
shown is Table 2. The remaining features focused
on specific cases: gp improved biotype recall, by
boosting the probability of a biotype relation when
anaphor or candidate had specific biotypes; and sr
improved precision and recall of coreferent cases.

Table 4 shows the ‘perfect’ performance scores
according to each class of NP. The resolution of
proper names achieves the highest scores among
all types of NPs for most classes. That is due to
their limited structure, since proper names usually
do not have elaborated pre-modification or modifi-
cation at all, so our string matching features car-
ried simpler patterns for these NPs. Indefinite
and quantified NPs achieved the lowest scores for
coreferent cases, since the highest percentage of
training instances for these NPs are not coreferent
(as seen in Table 2). Indefinite NPs, as expected,
have the best scores for discourse new cases.

5.1 Comparing to other approaches

We have tried training our probabilistic model us-
ing a different strategy than the one described in
Section 4 for selecting negative samples. This
strategy consists of selecting only the negative
samples that occur between the anaphor and its
coreferent antecedent, not considering candidates
that are further away than the antecedent. This
strategy was first used for anaphora resolution by
Soon et al. (2001). Column ‘prob+closest’ on Ta-
ble 5 shows the performance scores. In our dataset,
this strategy was able to reduce the number of neg-
ative samples to about 1

3 of its size, while our strat-
egy reduces it to 1

10 . The larger number of neg-
ative samples increases the precision scores and
reduces the recall scores for all positive classes,
while the opposite happens for the negative class,

which defines the discourse new scores. We reckon
that the considerable drop on recall numbers for
the associative cases would make the system less
viable, while the low precision for discourse new
cases shows that many anaphoric cases are left un-
resolved. We view our strategy, based on the clus-
tering of negative samples and consecutive cluster
size reduction, to be more effective at proportion-
ally eliminating negative samples that are less fre-
quent and that are more likely to be noisy.

We compare our model to a rule-based base-
line system that we have previously developed.
The baseline system (Gasperin, 2006) for each
anaphoric expression: 1) selects as coreferent an-
tecedent the closest preceding NP that has the same
head noun, same biotype and agrees in number
with the anaphor, and 2) selects as associative an-
tecedent the closest preceding NP that has the same
head noun, same biotype but disagrees in num-
ber with the anaphor, or that has the same head
noun or a modifier matching the anaphor head (or
vice-versa) or matching modifiers, agrees in num-
ber but has different biotypes. The baseline sys-
tem does not distinguish between different types
of associative cases, although it aims to cover bio-
type and set-member cases. If no antecedent that
matches these criteria is found, the anaphor is con-
sidered discourse new. Column ‘baseline’ on Ta-
ble 5 shows the performance scores for the base-
line system. The scores for coreferent cases are
reasonable, despite being below our probabilistic
model, while the scores for associative cases, es-
pecially recall, are considerably lower. The base-
line system relies on some sort of string matching
between anaphor and antecedent, and is not able
to infer a relation between expressions when the
matching does not happen. That is one of the main
aspects that the probabilistic system tries to over-
come by weighting the contribution of all features.

We also compared our model to a system based
on decision trees, since this approach has been
taken by several corpus-based anaphora resolution
systems (Soon et al., 2001; Ng and Cardie, 2002;
Strube et al., 2002). We have induced a decision
tree using the C4.5 algorithm implemented in the
Weka tool (Witten and Frank, 2005); we have used
the same features used for our probabilistic model.
We selected as the antecedent the candidate which
is the closest one to the anaphor for which a class
other then ‘none’ is assigned by the decision tree.
The ‘perfect’ and ‘relaxed’ scores for C4.5 are pre-
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coreferent biotype set-member discourse newClass
P R F P R F P R F P R F

pn 77.5 71.9 74.6 26.8 25.5 26.1 53.7 65.7 59.1 35.1 59.3 44.1
defnp 48.0 47.3 47.6 26.3 28.1 27.2 29.2 26.1 27.6 38.8 51.8 44.4

demnp 57.8 48.5 52.8 - - - 71.4 57.6 63.8 - - -
indefnp 27.0 34.2 30.2 14.2 12.5 13.3 21.0 28.5 24.2 63.4 54.7 58.8
quantnp 11.2 12.9 12.0 - - - 28.5 37.6 32.5 37.1 34.2 35.6
other np 41.3 41.4 41.4 30.9 48.2 37.7 19.3 19.4 19.4 49.7 56.0 52.6

