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Abstract
Even ambitious algorithms for the gener-
ation of referring expressions that iden-
tify sets of objects are restricted in terms 
of efficiency or in their expressive reper-
toire. In this paper, we report on a system 
that applies a best-first searching proce-
dure, enhancing both its effectiveness and 
the variety of expressions it can generate.  

1 Introduction
Generating referring expressions has recently 
been extended from the identification of single 
to sets of objects. However, existing algorithms   
suffer in terms of efficiency and expressiveness. 
In this paper, we report on a system that applies a 
best-first searching procedure, with an enhanced 
effectiveness and a larger variety of expressions 
it can generate. The system's repertoire includes 
compositions of partially identifying expressions 
and descriptions of objects to be excluded, there-
by taking into account impacts on surface forms.

Throughout this paper, we refer to a scenario 
with a set of 12 vehicles as defined in Figure 1. 
All vehicles are identifiable individually, to make 
the identification task meaningful. Only minor 
differences hold between some of these vehicles, 
which makes the identification task challenging.

This paper is organized as follows. First, we 
motivate our goals. Then we describe techniques 
for enhancing efficiency. We follow by illus-
trating improvements of expressiveness. Finally, 
we evaluate several efficiency-related techniques.

2 Motivation
Identifying sets of objects originally followed the 
incremental algorithm (Dale and Reiter 1995), as  
in (Bateman 1999), (Stone 2000) and (Krahmer 
et al. 2003), with limited coverage, since only few 
attributes typically apply to all intended referents 
and to none of the potential distractors. There-
fore, van Deemter (2002) has extended the set of 
descriptors to boolean combinations of attributes, 
including negations. Unfortunately, when apply-
ing the incremental strategy, this may lead to the 
inclusion of too many redundant descriptors in 
the final specification. This deficit disappeared 
using an exhaustive search (Gardent 2002), but   

run-time then increases considerably. Mediating 
between these two extreme search paradigms, we 
have developed a best-first searching algorithm 
that avoids the major deficit of the incremental 
approach (Horacek 2003). Since its intermediate 
results can also be used as partial descriptions, we 
build on the flexibility of this new algorithm to 
extend its expressive capabilities. In addition, we 
further enhance its efficiency-seeking measures.

These extensions attack the deficits previous 
algorithms share, according to (Horacek 2004):
• Expressions produced may become lengthy: 

for identifying sets of vehicles in the scenario 
in Figure 1, we have obtained non-redundant 
specifications with up to 8 descriptors. 

• Specifications may contain some disjunctions, 
frequently causing the production of structur-
ally ambiguous expressions (Gardent 2002) – 
“trucks and sportscars which are white or in 
the center” referring to x1, x5, x11 (Figure 1). 

We avoid these deficits by not restricting boolean 
expressions to a form with conjunctions as top 
level operators, as others always do. This allows 
us to incorporate descriptions of objects to be 
excluded, to produce enumerations and compo-
sitions of descriptions of subsets of the intended 
referents, and to build compositions of increa-
singly restricting descriptions of these referents.

                                                                                                                  
                                                                                                                  

Objects
Descriptors x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
                                                                                                                  

vehicle • • • • • • • • • • • •
car • • • • • • • •
sportscar • • • •
truck • • • •
blue • • •
red • • • • • •
white • • •
center • • • •
left • • • •
right • • • •
big • • • • • •
small • • • • • •
new • • • • • •
old • • • • • •

                                                                                                                  
                                                                                                                  

Figure 1. Example scenario with 12 vehicles



3 The Best-First Procedure
The basic mechanism of the best-first search 
algorithm is a generalization of the incremental 
version: instead of successively adding attributes 
to the full expression generated so far, all inter-
mediate results are accessible for this operation, 
producing an optimal solution, if completed – 
see (Horacek 2003) for details. This algorithm 
uses two cut-off techniques, assuming conflation 
(e.g., the descriptors man and unmarried can be 
verbalized as “bachelor”) is not possible: 
• A dominance cut-off is carried out locally for 

sibling nodes, when two partial descriptions 
exclude the same set of potential distractors,  
the same set of descriptors still being available. 
The variant evaluated worse is discarded.

