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Abstract 

Most traditional information extraction 
approaches are generative models that assume 
events exist in text in certain patterns and these 
patterns can be regenerated in various ways. 
These assumptions limited the syntactic clues 
being considered for finding an event and 
confined these approaches to a particular 
syntactic level. This paper presents a 
discriminative framework based on kernel SVMs 
that takes into account different levels of 
syntactic information and automatically 
identifies the appropriate clues. Kernels are used 
to represent certain levels of syntactic structure 
and can be combined in principled ways as input 
for an SVM. We will show that by combining a 
low level sequence kernel with a high level 
kernel on a GLARF dependency graph, the new 
approach outperformed a good rule-based 
system on slot filler detection for MUC-6. 

1 Introduction 

The goal of Information Extraction (IE) is to 
extract structured facts of interest from text and 
present them in databases or templates. Much of 
the IE research was promoted by the US 
Government-sponsored MUCs (Message 
Understanding Conferences). The techniques used 
by Information Extraction depend greatly on the 
sublanguage used in a domain, such as financial 
news or medical records. The training data for an 
IE system is often sparse since the target domain 
changes quickly. Traditional IE approaches try to 
generate patterns for events by various means 
using training data. For example, the FASTUS 
(Appelt et al., 1996) and Proteus (Grishman, 1996) 
systems, which performed well for MUC-6, used 
hand-written rules for event patterns. The symbolic 
learning systems, like AutoSlog (Riloff, 1993) and 
CRYSTAL (Fisher et al., 1996), generated patterns 
automatically from specific examples (text 
segments) using generalization and predefined 
pattern templates. There are also statistical 
approaches (Miller et al., 1998) (Collins et al., 
1998) trying to encode event patterns in statistical 
CFG grammars. All of these approaches assume 

events occur in text in certain patterns. However 
this assumption may not be completely correct and 
it limits the syntactic information considered by 
these approaches for finding events, such as 
information on global features from levels other 
than deep processing. This paper will show that a 
simple bag-of-words model can give us reliable 
information about event occurrence. When training 
data is limited, these other approaches may also be 
less effective in their ability to generate reliable 
patterns.    

  The idea for overcoming these problems is to 
avoid making any prior assumption about the 
syntactic structure an event may assume; instead, 
we should consider all syntactic features in the 
target text and use a discriminative classifier to 
decide that automatically. Discriminative 
classifiers make no attempt to resolve the structure 
of the target classes. They only care about the 
decision boundary to separate the classes. In our 
case, we only need criteria to predict event 
elements from text using the syntactic features 
provided. This seems a more suitable solution for 
IE where training data is often sparse. 

 This paper presents an approach that uses kernel 
functions to represent different levels of syntactic 
structure (information). With the properties of 
kernel functions, individual kernels can be 
combined freely into comprehensive kernels that 
cross syntactic levels. The classifier we chose to 
use is SVM (Support Vector Machine), mostly due 
to its ability to work in high dimensional feature 
spaces. The experimental results of this approach 
show that it can outperform a hand-crafted rule 
system for the MUC-6 management succession 
domain. 

2 Background 

2.1 Information Extraction 

The major task of IE is to find the elements of an 
event from text and combine them to form 
templates or populate databases.  Most of these 
elements are named entities (NEs) involved in the 
event. To determine which entities in text are 
involved, we need to find reliable clues around 
each entity. The extraction procedure starts with 
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text preprocessing, ranging from tokenization and 
part-of-speech tagging to NE identification and 
parsing. Traditional approaches would use various 
methods of analyzing the results of deep 
preprocessing to find patterns. Here we propose to 
use support vector machines to identify clues 
automatically from the outputs of different levels 
of preprocessing. 

2.2 Support Vector Machine 

For a two-class classifier, with separable training 
data, when given a set of n labeled vector examples 

    }1,1{),,(),...,,(),,( 2211 −+∈inn yyXyXyX ,  

a support vector machine (Vapnik, 1998) produces 
the separating hyperplane with largest margin 
among all the hyperplanes that successfully 
classify the examples. Suppose that all the 
examples satisfy the following constraint:  

             1),( ≥+><× bXWy ii  

It is easy to see that the margin between the two  
bounding hyperplanes 1, ±=+>< bXW i is 

2/||W||. So maximizing the margin is equivalent to 
minimizing ||W||2 subject to the separation 
constraint above. In machine learning theory, this 
margin relates to the upper bound of the VC-
dimension of a support vector machine. Increasing 
the margin reduces the VC-dimension of the 
learning system, thus increasing the generalization 
capability of the system.  So a support vector 
machine produces a classifier with optimal 
generalization capability. This property enables 
SVMs to work in high dimensional vector spaces. 

