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Abstract 

We present a new HMM tagger that exploits 
context on both sides of a word to be tagged, and 
evaluate it in both the unsupervised and supervised 
case. Along the way, we present the first 
comprehensive comparison of unsupervised 
methods for part-of-speech tagging, noting that 
published results to date have not been comparable 
across corpora or lexicons. Observing that the 
quality of the lexicon greatly impacts the accuracy 
that can be achieved by the algorithms, we present 
a method of HMM training that improves accuracy 
when training of lexical probabilities is unstable. 
Finally, we show how this new tagger achieves 
state-of-the-art results in a supervised, non-training 
intensive framework. 

1 Introduction 

The empiricist revolution in computational 
linguistics has dramatically shifted the accepted 
boundary between what kinds of knowledge are 
best supplied by humans and what kinds are best 
learned from data, with much of the human-
supplied knowledge now being in the form of 
annotations of data.  As we look to the future, we 
expect that relatively unsupervised methods will 
grow in applicability, reducing the need for 
expensive human annotation of data. 

With respect to part-of-speech tagging, we 
believe that the way forward from the relatively 
small number of languages for which we can 
currently identify parts of speech in context with 
reasonable accuracy will make use of unsupervised 
methods that require only an untagged corpus and 
a lexicon of words and their possible parts of 
speech.  We believe this based on the fact that such 
lexicons exist for many more languages (in the 
form of conventional dictionaries) than extensive 
human-tagged training corpora exist for. 

Unsupervised part-of-speech tagging, as defined 
above, has been attempted using a variety of 
learning algorithms (Brill 1995, Church, 1988, 
Cutting et. al. 1992, Elworthy, 1994 Kupiec 1992, 
Merialdo 1991).  While this makes unsupervised 
part-of-speech tagging a relatively well-studied 
problem, published results to date have not been 
comparable with respect to the training and test 

data used, or the lexicons which have been made 
available to the learners.  

In this paper, we provide the first comprehensive 
comparison of methods for unsupervised part-of-
speech tagging.  In addition, we explore two new 
ideas for improving tagging accuracy.  First, we 
explore an HMM approach to tagging that uses 
context on both sides of the word to be tagged, 
inspired by previous work on building 
bidirectionality into graphical models (Lafferty et. 
al. 2001, Toutanova et. al. 2003).   Second we 
describe a method for sequential unsupervised 
training of tag sequence and lexical probabilities in 
an HMM, which we observe leads to improved 
accuracy over simultaneous training with certain 
types of models. 

In section 2, we provide a brief description of 
the methods we evaluate and review published 
results. Section 3 describes the contextualized 
variation on HMM tagging that we have explored. 
In Section 4 we provide a direct comparison of 
several unsupervised part-of-speech taggers, which 
is followed by Section 5, in which we present a 
new method for training with suboptimal lexicons. 
In section 6, we revisit our new approach to HMM 
tagging, this time, in the supervised framework. 

2 Previous Work 

A common formulation of an unsupervised part-of-
speech tagger takes the form of a hidden Markov 
model (HMM), where the states correspond to 
part-of-speech tags, ti, and words, wi, are emitted 
each time a state is visited. The training of HMM–
based taggers involves estimating lexical 
probabilities, P(wi|ti), and tag sequence 
probabilities, P(ti | ti-1 ... ti-n). The ultimate goal of 
HMM training is to find the model that maximizes 
the probability of a given training text, which can 
be done easily using the forward-backward, or 
Baum-Welch algorithm (Baum et al 1970, Bahl, 
Jelinek and Mercer, 1983). These model 
probabilities are then used in conjunction with the 
Viterbi algorithm (Viterbi, 1967) to find the most 
probable sequence of part-of-speech tags for a 
given sentence. 

When estimating tag sequence probabilities, an 
HMM tagger, such as that described in Merialdo 



(1991), typically takes into account a history 
consisting of the previous two tags -- e.g. we 
compute  P(ti | ti-1, ti-2). Kupiec (1992) describes a 
modified trigram HMM tagger in which he 
computes word classes for which lexical 
probabilities are then estimated, instead of 
computing probabilities for individual words. 
Words contained within the same equivalence 
classes are those which possess the same set of 
possible parts of speech. 