• A value cut-off is carried out globally after a 
solution has been found. It is done for nodes 
whose most optimistic evaluation (including 
the minimal value of the description required 
for excluding the remaining potential distrac-
tors), surpasses the evaluation of that solution. 

Applying any of these cut-offs only serves to 
gain speed and does not change the final result. 

3.1 Efficiency-Enhancing Measures 
We have enhanced this repertoire by a complexity 
cut-off, carried out prior to further expanding a 
node if the boolean combination of descriptors 
build leads to a description that is more complex 
than a given threshold. For this threshold, we use 
the complexity of descriptions identifying each 
referent individually, which is an enumeration.   

The generation of boolean combinations is a 
critical part of the algorithm, since it is its most 
time-consuming component. Redundancies must 
be avoided, which requires more effort than pre-
vious approaches due to our hierarchical organi-
zation of property values. This burden is split 
between a static representation of implications, 
compiled from the underlying knowledge base 
about specializations, and the function Generate-
Next, which accesses these data. Four implications 
hold between properties and their negations:

implies (p,q) if specializes(p,q) holds
implies (p,¬q) if incompatible(p,q) holds 
implies (¬p,q) if opposite(p,q) holds 
implies (¬p,¬q) if generalizes(p,q) holds

Then the predicates subsumes and redundant can 
be defined for properties (or their negations):

subsumes(p,q) ≡ implies (q,p)
redundant(p,q) ≡ ¬(subsumes(p,q) ∨

subsumes(q,p))
The function Generate-Next (Figure 1) success-
ively builds increasingly complex disjunctions of 
descriptors and their negation. To start with, the 
procedure Increment produces the next property 

combination with given complexity, if existing 
(1). Otherwise (2), that complexity is augmented 
(9) before generating the next combination, 
unless the complexity limit is reached (8), 
causing a complexity cut-off. For a property 
combination, it is tested whether all its properties 
are pairwise redundant (3), then the next combi-
nation is built. If a non-redundant combination 
is found, it must pass the following tests: 
1. It subsumes the target set (4). 
2. It further reduces the set of distractors (5).
3. The reduced set of distractors is not equal to 

or a superset of the distractor associated with 
a sibling node already created; otherwise, a 
dominance cut-off applies (6).

If  successful, that combination is returned, 
otherwise building combinations is resumed (7).

3.2 Enhancing the Best-First Procedure
We have incorporated a number of improve-
ments over the original version of the procedure:  
• Treating linguistically motivated preferences 

as options rather than restrictions 
• Putting limitations on the complexity of 

specifications, to control comprehensibility
• Enhancing the expressive repertoire by 

descriptions of subsets of referents and by 
descriptions of referents to be excluded  

• Producing a sequence of increasingly res-
tricting descriptions rather than a single one.

                                                                                                                 

Procedure Generate-Next(Current-Prop-Comb)

1 Nextprop ← Increment(Current-Prop-Comb) (1)
if Nextprop = nil then goto Step 2  endif (2)
if redundant(p,q) for any p,q ∈ Nextprop  (3)

then goto Step 1 endif
if subsumes(Nextprop,Properties-of(T))

for all T ∈ Target and (4)
¬subsumes(Nextprop,Props(D)) 

for some D ∈ Distractors(Best-Node) (5)
 and ¬ Q ⊇ R, where 

R = {subsumes(Properties-of(P),Nextprop)}, 
Q ={subsumes(Properties-of(P),

Description(N))} 
for all P ∈ Distractors, (6)
some N ∈ successor(Best-Node)

then return Nextprop (7)
else goto Step 1 endif (Dominance cut-off)

2 if (Score(Description(Best-Node)) + 
Score(Nextprop)) ≥ Complexity-limit (8)

then return nil (Complexity cut-off)
else Nextprop ← Increment-size(Nextprop)

goto Step 1 endif (9)
                                                                                                                 

Figure 2. Pseudo-code of descriptor generation



In the following, we summarize each of these 
(see (Horacek 2004) for details).