2.3 Kernel SVM 

The vectors in SVM are usually feature vectors 
extracted by a certain procedure from the original 
objects, such as images or sentences. Since the 
only operator used in SVM is the dot product 
between two vectors, we can replace this operator 
by a function ),( ji SSϕ  on the object domain. In 

our case, Si and Sj are sentences. Mathematically 
this is still valid as long as ),( ji SSϕ  satisfies 

Mercer’s condition1 . Function ),( ji SSϕ  is often 

referred to as a kernel function or just a kernel.  
Kernel functions provide a way to compute the 
similarity between two objects without 
transforming them into features.  

   
The kernel set has the following properties: 

                                                      
1 The matrix must be positive semi-definite 

1. If ),(1 yxK  and ),(2 yxK are kernels on YX × , 

0, >βα , then ),(),( 21 yxKyxK βα +  is a kernel 

on YX × . 
2. If ),(1 yxK  and ),(2 yxK are kernels on YX × , 

then ),(),( 21 yxKyxK ×  is a kernel on YX × . 

3. If ),(1 yxK  is a kernel on YX × and 

),(2 vuK  is a kernel on VU × , then 

),(),()),(),,(( 21 vuKyxKvyuxK += is a kernel 

on )()( VYUX ××× . 
When we have kernels representing information 
from different sources, these properties enable us 
to incorporate them into one kernel. The general 
kernels such as RBF or polynomial kernels (Müller 
et al., 2001), which extend features nonlinearly 
into higher dimensional space, can also be applied 
to either the combination kernel or to each 
component kernel individually. 

2.4 Related Work 

  There have been a number of SVM applications 
in NLP using particular levels of syntactic 
information. (Lodhi et al., 2002) compared a word-
based string kernel and n-gram kernels at the 
sequence level for a text categorization task. The 
experimental results showed that the n-gram 
kernels performed quite well for the task. Although 
string kernels can capture common word 
subsequences with gaps, its geometric penalty 
factor may not be suitable for weighting the long 
distance features. (Collins et al., 2001) suggested 
kernels on parse trees and other structures for 
general NLP tasks. These kernels count small 
subcomponents multiple times so that in practice 
one has to be careful to avoid overfitting. This can 
be achieved by limiting the matching depth or 
using a penalty factor to downweight large 
components.  

(Zelenko et al., 2003) devised a kernel on 
shallow parse trees to detect relations between 
named entities, such as the person-affiliation 
relation between a person name and an 
organization name. The so-called relation kernel 
matches from the roots of two trees and continues 
recursively to the leaf nodes if the types of two 
nodes match.  

All the kernels used in these works were applied 
to a particular syntactic level. This paper presents 
an approach for information extraction that uses 
kernels to combine information from different 
levels and automatically identify which 
information contributes to the task. This 
framework can also be applied to other NLP tasks. 
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3 A Discriminative Framework 

  The discriminative framework proposed here is 
called ARES (Automated Recognition of Event 
Slots). It makes no assumption about the text 
structure of events. Instead, kernels are used to 
represent syntactic information from various 
syntactic sources. The structure of ARES is shown 
in Fig 1. The preprocessing modules include a 
part-of-speech tagger, name tagger, sentence parser 
and GLARF parser, but are not limited to these. 
Other general tools can also be included, which are 
not shown in the diagram. The triangles in the 
diagram are kernels that encode the corresponding 
syntactic processing result. In the training phase, 
the target slot fillers are labeled in the text so that 
SVM slot detectors can be trained through the 
kernels to find fillers for the key slots of events. In 
the testing phase, the SVM classifier will predict 
the slot fillers from unlabeled text and a merging 
procedure will merge slots into events if necessary. 
The main kernel we propose to use is on GLARF 
(Meyers et al., 2001) dependency graphs. 

 

 
Fig 1. Structure of the discriminative model 
 
  The idea is that an IE model should not commit 

itself to any syntactic level. The low level 
information, such as word collocations, may also 
give us important clues. Our experimentation will 
show that for the MUC-6 management succession 
domain, even bag-of-words or n-grams can give us 
helpful information about event occurrence. 

