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Abstract

Precise Natural Language Understanding is
needed in Geometry Tutoring to accurately
determine the semantic content of students’
explanations. The paper presents an NLU
system developed in the context of the
Geometry Explanation Tutor. The system
combines unification-based syntactic
processing with description logics based
semantics to achieve the necessary accuracy
level. Solutions to specific semantic problems
dealing with equivalence of semantic
representations are described. Experimental
results on classification accuracy are also
presented.

1 Introduction

The Geometry Cognitive Tutor is designed to
help high school and middle school students
learn geometry. As a kind of Cognitive Tutor
(Anderson et al. 1995), the system is based on an
underlying cognitive model, implemented as an
ACT-R production system (Anderson and
Lebiere 1998), of both novice and ideal student
knowledge. This model is used to monitor
student performance and to provide assistance
just when students need it and in a context that
demands it. Currently the Geometry Cognitive
Tutor is in regular use (two days per week) in
about 350 schools around the US.

The tutor proposes problems to students and
checks their solutions step by step. It can also
provide context-sensitive hints at each step in
solving the problem, as needed. The students are
asked to compute various elements of the
problem (mostly angle measures) by applying the
theorems and definitions they have learned. In
case the results are correct, the students are also
asked to provide a justification for their results.
In the version of the tutor that is currently in use
in schools, the justification consists in choosing
the right theorem or definition out of a menu.

The choice is accepted or rejected by the tutor,
accordingly.

The use of this tutor in combination with
classroom instruction has been shown to lead to
improvements in students’ test scores over
traditional classroom instruction alone
(Koedinger et al. 1997). Experiments have also
shown that the use of menu-based justifications
help students learn with greater understanding
over a tutor that does not ask for justifications
(Aleven and Koedinger 2002).

However there is room for improvement.
Classroom observation shows that some students
try to game the system by choosing each item in
the menu in turn, until one is accepted. Even
when this is not the case, it is possible that
simply recognizing the name of the correct
theorem or definition out of a menu does not
imply that the student is fully knowledgeable
about the actual content of the theorem involved.
Thus it is plausible that asking the students to
express the content of these theorems and
definitions in their own words as a form of self-
explanation could lead to a deeper level of their
understanding.

To verify this hypothesis we are currently
developing the Geometry Explanation Tutor.
This version is based on the Geometry Cognitive
Tutor, with the modification that the justification
consists of a natural language sentence that
expresses the content of the theorem or definition
used to derive the result, in free form. The tutor
checks the semantic content of the explanation
and provides feedback on its correctness and
completeness. In case the explanation quality is
deemed not good enough, the student is allowed
to refine it, until it becomes acceptable.

Thus, one of the main problems that the
Geometry Explanation Tutor faces is to
determine with accuracy the semantic content of
students’ utterances. There are many different
ways to express the same semantic content,
which have to be recognized as being equivalent.



The determination of equivalence relations has to
work reliably over variation of syntactic
structure, variation of content words, or a
combination of both. For example, the sentences
below all express the same geometry theorem,
about the measures of angles formed by other
angles.

An angle formed by adjacent angles is equal to the
sum of these angles.

The measure of an angle formed by other angles is
equal to the sum of the measures of those adjacent
angles.

An angle's measure is equal to the sum of the two
adjacent angles that form it.

The sum of the measures of two adjacent angles is
equal to the measure of the angle formed by the two
angles.

The measure of an angle formed by two adjacent
angles is equal to the sum of the measures of the two
angles.

If adjacent angles form an angle, its measure is their
sum.

When an angle is formed by adjacent angles, its
measure is equal to the sum of those angles.

The process has also to be consistent, so no
unwarranted conclusions are derived from the
text, and robust, in an environment of imprecise
or ungrammatical language, as uttered more often
than not by high school students. Many times this
content equivalence relies on inferences specific
to the domain of discourse. Our hypothesis is that
such a high-precision recognition process needs
to be based on contextual information about the
domain of discourse modeled in a logic system.

2 The System’s Architecture

The system’s overall architecture is presented in
Figure 1 below. The interface module takes the
input sentence from the tutor, word by word, in
real time, and after some preprocessing and
spelling checking, it passes it to the chart parser.
It also passes the results back to the tutor. The
chart parser is the main engine of the system. It
uses linguistic knowledge about the target natural
language from the unification grammar and the
lexicon. The parser used currently is LCFlex, a
left-corner active-chart parser developed at the
University of Pittsburgh (Rosé and Lavie 1999).
The parser calls the feature structure unifier in
order to process restrictions attached to grammar
rules and build feature structures for each phrase
successfully recognized. These feature structures
store lexical, syntactic, and semantic properties
of corresponding words and phrases. The parser

uses an active chart that serves as a storage area
for all valid phrases that could be built from the
word sequence it received up to each point in the
process.