Table 4: Performance of the probabilistic model (‘perfect’) per NP form

sented in the last two columns of Table 5. We note
that the difference between ‘perfect’ and ‘relaxed’
scores is not as large as for our probabilistic model;
that shows that decision trees are more often get-
ting even the coreference chain wrong, not just the
closest antecedent. We assume this is due to the
lack of ranking among the candidates, since we
adopt the default strategy of selecting the closest
candidate that gets a positive class according to the
tree.

The main disadvantage of both the baseline and
decision tree systems when compared to the prob-
abilistic model, besides the lower performance, is
that they do not provide a probability assigned to
each decision they make, which makes it impos-
sible to know how confident the model is for dif-
ferent cases and to take advantage of that infor-
mation to improve the system. This aspect also
makes it difficult to develop a consistent strategy
for returning multiple antecedents for set-member
cases, since there is no obvious way to do it.

6 Related work

We are not aware of any learning-based system
which has dealt with coreferent as well as asso-
ciative cases of anaphora.

Viera and Poesio (2000) have developed a
heuristic-based system for coreferent and asso-
ciative anaphora resolution of definite NPs in
newspaper texts, and have reached 62% recall
and 83% precision for direct anaphora (coreferent
cases with same head noun), but poor performance
for bridging cases (associative cases + coreferent
cases with different head nouns) using WordNet as
souce of semantic knowledge.

Ng and Cardie (2002), extending the work of
Soon et al. (2001), have developed a machine-
learning system just for coreference resolution of
all types of NPs, also on newspaper texts. Their
best results were 64.2% recall and 78.0% preci-
sion.

The best-known system to resolve anaphora in

the biomedical domain is the work of Castaño et
al. (2002), who developed a salience-based sys-
tem for resolution of coreferent cases. It seeks
to resolve pronouns and nominal (which they call
sortal) anaphora. As a source of semantic knowl-
edge, they have used the UMLS Semantic Net-
work types6, which they report to be too coarse
grained, and assume that a finer-grained typing
strategy would help to increase the precision of the
resolution system. They achieved 74% precision
and 75% recall on a very small test set.

Yang et al. (2004) implemented a machine-
learning approach to coreference resolution similar
to Ng and Cardie’s, and evaluated it on a portion of
the GENIA corpus, which is tagged with semantic
information based on the GENIA Ontology7. They
achieved recall of 80.2% and precision of 77.4%.

Both the Castaño et al. and Yang et al. systems
have been developed based on abstracts of biomed-
ical articles, instead of full-text articles, which in-
volve only restricted use of anaphora.

7 Conclusion and future work

We have presented a probabilistic model for re-
solving anaphoric NPs in biomedical texts. We are
not aware of previous works which have dealt with
coreferent and associative anaphora in the biomed-
ical domain. Our model, despite being simple and
being trained on a very small corpus, coped well
with its task of finding antecedents for coreferent
and associative cases of anaphora, and was able
to achieve state-of-the-art performance. It has out-
performed our baseline system and a decision-tree-
based system using the same set of features.

Our model returns a probability for each classi-
fication it makes, and this can be used as a confi-
dence measure that can be exploited to improve the
system itself or by external applications.

Due to our small corpus, we had to limit the

6http://www.nlm.nih.gov/research/umls/
7http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
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Prob+Closest Baseline C4.5 C4.5 relaxedClass
P R F P R F P R F P R F

coreferent 66.2 50.0 56.9 47.0 57.6 51.8 49.6 58.1 53.5 52.7 61.6 56.8
biotype 31.1 10.1 15.2 28.6 10.7 15.6 21.7 28.5 24.6 22.9 29.9 26.0

set-member 46.3 17.5 25.4 28.5 31.3 29.8 30.4 33.3 31.8
discourse new 31.3 88.1 46.2 37.3 30.2 33.4 48.5 32.5 38.9 48.5 32.5 38.9

Table 5: Performance of other models

number and the complexity of the features we
use, since the more features, the more sparse the
data, and the more training data needed. However,
we aim to expand the feature set with more fine-
grained features.