3.1 Syntactic Kernels 

  To make use of syntactic information from 
different levels, we can develop kernel functions or 
syntactic kernels to represent a certain level of 
syntactic structure. The possible syntactic kernels 
include 

• Sequence kernels: representing sequence 
level information, such as bag-of-words, n-
grams, string kernel, etc. 

• Phrase kernel: representing information at 
an intermediate level, such as kernels 
based on multiword expressions, chunks or 
shallow parse trees. 

• Parsing kernel: representing detailed 
syntactic structure of a sentence, such as 
kernels based on parse trees or dependency 
graphs. 

 
  These kernels can be used alone or combined 

with each other using the properties of kernels. 
They can also be combined with high-order kernels 
like polynomial or RBF kernels, either individually 
or on the resulting kernel. 

As the depth of analysis of the preprocessing 
increases, the accuracy of the result decreases. 
Combining the results of deeper processing with 
those of shallower processing (such as n-grams) 
can also give us a back-off ability to recover from 
errors in deep processing. 

In practice each kernel can be tested for the task 
as the sole input to an SVM to determine if this 
level of information is helpful or not. After 
figuring out all the useful kernels, we can try to 
combine them to make a comprehensive kernel as 
final input to the classifier. The way to combine 
them and the parameters in combination can be 
determined using validation data. 

4 Introduction to GLARF 

GLARF (Grammatical and Logical Argument 
Regularization Framework) [Meyers et al., 2001] is 
a  hand-coded system that produces comprehensive 
word dependency graphs from Penn TreeBank-II 
(PTB-II) parse trees to facilitate applications like 
information extraction. GLARF is designed to 
enhance PTB-II parsing to produce more detailed 
information not provided by parsing, such as 
information about object, indirect object and 
appositive relations. GLARF can capture more 
regularization in text by transforming non-
canonical (passive, filler-gap) constructions into 
their canonical forms (simple declarative clauses). 
This is very helpful for information extraction 
where training data is often sparse. It also 
represents all syntactic phenomena in uniform 
typed PRED-ARG structures, which is convenient 
for computational purposes. For a sentence, 
GLARF outputs depencency triples derived 
automatically from the GLARF typed feature 
structures [Meyers et al., 2001]. A directed 
dependency graph of the sentence can also be 
constructed from the depencency triples. The 
following is the output of GLARF for the sentence 
“Tom Donilon, who also could get a senior job 
…”. 

<SBJ,   get,  Tom Donilon> 
<OBJ,  get,   job> 
<ADV,  get,  also> 
<AUX,  get,  could> 
<T-POS,  job, a> 
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<A-POS,  job,  senior> 
  . . . 
GLARF can produce logical relations in addition 

to surface relations, which is helpful for IE tasks. It 
can also generate output containing the base form 
of words so that different tenses of verbs can be 
regularized. Because of all these features, our main 
kernels are based on the GLARF dependency 
triples or dependency graphs.  

5 Event and Slot Kernels 

Here we will introduce the kernels used by ARES 
for event occurrence detection (EOD) and slot 
filler detection (SFD).  

5.1 EOD Kernels 

  In Information Extraction, one interesting issue 
is event occurrence detection, which is determining 
whether a sentence contains an event occurrence or 
not. If this information is given, it would be much 
easier to find the relevant entities for an event from 
the current sentence or surrounding sentences. 
Traditional approaches do matching (for slot 
filling) on all sentences, even though most of them 
do not contain any event at all. Event occurrence 
detection is similar to sentence level information 
retrieval, so simple models like bag-of-words or n-
grams could work well. We tried two kernels to do 
this, one is a sequence level n-gram kernel and the 
other is a GLARF-based kernel that matches 
syntactic details between sentences. In the 
following formulae, we will use an identity 
function ),( yxI that gives 1 when yx ≡  and 0 
otherwise, where xand y are strings or vectors of 
strings.  

 
1. N-gram kernel ),( 21 SSNϕ  that counts common 

n-grams between two sentences. Given two 
sentence: >=<

1
,..., 211 NwwwS , and >=<

2
,..., 211 NwwwS ,  

a bigram kernel ),( 21 SSbiϕ  is 

∑∑
−

=
++

−

=

><><
1

1
11

1

1

21

),,,(
N

j
jjii

N

i

wwwwI .   