Figure 1. System Architecture
Some of the restrictions in the grammar are
directives to the description logic system,
currently Loom (MacGregor 1991). The logics
system relies on a model of the domain of
discourse, encoded as concepts, relations, and
production rules, in the two knowledge bases.
Concepts and relations stand for predicates in the
underlying logic. Production rules perform
additional inferences that are harder to encode
into concepts and/or relations.

The linguistic inference module mediates the
interaction between the feature structure unifier
and the description logics system. This module is
responsible for performing semantic processing
that is specific to natural language understanding,
like compositional semantics, resolving
metonymies and references, and performing
semantic repairs.

Based on this knowledge base, the logic
system builds compositionally a model-theoretic
semantic representation for the sentence, as a set
of instances of various concepts connected
through various relations. An instance
corresponds to a discourse referent in the
sentence. The logic system performs forward-
chaining classification of resulting instances, and
also ensures semantic coherence of the semantic
representation.

The logic system then uses a classifier to
evaluate the semantic representation against a
classification hierarchy of valid representations
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for geometry theorems. The results of the
classification are passed back to the tutor.

1.1 Example of Compositional Build of
the Semantic Representation

To see how the compositional building of
semantic representations works, let’s consider the
last step in parsing the sentence:

The measure of a right angle is 90 degrees.

A set of simplified knowledge base definitions
necessary for building its representation, in
Loom’s definitional language, is:

(defconcept Configuration
  :is-primitive (:and Thing (:all participant Thing)))
(defconcept Being&Having
  :is-primitive (:and Configuration
                              (:at-most 2 participant)))
(defconcept Ascription
  :is (:and Being&Having (:exactly 1 attribuend)
                                        (:exactly 1 attribute))
(defproduction ascription-production
  :when (:detects (Ascription x))
  :do ((combine-instances (x attribute)
                                         (x attribuend))))
(defconcept Geometry-Unit
  :is (:and Unit (:one-of ‘degree ‘radian ‘meter ‘foot)))
(defconcept Angle-Unit
  :is (:and Geometry-Unit (:one-of ‘degree ‘radian)))
(defconcept Geometry-Measure
  :is (:and Measure (:the unit Geometry-Unit)))
(defconcept Angle-Measure
  :is (:and Geometry-Measure (:the unit Angle-Unit)))
(defconcept Geometry-Object
  :is-primitive (:and Spatial
                            (:all measure Geometry-Measure)))
(defproperty Right :domain Geometry-Object)
(defconcept Angle
  :is-primitive (:and Geometry-Object
                              (:the measure Angle-Measure)))
(defconcept Right-Angle :is (:and Right Angle))

Figure 2. Example of Semantic Representation
Based on these definitions and the rules of the
grammar, the system builds the representation
below for the subject of the example above,
expressed in Loom’s assertional language:

(tell (:about measure-1 (:create Angle-Measure)))
(tell (:about angle-1 (:create Right-Angle)
          (measure measure-1)))

The system also builds this structure for the verb
phrase:

(tell (:about measure-2 (:create Angle-Measure)
          (unit ‘degree) (value 90)))
(tell (:about being&having-1 (:create Being&Having)
          (attribute measure-2)))

The two structures are illustrated in Figure 2.
Then the parser applies the grammar rule for
clauses, given below in simplified form. Connect-
s eman t i c s  will assert an attribuend relation
between instances being&having-1 and measure-1,
relation specified in the lexicon as the semantic
role of the verb’s subject.

(<Cl> ==> (<NP> <VP>)
         ((x0 = x2)
          ((x0 subject) = x1)
          ((x0 semantics) <=
             (connect-semantics (x2 semantics)
                (x2 subject sem-role) (x1 semantics)))))

Loom then classifies being&having-1 as an
instance of the more specific concept Ascription,
and this classification triggers production
ascription-production. The production will combine
the two measure instances, measure-1 and
measure-2, into a single instance, resulting in the
structure below:

(tell (:about measure-1 (:create Angle-Measure)
          (unit ‘degree) (value 90)))
(tell (:about angle-1 (:create Right-Angle)
          (measure measure-1)))
(tell (:about being&having-1 (:create Ascription)
          (attribute measure-1) (attribuend measure-1)))
The structure is shown in Figure 3.