Our current work involves using the probabilis-
tic model presented here as part of an active learn-
ing framework. The confidence of the model for
each decision (probability) is used to selectively
gather more samples from unlabelled data and it-
eratively improve the performance of the system.

The probabilistic model is intended to replace
the baseline system in a tool designed to help bi-
ology researchers to curate scientific papers (Kara-
manis et al., 2008).

Acknowledgements

This work is part of the BBSRC-funded FlySlip
project. Caroline Gasperin is funded by a CAPES
award from the Brazilian government.

References
Briscoe, Edward J., John Carroll, and Rebecca Watson.

2006. The second release of the RASP system. In
Proceedings of ACL-COLING 06, Sydney, Australia.

Bunescu, Razvan. 2003. Associative anaphora reso-
lution: A web-based approach. In Proceedings of
EACL 2003 - Workshop on The Computational Treat-
ment of Anaphora, Budapest.

Castaño, José, Jason Zhang, and James Pustejovsky.
2002. Anaphora resolution in biomedical literature.
In Proceedings of International Symposium on Ref-
erence Resolution for NLP 2002, Alicante, Spain.

Cohen, K. Bretonnel, Lynne Fox, Philip Ogren, and
Lawrence Hunter. 2005. Corpus design for biomed-
ical natural language processsing. In Proceedings of
the ACL-ISMB Workshop on Linking Biological Lit-
erature, Ontologies and Databases, Detroit.

Eilbeck, Karen and Suzanna E. Lewis. 2004. Sequence
ontology annotation guide. Comparative and Func-
tional Genomics, 5:642–647.

Gasperin, Caroline, Nikiforos Karamanis, and Ruth
Seal. 2007. Annotation of anaphoric relations in

biomedical full-text articles using a domain-relevant
scheme. In Proceedings of DAARC 2007, Lagos,
Portugal.

Gasperin, Caroline. 2006. Semi-supervised anaphora
resolution in biomedical texts. In Proceedings of
BioNLP’06, New York.

Ge, Niyu, John Hale, and Eugene Charniak. 1998. A
statistical approach to anaphora resolution. In Pro-
ceedings of the Sixth Workshop on Very Large Cor-
pora - COLING-ACL’98, Montreal, Canada.

Karamanis, Nikiforos, Ruth Seal, Ian Lewin, Peter
McQuilton, Andreas Vlachos, Caroline Gasperin,
Rachel Drysdale, and Ted Briscoe. 2008. Natural
language processing in aid of flybase curators. BMC
Bioinformatics, 9(193).

Ng, Vincent and Claire Cardie. 2002. Improving ma-
chine learning approaches to coreference resolution.
In Proceedings of ACL 2002, Philadelphia.

Poesio, Massimo, Renata Vieira, and Simone Teufel.
1997. Resolving bridging descriptions in unre-
stricted texts. In Proceedings of the Workshop on
Operational Factors In Practical, Robust Anaphora
Resolution for Unrestricted Texts, Madrid.

Soon, Wee Meng, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

Strube, Michael, Stefan Rapp, and Christoph Müller.
2002. The influence of minimum edit distance on
reference resolution. In Proceedings of the EMNLP
2002, Philadelphia.

Vieira, Renata and Massimo Poesio. 2000. An
empirically-based system for processing definite de-
scriptions. Computational Linguistics, 26(4):525–
579.

Vlachos, Andreas and Caroline Gasperin. 2006. Boot-
strapping and evaluating named entity recognition in
the biomedical domain. In Proceedings of BioNLP
at HLT-NAACL 2006, pages 138–145, New York.

Witten, Ian H. and Eibe Frank. 2005. Data Mining:
Practical machine learning tools and techniques,
2nd Edition. Morgan Kaufmann, San Francisco.

Yang, X., J. Su, G. Zhou, and C. L. Tan. 2004. An NP-
cluster based approach to coreference resolution. In
Proceedings of COLING 2004, Geneva, Switzerland.

264