Kernels can be inclusive, in other words, the 
trigram kernel includes bigrams and unigrams. For 
the unigram kernel a stop list is used that removes 
words other than nouns, verbs, adjectives and 
adverbs. 

2. Glarf kernel ),( 21 GGgϕ : this kernel is based 

on the GLARF dependency result. Given the triple 
outputs of two sentences produced by  
GLARF: },,{1 ><= iii aprG , 11 Ni ≤≤  and 

},,{2 ><= jjj aprG , 21 Nj ≤≤ , where r i, pi, ai 

correspond to the role label, predicate word and 
argument word respectively in GLARF output, it 
matches the two triples, their predicates and 
arguments respectively. So ),( 21 GGgϕ  equals 

)),(),(),,,,,((
21

11
∑∑

==

++><><
N

j
jijijjjiii

N

i

aaIppIapraprI βα  

In our experiments, α andβ  were set to 1. 

5.2 SFD Kernels 

 Slot filler detection (SFD) is the task of 
determining which named entities fill a slot in 
some event template.  Two kernels were proposed 
for SFD: the first one matches local contexts of 
two target NEs, while the second one combines the 
first one with an n-gram EOD kernel.  

  1. ),(1
jiSFD GGϕ : This kernel was also defined 

on a GLARF dependency graph (DG), a directed 
graph constructed from its typed PRED-ARG 
outputs. The arcs labeled with roles go from 
predicate words to argument words. This kernel 
matches local context surrounding a name in a 
GLARF dependency graph. In preprocessing, all 
the names of the same type are translated into one 
symbol (a special word). The matching starts from 
two anchor nodes (NE nodes of the same type) in 
the two DG’s and recursively goes from these 
nodes to their successors and predecessors, until 
the words associated with nodes do not match. In 
our experiment, the matching depth was set to 2. 
Each node n contains a predicate word w and  
relation pairs },{ >< ii ar , pi ≤≤1  representing 

its p arguments and the roles associated with them.  
A matching function ),( 21 nnC  is defined as 

∑∑
==

+><><
21

11

)),(),,,((
p

j
jijjii

p

i

rrIararI . 

Then ),(1
jiSFD GGϕ : can be written as 

∑∑

≡
∈
∈

≡
∈
∈

++

ji

jj

ii

ji

jj

ii

nn
Eedn
Eedn

ji

nn
ESuccn
ESuccn

jiji nnCnnCEEC

)(Pr
)(Pr

)(
)(

),(),(),(  

where Ei and Ej are the anchor nodes in the two 
DG’s; ji nn ≡ is true if the predicate words 

associated with them match. Functions Succ(n) and 
Pred(n) give the successor and predecessor node 
set of a node n. The reason for setting a depth limit 
is that it covers most of the local syntax of a node 
(before matching stops); another reason is that the 
cycles currently present in GLARF dependency 
graph prohibit unbounded recursive matching. 

  2. ),(2
jiSFD SSϕ : This kernel combines linearly 

the n-gram event kernel and the slot kernel above, 
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in the hope that the general event occurrence 
information provided by EOD kernel can help the 
slot kernel to ignore NEs in sentences that do not 
contain any event occurrence.  

),(),(),( 12
jiSFDjiNjiSFD GGSSSS βϕαϕϕ += , 

where βα , were set to be 1 in our experiments. 
The Glarf event kernel was not used, simply 
because it uses information from the same source 
as ),(1

jiSFD GGϕ . The n-gram kernel was chosen 

to be the trigram kernel, which gives us the best 
EOD performance among n-gram kernels. 

We also tried the dependency graph kernel 
proposed by (Collins et al., 2001), but it did not 
give us better result. 

6 Experiments 

6.1 Corpus 

  The experiments of ARES were done on the 
MUC-6 corporate management succession domain 
using the official training data and, for the final 
experiment, the official test data as well. The 
training data was split into a training set (80%) and 
validation set (20%). In ARES, the text was 
preprocessed by the Proteus NE tagger and 
Charniak sentence parser. Then the GLARF 
processor produced dependency graphs based on 
the parse trees and NE results. All the names were 
transformed into symbols representing their types, 
such as #PERSON# for all person names. The 
reason is that we think the name itself does not 
provide a significant clue; the only thing that 
matters is what type of name occurs at certain 
position. 
  Two tasks have been tried: one is EOD (event 
occurrence detection) on sentences; the other is 
SFD (slot filler detection) on named entities, 
including person names and job titles. EOD is to 
determine whether a sentence contains an event or 
not. This would give us general information about 
sentence-level event occurrences. SFD is to find 
name fillers for event slots. The slots we 
experimented with were the person name and job 
title slots in MUC-6. We used the SVM package 
SVMlight in our experiments, embedding our own 
kernels as custom kernels. 