Figure 3. Resulting Semantic Representation
This structure is then classified against a
hierarchy of concept definitions representing
classes of possible explanations. A few of them
are shown in Figure 4.
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Figure 4. Partial Classification Hierarchy

3  Specific Problems in Students’
Explanations

The basic approach we take to the content
equivalence problem is to provide the right
inference rules to make the logic system derive
the same semantic representation for all
sentences that are semantically equivalent. Below
we present how this is done in some specific
cases.

1.2 Variation of Syntactic Structure

Even when the choice of content words is the
same, the same meaning can be conveyed
through a variety of syntactic structures. Some
cases, like that of passive versus active
constructs, can be taken care of in the grammar.
Other cases require specific knowledge about the
domain of discourse. One such situation is that of
prepositional phrases attached in different places
in the sentence, without changing the meaning,
like in these examples:

In a triangle angles opposite to congruent sides are
congruent.

Angles opposite to congruent sides in a triangle are
congruent.

Angles in a triangle opposite to congruent sides are
congruent.

Angles opposite to congruent sides are congruent in
a triangle.

The solution in our system comes as a concept
definition that identifies the container relation at
the assertion level, and percolates it down to
involved objects.

(defconcept Ascription-Location
  :is (:and Ascription (:at-least 1 belongs-to))
  :implies

     (:and (:relates belongs-to attribuend belongs-to)
              (:relates belongs-to attribute belongs-to))))

A similar case is that of using constructs specific
to the domain of discourse.

The measures of these two angles are equal.

These two angles are equal in measure.

Knowledge about the semantics of “equal” and
“measure” is involved in determining that “equal
in measure” means the same thing as “measures …
are equal”. We can model this knowledge by
defining a rule that will identify cases of “equal in
some measurable quantity” and will generate a
structure with the meaning of “equal quantity”.

(defconcept Equal-in
  :is (:and Equal (:some belongs-to Measure)))
(defproduction equal-in-production
  :when (:detects (Equal-in ?object))
  :do (combine-semantics ?object
                                         (?object belongs-to)))

The use of relative and subordinate clauses can
also lead to a large variety of syntactic structures
without a significant change in meaning:

The sum of the measures of complementary angles
is 90 degrees.

If angles are complementary, then the sum of their
measures is 90 degrees.

The measures of the angles sum to 90 degrees,
because they are complementary angles.

Complementary angles are angles whose measures
sum to 90 degrees.

These sentences all express the same theorem
about complementary angles using respectively a
single clause sentence, a conditional clause, a
subordinate clause, or a relative clause. Because
the semantic representation we build does not
keep any trace of the original syntactic structure,
such variations are automatically ignored. For
example, the structure built for the first sentence
is:

(tell (:about measure-1 (:create Geometry-Measure)))
(tell (:about angle-1 (:create Angle)
          Complementary (measure measure-1))
(tell (:about sum-1 (:create Sum)
          (value 90) (unit 'degree) (term measure-1))
(tell (:about being&having-1 (:create Ascription)
          (attribute sum-1) (attribuend sum-1))

Ignoring the conditionality, the structures for the
two clauses in the second sentence are:

(tell (:about angle-1 (:create Angle) Complementary))
(tell (:about being&having-1 (:create Ascription)
          (attribute angle-1) (attribuend angle-1))
(tell (:about thing-1 (:create Thing)
          (measure measure-1)))
(tell (:about measure-1 (:create Geometry-Measure)))
(tell (:about sum-1 (:create Sum)
          (value 90) (unit 'degree) (term measure-1))

COMPLEMENTARY-
ANGLES

“The angles are
complementary.”

ANGLES-90
“The measure of this
angle is 90 degrees.”

UNKNOWN

ANGLE-SUM-90
“These angles add

up to 90.”

RIGHT-ANGLES-90
“The measure of a right
angle is 90 degrees.”

COMPLEMENTARY-
ANGLES-SUM-90

“Complementary angles
sum to 90.”

RIGHT-ANGLES
“This is a right angle.”



(tell (:about being&having-2 (:create Ascription)
          (attribute sum-1) (attribuend sum-1))

All that is needed to achieve semantic
equivalence is a reference resolution mechanism
that identifies referents at the semantic level with
their antecedents. In the example above the
system would solve thing-1  to angle-1.

1.3 Variation of Content Words

Many times differences in the content words
used in the sentence do not make any difference
at the meaning level. An obvious case is that of
synonyms. However there are cases when
different words are used as synonyms only in
certain contexts. For instance:

Angles ABC and BAC are equal.