The following linguistically motivated prefer-
ences are treated as options: a boolean combina-
tion of descriptors that express the category of 
the object (by a head noun) is chosen first, other 
(attribute) descriptors later, since a category must 
be chosen anyway. Moreover, we reduce the set 
of potential solutions by excluding “mixed” 
boolean combinations, that is disjunctions of a 
category and attributes, such as car ∨ red, which 
are unnatural and awkward to express verbally.

To strengthen comprehensibility, we specify 
limitations on the surface form of descriptions, 
including places for the head noun, pre- and 
postnominal modifiers, and relative clauses. 
Maximum numbers for each of these positions 
can be given, also specifying places as alternative 
ones, thus limiting the number of components in 
conjoined expressions. By associating descriptors 
with surface positions they can take, these speci-
fications allow one to control the surface struc-
ture of the descriptions during searching. 

For partial descriptions with multiple disjunc-
tions, recasting the expression built as a partial 
description is attempted to remain within given 
limits. These descriptions are always of the form 
^ i=1,n (∨ j=1,mi Pij), where each Pij  is a positive or 
negative descriptor. Even in moderately complex 
instances of this conjoined expression, several 
elements may consist of disjunctions of more 
than one descriptor. In such a constellation,we 
pick up one disjunction, for example ∨ j=1,mk Pkj 
for some k, transforming that expression by 
applying distributivity. This amounts to parti-
tioning the set of intended referents into subsets, 
where each of the components of the new top 
level disjunction describes one of these subsets. 
Consider, for example, “the sportscars that are 
not red and the small trucks” identifying x5, x7, 
x8, and x12 in two components rather than by the 
involved one-shot “the vehicles that are a sports-
car or small, and either a truck or not red.” In 
addition, descriptions may specify exceptions: 
describing some of the referents to be excluded 
may lead to shorter expressions than expanding 
the description of the intended referents, so that 
we integrate it in the expressive repertoire – for 
example, “the vehicles on the right, but not the 
red truck”, identifying x 1 , x 3 , and x 6  by 
excluding x7 in the locally restricted context. 

In accordance with these specifications, the 
best-first search is invoked to produce an identi-
fying description. This may not always be 
possible in complex situations. If this is the case, 
the best partial solution is taken, and the search is 
repeated within the restricted context defined by 
the descriptions generated so far. By this proce-
dure, a sequence of descriptions is generated 

rather than a single one. Consider, for example, 
“one of the trucks and the sportscars, all not 
white. The truck stands on the right”, identifying 
x6, x7, x11 and x12 out of all 12 vehicles (in Figure 
1) in two passes. 
3.3 An Example 
We illustrate the behavior of the system by a 
small example. Let {x1, x3, x6} in Figure 1 be the 
set of intended referents. Specifications for max-
imum complexity of surface forms allow head 
nouns, pre- and postnominal modifiers, at most 
one of them as a conjoined expression, and a 
relative clause or a “but”-modifier expressing 
an exception. Only two descriptors apply to all 
intended referents, vehicle and right. Even if 
vehicle is chosen first, subsequent searching only 
expands on the partial description with right, 
since it excludes a superset of the objects vehicle 
does: only x7 is remaining. The next simplest 
descriptor combination is car ∨  white, which 
would allow complete identification of the inten-
ded referents. Since it can only be expressed by 
a relative clause, for which conjoined expressions 
are not allowed, recasting the description is 
attempted. This yields  (car ^ right)  ∨  (white ^ 
right), which is a possible solution. Since a head 
noun is required for the second part, adding a 
further descriptor, an attempt is made to improve 
the solution, through finding an alternative to car 
∨  white. Describing the complement constitutes 
such an alternative, since identification is 
required for x7 only. This can be done by 
selecting t ruck and, afterwards, any of the 
descriptors red, small, and old (let us say, we pick 
red). This yields right ^ ¬ (truck ^ red) as an 
alternative solution, with vehicle being added to 
obtain a head noun. Altogether, a surface gener-
ator could then generate “the vehicles on the 
right, but not the red truck ”, resp. “the cars and 
the white vehicle, both on the right” – the latter 
with a clever aggregation module.