6.2 EOD Experiments 

  In this experiment, ARES was trained on the 
official MUC-6 training data to do event 
occurrence detection. The data contains 1940 
sentences, of which 158 are labeled as positive 
instances (contain an event). Five-fold cross 
validation was used so that the training and test set 
contain 80% and 20% of the data respectively. 

Three kernels defined in the previous section were 
tried. Table 1 shows the performance of each 
kernel. Three n-gram kernels were tested: unigram, 
bigram and trigram. Subsequences longer than 
trigrams were also tried, but did not yield better 
results. 
  The results show that the trigram kernel 
performed the best among n-gram kernels. GLARF 
kernel did better than n-gram kernels, which is 
reasonable because it incorporates detailed syntax 
of a sentence. But generally speaking, the n-gram 
kernels alone performed fairly well for this task, 
which indicates that low level text processing can 
also provide useful information. The mix kernel 
that combines the trigram kernel with GLARF 
kernel gave the best performance, which might 
indicate that the low level information provides 
additional clues or helps to overcome errors in 
deep processing. 

 

Kernel Precision Recall F-score 

Unigram 66.0% 66.5% 66.3% 
Bigram 73.9% 60.3% 66.4% 
Trigram 77.5% 61.5% 68.6% 
GLARF 77.5% 63.9% 70.1% 

Mix 81.5% 66.4% 73.2% 
 

Table 1. EOD performance of ARES using 
different kernels. The Mix kernel is a linear 
combination of the trigram kernel and the Glarf 
kernel. 

6.3 SFD Experiments 

The slot filler detection (SFD) task is to find the 
named entities in text that can fill the 
corresponding slots of an event.2 We treat job title 
as a named entity throughout this paper, although it 
is not included in the traditional MUC named 
entity set. The slots we used for evaluation were 
PERSON_IN (the person who took a position),  
PERSON_OUT (the person who left a position) 
and POST (the position involved). We generated 
the two person slots from the official MUC-6 
templates and the corresponding filler strings in 
text were labeled. Three SVM predictors were 
trained to find name fillers of each slot. Two 
experiments have been tried on MUC-6 training 
data using five-fold cross validation. 

  The first experiment of ARES used slot kernel 
),(1

jiSFD GGϕ  alone, relying solely on local 

                                                      
2 We used this task for evaluation, rather than the 

official MUC template-filling task, in order to assess the 
system’s ability to identify slot fillers separately from its 
ability to combine them into templates. 
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context around a NE. From the performance table 
(Table 2), we can see that local context can give a 
fairly good clue for finding PERSON_IN and 
POST, but not for PERSON_OUT. The main 
reason is that local context might be not enough to 
determine a PERSON_OUT filler. It often requires 
inference or other semantic information. For 
example, the sentence “Aaron Spelling, the 
company's vice president, was named president.”, 
indicates that “Aaron Spelling” left the position of 
vice president, therefore it should be a 
PERSON_OUT. But the sentence “Aaron Spelling, 
the company's vice president, said …”, which is 
very similar to first one in syntax, has no such 
indication at all. In complicated cases, a person can 
even hold two positions at the same time. 

 
Accuracy Precision Recall F-score 
PER_IN 63.6% 62.5% 63.1% 

PER_OUT 54.8% 54.2% 54.5% 
POST 64.4% 55.2% 59.4% 

 
Table 2. SFD performance of ARES using kernel 

),(1
jiSFD GGϕ . 

 
  In this experiment, the SVM predictor 

considered all the names identified by the NE 
tagger; however, most of the sentences do not 
contain an event occurrence at all, so NEs in these 
sentences should be ignored no matter what their 
local context is. To achieve this we need general 
information about event occurrence, and this is just 
what the EOD kernel can provide. In our second 
experiment, we tested the kernel ),(2

jiSFD SSϕ , 

which is a linear combination of the trigram EOD 
kernel and the SFD kernel ),(1

jiSFD GGϕ . Table 3 

shows the performance of the combination kernel, 
from which we can see that there is clear 
performance improvement for all three slots. We 
also tried to use the mix kernel which gave us the 
best EOD performance, but it did not yield a better 
result. The reason we think is that the GLARF 
EOD kernel and SFD kernel are from the same 
syntactic source, so the information was repeated. 