Another highly-accurate method for part-of-
speech tagging from unlabelled data is Brill’s 
unsupervised transformation-based learner (UTBL) 
(Brill, 1995). Derived from his supervised 
transformation-based tagger (Brill, 1992), UTBL 
uses information from the distribution of 
unambiguously tagged data to make informed 
labeling decisions in ambiguous contexts. In 
contrast to the HMM taggers previously described, 
which make use of contextual information coming 
from the left side only, UTBL considers both left 
and right contexts. 

Reported tagging accuracies for these methods 
range from 87% to 96%, but are not directly 
comparable. Kupiec’s HMM class-based tagger, 
when trained on a sample of 440,000 words of the 
original Brown corpus, obtained a test set accuracy 
of 95.7%. Brill assessed his UTBL tagger using 
350,000 words of the Brown corpus for training, 
and found that 96% of words in a separate 
200,000-word test set could be tagged correctly.  
Furthermore, he reported test set accuracy of 
95.1% for the UTBL tagger trained on 120,000 
words of Penn Treebank and tested on a separate 
test set of 200,000 words taken from the same 
corpus.  Finally, using 1 million words from the 
Associated Press for training, Merialdo’s trigram 
tagger was reported to have an accuracy of 86.6%. 
This tagger was assessed using a tag set other than 
that which is employed by the Penn Treebank.  

Unfortunately none of these results can be 
directly compared to the others, as they have used 
different, randomized and irreproducible splits of 
training and test data (Brill and Kupiec), different 
tag sets (Merialdo) or different corpora altogether.  

The HMM taggers we have discussed so far are 
similar in that they use condition only on left 
context when estimating probabilities of tag 
sequences. Recently, Toutanova et al. (2003) 
presented a supervised conditional Markov Model 
part-of-speech tagger (CMM) which exploited 
information coming from both left and right 
contexts.  Accuracy on the Penn Treebank using 
two tags to the left as features in addition to the 
current tag was 96.10%. When using tag to the left 
and tag to the right as features in addition to the 
current tag, accuracy improved to 96.55%.  

Lafferty et al. (2001) also compared the 
accuracies of several supervised part-of-speech 
tagging models, while examining the effect of 
directionality in graphical models. Using a 50%-
50% train-test split of the Penn Treebank to assess 
HMMs, maximum entropy Markov models 
(MEMMs) and conditional random fields (CRFs), 
they found that CRFs, which make use of 
observation features from both the past and future, 
outperformed HMMs which in turn outperformed 
MEMMs. 

3 Building More Context into HMM Tagging 

In a traditional HMM tagger, the probability of 
transitioning into a state representing tag ti is 
computed based on the previous two tags ti-1 and ti-

2, and the probability of a word wi is conditioned 
only on the current tag ti. This formulation ignores 
dependencies that may exist between a word and 
the part-of-speech tags of the words which precede 
and follow it. For example, verbs which 
subcategorize strongly for a particular part-of-
speech but can also be tagged as nouns or 
pronouns (e.g. “thinking that”) may benefit from 
modeling dependencies on future tags. 

To model this relationship, we now estimate the 
probability of a word wi based on tags ti-1 and ti-+1. 
This change in structure, which we will call a 
contextualized HMM, is depicted in Figure 1. This 
type of structure is analogous to context-dependent 
phone models used in acoustic modeling for 
speech recognition (e.g.Young, 1999, Section 4.3). 

 

3.1 Model Definition 

In order to build both left and right-context into an 
HMM part-of-speech tagger, we reformulate the 

 

 

 

Figure 1: Graphical Structure of Traditional 
HMM Tagger (top) and Contextualized HMM 

Tagger (bottom) 
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Given that we are using an increased context size 
during the estimation of lexical probabilities, thus 
fragmenting the data, we have found it desirable to 
smooth these estimates, for which we use a 
standard absolute discounting scheme (Ney, Essen 
and Knesser, 1994). 