Angles ABC and BAC are congruent.

Versus:
The measures of angles ABC and BAC are equal.

*The measures of angles ABC and BAC are
congruent.

Here the synonymy holds only when the objects
involved in the relation are geometry objects, and
it is not allowed when they are measures. We can
make this distinction by defining “congruent” as a
specialized case of “equal”:

(defrelation equal-to
  :is-primitive (:and relation (:domain Thing)
                                           (:range Thing))
  :characteristics :symmetric)
(defrelation congruent-to
  :is (:and equal-to (:domain Geometry-Object)
                              (:range Geometry-Object)))

Moreover, we can add a production rule that will
perform the inference that if the measures of
some objects are equal, then the objects
themselves are congruent. This rule will make
the third sentence above be recognized as
equivalent to the first two sentences.

(defconcept Equal-Measure
  :is (:and Measure (:at-least 1 equal-to)))
(defproduction equal-measure-production
  :when (:detects (Equal-Measure ?measure))
  :do (connect-semantics
            (?measure measure-of) congruent-to
            (?measure equal-to measure-of)))

A related phenomenon is that of using very
generic functional words in usual language to
denote specific relations among the concepts of
the domain.

The angles of a linear pair sum to 180.

The angles that form a linear pair sum to 180.

The angles that are elements of a linear pair sum to
180.

In these examples the angles are actually the
elements of the linear pair. However in the first
two sentences the relation is expressed either
through a preposition, or through a generic verb
like “form”. Recovering the explicit relation and
thus being able to determine that the three
examples above are semantically equivalent
requires once again a model of the domain of
discourse. We can model this first by defining
the element-of relation as a more specific version
of the generic relation belongs-to expressed by
“of”. This definition will make the system build
the same representation for the first sentence as
for the third one.

(defconcept Set :is-primitive Thing)
(defrelation element-of
  :is (:and belongs-to (:domain Thing) (:range Set)))

Second, we can define a production rule that
recognizes a “form” configuration and asserts a
“belongs-to” relation between the arguments, thus
generating for the second sentence the same
representation as for the first one:

(defconcept Form-Configuration
  :is (:and Generalized-Possession
               (:the part Thing)
               (:the whole Thing)))
(defproduction form-configuration-production
  :when (:detects
                 (Form-Configuration ?configuration))
  :do (connect-instances (?configuration part)
                                       belongs-to
                                       (?configuration whole)))

Another similar situation is that when students
use the definition of a concept expressed in terms
of more generic concepts, instead of its name.

Adjacent angles on a line sum to 180 degrees.

Linear angles sum to 180 degrees.

The ability to recognize such examples as being
semantically equivalent, with the right degree of
generality, is conditioned by the possibility to
model the definitions of those specific concepts
within the framework of the system. This case
can be dealt with by defining “ linear angles” as
“adjacent angles on a line”:

(defrelation adjacent-to
  :is-primitive (:and relation
                              (:domain Geometry-Object)
                              (:range Geometry-Object)))
(defconcept Adjacent-Angle
  :is (:and Angle (:at-least 1 adjacent-to)))
(defconcept Angle-on-Line
  :is (:and Angle (:some location Line)))
(defconcept Linear-Angle
  :is (:and Adjacent-Angle Angle-on-Line))



1.4 Syntactic Ambiguity

Syntactic ambiguity in many cases does not
reflect semantic ambiguity. One such possibility
is prepositional phrase attachment. That is,
following only the grammar rules, many times a
prepositional phrase could be an adjunct/
argument of several preceding components. A
deeper look at those alternative attachments
reveals that most of them can be discarded
because they do not result in a meaningful
sentence. However, in absence of detailed
knowledge about the meaning of the words in the
sentence and their possible interactions, an NLU
approach would not be able to disambiguate
among them.

The sum of the measures of the three interior angles
in a triangle is equal to 180 degrees.

The subject in this example contains three
prepositional phrases: “of the measures”, “of the
three interior angles”, and “in a triangle”. While the
first one can only be attached to one place: the
noun “sum”, the second one already can be
attached to two places: “sum” or “measures”, and
the third one can be attached to three places:
“sum”, “measures”, or “angles”, resulting in a
total of 6 different valid parses. By adding
appropriate restrictions to the definitions of the
concepts involved, our approach can make some
of these combinations invalid during the parsing
process. In our example we can restrict sums to
only apply to elements that are measures, and
thus eliminate the attachment of prepositional
phrase “of the three interior angles” to “the sum”.
And then we can restrict the containment relation
to have geometry objects on both sides, and thus
eliminate the attachment of “ in a triangle” to either
“the sum” or “the measures”.