4 Experimental Results
We have implemented the algoritm in Common 
Lisp, on an Intel Pentium processor with 2600 
MHz. In the following elaborations, we use 
natural language descriptions for reasons of 
readability, even though our algorithm only 
produces boolean combinations of descriptors. 

We evaluate our algorithm from three 
perspectives: 1) effects of the linguistically moti-
vated restrictions, 2) effectiveness of the cut-off 
techniques, and 3) the behavior in scaling up for 
larger examples. For this purpose, we have built 
all subsets of two, three, and four vehicles, out of 
the vehicles x1 to x6, which yields 50 cases. 

In order to test the effects of the linguistically 
motivated reductions,  we have used  two versions 



                                                                                                                  
                                                                                                                  

cut-offs (v=value, d=dominance, c=complexity)
v&d&c v&c d&c c v&d d v

                                                                                                                  

time (msec)
minimum 10 10 60 90 10 90 10
maximum 690 1150 1910 192101100 4550 2320
average 121.5131.6354.81133.1140.5595.0168.1

tree size (nodes)
maximum 9 71 11 945 9 11 71
average 2.2 3.86 2.33 61.64 2.2 2.33 3.88
                                                                                                                 
                                                                                                                 

Table 1. Searches comparing effects of cut-offs

of the 50 cases, one with all properties, and one 
without size and age. In these runs, the maximum 
number of descriptors chosen was 5, and search 
trees grew up to 9 with and 20 nodes without 
using the linguistically motivated reductions. The 
average search times were 127.7 resp. 440.5 
msec, with a maximum of 950 resp. 2590 msec.

In order to compare the effectiveness of the 
cut-off techniques, we have run the same sample 
of 100 cases (50 with and 50 without size and 
age), with all combinations of at least one cut-off 
technique. Table 1 illustrates the results. Among 
others, they demonstrate that search times are not 
proportional to tree sizes, since a lot of effort is 
devoted to justify the avoidance of expansions, 
which varies among cut-off techniques. It turns 
out that the value cut-off is the most effective 
one, which underpins the importance of finding 
a solution quickly. Looking at individual 
examples reveals that the complementary effects 
of dominance and complexity cut-offs are signi-
ficant only for examples with larger solutions.

Finally, we have tested the algorithm's scala-
bility, by increasing the number of distractors, 
with up to 25 vehicles (similar to x1 to x12, but 
distinct from one another). The same 100 cases 
have been used as before, with all cut-off criteria. 
The results appear in Table 2. They demonstrate 
that the problem tends to get unmanagable for 
more than 12 distractors in both search time and 
number of descriptors needed for identification, 
the latter being the reason for the former. 
However, descriptions consisting of up to 10 
descriptors are unlikely to be understandable for 
humans, anyway – consider, for example, “the 
cars which are not blue, are old or stand in the 
center, are new or stand on the right side, are big 
or not white, and are small or not red” (108110 
msec, identifying x3, x4, and x 6  out of 25 
vehicles). For such complicated cases, identifying 
objects is broken down into simpler tasks (see 
Section 3.2). Conversely, useful results may be 
obtained for a large number of distractors – for 
example, “the old cars on the right side” (120 
msec, identifying x3 and x6 out of 25 vehicles).

                                                                                                                  
                                                                                                                  

nr. of distractors
6 7 8 9 10 12 15 20 25

                                                                                                                  

time (msec)
minimum 10 10 10 10 10 30 60 100 120
maximum 490 2300 3880 41004430 65305339088120141200
average 116 282 417 484 7051120 536612325 24838

max nr. of
tree nodes 9 10 12 16 27 61 106 303 907
descriptors 5 5 5 5 5 5 6 8 10
                                                                                                                  
                                                                                                                 

Table 2. Searches with varying sets of distractors

5 Conclusion
We have presented a system that can produce 
referring expressions for identifying sets of 
objects. It has a number of exceptional features, 
including several efficiency-enhancing measures, 
the incorporation of exclusion descriptions, and 
partitioning the identification task into subtasks. 
The results show that our system has an increased 
repertoire compared to its predecessors, and it 
can compute these expressions reasonably fast.
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