4 Unsupervised Tagging: A Comparison 

4.1 Corpora and Lexicon Construction 

For our comparison of unsupervised tagging 
methods, we implemented the HMM taggers 
described in Merialdo (1991) and Kupiec (1992), 
as well as the UTBL tagger described in Brill 
(1995). We also implemented a version of the 
contextualized HMM using the type of word 
classes utilized in the Kupiec model. The 
algorithms were trained and tested using version 3 
of the Penn Treebank, using the training, 
development, and test split described in Collins 
(2002) and also employed by Toutanova et al. 
(2003) in testing their supervised tagging 
algorithm. Specifically, we allocated sections 00-
18 for training, 19-21 for development, and 22-24 
for testing. To avoid the problem of unknown 
words, each learner was provided with a lexicon 
constructed from tagged versions of the full 
Treebank. We did not begin with any estimates of 
the likelihoods of tags for words, but only the 
knowledge of what tags are possible for each word 
in the lexicon, i.e., something we could obtain 
from a manually-constructed dictionary. 

4.2 The Effect of Lexicon Construction on 
Tagging Accuracy 

To our surprise, we found initial tag accuracies of 
all methods using the full lexicon extracted from 
the Penn Treebank to be significantly lower than 
previously reported. We discovered this was due to 
several factors.  

One issue we noticed which impacted tagging 
accuracy was that of a frequently occurring word  

(a) The/VB Lyneses/NNP ,/, of/IN Powder/NNP 
Springs/NNP ,/, Ga./NNP ,/, have/VBP 
filed/VBN suit/NN in/IN Georgia/NNP 
state/NN court/NN against/IN Stuart/NNP 
James/NNP ,/, *-1/-NONE- alleging/VBG 
fraud/NN ./. 

(b) Last/JJ week/NN CBS/NNP Inc./NNP 
cancelled/VBD ``/`` The/NNP People/NNP 
Next/NNP Door/NNP ./. ''/'' 

(c) a/SYM -/: Discounted/VBN rate/NN ./. 

Figure 2:  Manually-Tagged Examples 

being mistagged during Treebank construction, as 
shown in the example in Figure 2a. Since we are 
not starting out with any known estimates for 
probabilities of tags given a word, the learner 
considers this tag to be just as likely as the word’s 
other, more probable, possibilities. In another, 
more frequently occurring scenario, human 
annotators have chosen to tag all words in multi-
word names, such as titles, with the proper-noun 
tag, NNP (Figure 2b). This has the effect of adding 
noise to the set of tags for many closed-class 
words. 

Finally, we noticed that a certain number of 
frequently occurring words (e.g. a, to, of) are 
sometimes labeled with infrequently occurring tags 
(e.g.  SYM, RB), as exemplified in Figure 2c. In the 
case of the HMM taggers, where we begin with 
uniform estimates of both the state transition 
probabilities and the lexical probabilities, the 
learner finds it difficult to distinguish between 
more and less probable tag assignments. 

We later discovered that previous 
implementations of UTBL involved limiting which 
possible part of speech assignments were placed 
into the lexicon1, which was not explicitly detailed 
in the published reports.  We then simulated, in a 
similar fashion, the construction of higher quality 
lexicons by using relative frequencies of tags for 
each word from the tagged Treebank to limit 
allowable word-tag assignments.  That is, tags that 
appeared the tag of a particular word less than X% 
of the time were omitted from the set of possible 
tags for that word.  We varied this threshold until 
accuracy did not significantly change on our set of 
heldout data. The effect of thresholding tags based 
on relative frequency in the training set is shown 
for our set of part-of-speech taggers in the curve in 
Figure 3. As shown in Table 1, the elimination of 
noisy possible part-of-speech assignments raised 
accuracy back into the realm of previously 
published results. The best test set accuracies for 
the learners in the class of HMM taggers are  

                                                      
1 Eric Brill, Personal Communication 
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Figure 3:  The effect of lexicon construction on 
unsupervised part-of-speech taggers 
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 Figure 4: Test Accuracy of HMMs using 
Optimzed Lexicons 

 
 
plotted against the number of training iterations in 
Figure 4. 