(defconcept Sum
  :is-primitive (:and Measure (:all term Measure)))
(defconcept Object-in-Location
  :is (:and Object (:some location Geometry-Object))
  :implies Geometry-Object)

1.5 Reference Resolution
Disambiguation

The presence of anaphora in students’
explanations results in cases where sentences
with different sets of words are semantically
equivalent. Recognizing the semantic
equivalence of such cases leads to the necessity
to have an accurate reference resolution
mechanism, which allows us to build the right
semantic representation for the sentence.

The resolution of referents to antecedents is
done in our system at the semantic level. That is
we simply try to merge the semantic
representation of the referent with that of the
antecedent. This mechanism has the advantage
that the logic system will make sure that all
semantic constraints associated with the two
discourse referents are enforced, so that elements
that are incompatible will fail the merge. This
takes care both of the number restrictions, as well
as all other semantic features, like taxonomic
compatibility between the concepts involved.

Finding the right referent for an anaphor is not
always easy. Syntactic criteria can help with
disambiguation among candidates, but there are
cases where they cannot lead to a unique
antecedent. Adding semantic constraints to the
solution can increase the accuracy considerably.

If the lengths of two sides of triangles are equal, then
the measures of the angles opposite them will also
be equal.

In this example there are five possible candidates
as antecedent for the pronoun “them”: “the
lengths”, “two sides”, “a triangle”, “the measures”,
and “ the angles”. Constraints of the Binding
Theory implemented in our system eliminate “the
angles”, since “them” is a personal pronoun that
has to be free within its local domain. Constraints
on number eliminate “a triangle”, as being
singular, while “them” is plural. Then semantic
constraints attached to the definition of relation
“opposite” can eliminate both “the lengths” and
“the measures”, by asking that geometry objects
can oppose only other geometry objects:

(defconcept Object-opposite
  :is (:and Geometry-Object
                (:some opposite-to Thing))
  :implies (:all opposite-to Geometry-Object))

4 Performance Evaluation

As a measure of the system’s ability to
understand students’ explanations we evaluated
the accuracy of the classification of these
sentences with respect to the hierarchy of
explanation classes. The evaluation used a set of
700 sentences representing actual explanations
provided by high school students during an
experimental study in 2003. The classification
task consists in associating each sentence with
one or more of 200 fine-grained categories, a
difficult task even for humans. We used the
kappa statistic (Cohen 1960) to measure the
inter-rater reliability between the system and two



human raters. We used three different measures.
First, a “set equality” measure, where two sets of
classes match only if they are identical. Second,
an “overlap” measure, where two sets are
considered to partially match if they share some
subset. And third, a “weighted overlap”, which
takes into account the relative semantic distance
between different classes in assessing the match
between two sets of categories. The results in
Table 1 show the system to work reasonably
well, although not at human level.

κ
Actual

Agreement
Chance

Agreement sκ
Set equality

Human-
Human

0.84 0.84 0.034 0.014

System-
Human

0.65 0.66 0.025 0.018

Overlap
Human-
Human

0.87 0.88 0.040 0.012

System-
Human

0.73 0.74 0.033 0.016

Weighted
overlap

Human-
Human

0.92 0.94 0.30 0.0087

System-
Human

0.81 0.87 0.30 0.012

Table 1. Agreement between the system and
human raters.

Regarding the hypothesis question of whether
replacing menu-based justifications with natural
language justifications helps students have a
better understanding of geometry, we do not have
a definitive answer yet. Some experimental
results based on the same study seem to show
(Aleven et al. 2004) that while students’ ability
to express their knowledge was improved
considerably, students’ performance on actual
problem solving was not affected significantly.
There are a number of possible causes for that, so
further studies are needed.

5 Conclusions

We present a natural language understanding
system that combines unification-based syntactic
processing with logic-based semantics. The
system is used in conjunction with a Geometry
Cognitive Tutor to help students better
understand geometry. The approach we take
allows for an elegant solution to the problem of
determining equivalence between various ways

to express the same meaning. Study results show
that the system works reasonably well on
classifying students’ explanations on a grid of
about 200 fine-grained categories, although there
is space for further improvement. One particular
problem is robustness in the face of
ungrammaticality. Also the question of whether
natural language explanations improve students’
understanding of geometry still waits for a
definitive answer.
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