 
Accuracy Precision Recall F-score 

PER_IN 86.6% 60.5% 71.2% 
PER_OUT 69.2% 58.2% 63.2% 

POST 68.5% 68.9% 68.7% 
 
Table 3. SFD performance of ARES using kernel 

),(2
jiSFD SSϕ . It combines the Glarf SFD kernel 

with trigram EOD kernel. For PER_OUT,  
unigram EOD kernel was used. 

 
Since five-fold cross validation was used, ARES 

was trained on 80% of the MUC-6 training data in 
these two experiments.  

6.4 Comparison with MUC-6 System 

This experiment was done on the official MUC-
6 training and test data, which contain 50K words 
and 40K words respectively. ARES used the 
official corpora as training and test sets, except that 
in the training data, all the slot fillers were 
manually labeled. We compared the performance 
of ARES with the NYU Proteus system, a rule-
based system that performed well for MUC-6. To 
score the performance for these three slots, we 
generated the slot-filler pairs as keys for a 
document from the official MUC-6 templates and 
removed duplicate pairs. The scorer matches the 
filler string in the response file of ARES to the 
keys.  The response result for Proteus was 
extracted in the same way from its template output. 
Table 4. shows the result of ARES using the 
combination kernel in the previous experiment. 

 
Accuracy Precision Recall F-score 

PER_IN 77.3% 62.2% 68.9% 
PER_OUT 58.9% 69.7% 63.9% 

POST 77.1% 71.5% 73.6% 
 

Table 4. Slot performance ARES using kernel 
),(2

jiSFD SSϕ  on MUC-6 test data.  

 
Table 5 shows the test result of the Proteus 

system. Comparing the numbers we can see that 
for slot PERSON_IN and POST, ARES 
outperformed the Proteus system by a few points. 
The result is promising considering that this model 
is fully automatic and does not involve any post-
processing. As for the PERSON_OUT slot, the 
performance of ARES was not as good. As we 
have discussed before, relying purely on syntax 
might not help us much;  we may need an 
inference model to resolve this problem. 

 
Accuracy Precision Recall F-score 

PER_IN 85.7% 51.2% 64.1% 
PER_OUT 78.4% 58.6% 67.1% 

POST 83.3% 59.7% 69.5% 
 
Table 5. Slot performance of the rule-based 

Proteus system for MUC-6. 

7 Related Work 

(Chieu et al., 2003) reported a feature-based 
SVM system (ALICE) to extract MUC-4 events of 
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terrorist attacks. The Alice-ME system 
demonstrated competitive performance with rule-
based systems. The features used by Alice are 
mainly from parsing. Comparing with ALICE, our 
system uses kernels on dependency graphs to 
replace explicit features, an approach which is 
fully automatic and requires no enumeration of 
features. The model we proposed can combine 
information from different syntactic levels in 
principled ways. In our experiments, we used both 
word sequence  information and parsing level 
syntax information. The training data for ALICE 
contains 1700 documents, while for our system it 
is just 100 documents. When data is sparse, it is 
more difficult for an automatic system to 
outperform a rule-based system that incorporates 
general knowledges. 

8 Discussion and Further Works 

    This paper describes a discriminative approach 
that can use syntactic clues automatically for slot 
filler detection. It outperformed a hand-crafted 
system on sparse data by considering different 
levels of syntactic clues. The result also shows that 
low level syntactic information can also come into 
play in finding events, thus it should not be ignored 
in the IE framework. 
    For slot filler detection, several classifiers were 
trained to find names for each slot and there is no 
correlation among these classifiers. However, 
entity slots in events are often strongly correlated, 
for example the PER_IN and POST slots for 
management succession events. Since these 
classifiers take the same input and produce 
different results, correlation models can be used to 
integrate these classifiers so that the identification 
of slot fillers might benefit each other.  
    It would also be interesting to experiment with 
the tasks that are more difficult for pattern 
matching, such as determining the on-the-job 
status property in MUC-6. Since events often span 
multiple sentences, another direction is to explore 
cross-sentence models, which is difficult for 
traditional approaches. For our approach it is 
possible to extend the kernel from one sentence to 
multiple sentences, taking into account the 
correlation between NE’s in adjacent sentences. 
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