5 Unsupervised Training With Noisy 
Lexicons 

While placing informed limitations on the tags that 
can be included in a lexicon can dramatically 
improve results, it is dependent on some form of 
supervision – either from manually tagged data or 
by a human editor who post-filters an 
automatically constructed list. In the interest of 
being as unsupervised as possible, we sought to 
find a way to cope with the noisy aspects of the  
unfiltered lexicon described in the previous 
section. 

We suspected that in order to better control the 
training of lexical probabilities, having a stable 
model of state transition probabilities would be of 
help. We stabilized this model in two ways. 

 

 
 

 Unfiltered 
Lexicon 

Optimized 
Lexicon 

Merialdo HMM 71.9 93.9 
Contextualized 
HMM 

76.9 94.0 

Kupiec HMM 77.1 95.9 
UTBL 77.2 95.9 
Contextualized 
HMM with Classes 

77.2 95.9 

Table 1: Tag Accuracy of Unsupervised POS 
Taggers 

 

5.1 Using Unambiguous Tag Sequences To 
Initialize Contextual Probabilities 

First, we used our unfiltered lexicon along with our 
tagged corpus to extract non-ambiguous tag 
sequences. Specifically, we looked for trigrams in 
which all words contained at most one possible 
part-of-speech tag. We then used these n-grams 
and their counts to bias the initial estimates of state 
transitions in the HMM taggers. This approach is 
similar to that described in Ratnaparhki (1998), 
who used unambiguous phrasal attachments to 
train an unsupervised prepositional phrase 
attachment model. 

5.2 HMM Model Training Revised 

Second, we revised the training paradigm for 
HMMs, in which lexical and transition 
probabilities are typically estimated 
simultaneously. We decided to train the transition 
model probabilities first, keeping the lexical 
probabilities constant and uniform. Using the 
estimates initially biased by the method previously 
mentioned, we train the transition model until it 
reaches convergence on a heldout set. We then use 
this model, keeping it fixed, to train the lexical 
probabilities, until they eventually converge on 
heldout data. 

5.3 Results 

We implemented this technique for the Kupiec, 
Merialdo and Contextualized HMM taggers. From 
our training data, we were able to extract data for 
on the order of 10,000 unique unambiguous tag 
sequences which were then be used for better 
initializing the state transition probabilities. As 
shown in Table 2, this method improved tagging 
accuracy of the Merialdo and contextual taggers 
over traditional simultaneous HMM training, 
reducing error by 0.4 in the case of Merialdo and 
0.7 for the contextual HMM part-of-speech tagger.  



 

HMM Tagger 
Simultaneous 

Model    
Training 

Sequential 
Model  

Training 
Merialdo 93.9 94.3 
Contextualized 94.0 94.7 
Kupiec 95.9 95.9 

Table 2: Effects of HMM Training on Tagger 
Accuracy 

In this paradigm, tagging accuracy of the Kupiec 
HMM did not change. 

6 Contextualized Tagging with Supervision 

As one more way to assess the potential benefit 
from using left and right context in an HMM 
tagger, we tested our tagging model in the 
supervised framework, using the same sections of 
the Treebank previously allocated for unsupervised 
training, development and testing. In addition to 
comparing against a baseline tagger, which always 
chooses a word‘s most frequent tag, we 
implemented and trained a version of a standard 
HMM trigram tagger. For further comparison, we 
evaluated these part of speech taggers against 
Toutanova et al’s supervised dependency-network 
based tagger, which currently achieves the highest 
accuracy on this dataset to date. The best result for 
this tagger, at 97.24%, makes use of both lexical 
and tag features coming from the left and right 
sides of the target. We also chose to examine this 
tagger’s results when using only <ti, t i-1, t i+1> as 
feature templates, which represents the same 
amount of context built into our contextualized 
tagger.  

As shown in Table 3, incorporating more 
context into an HMM when estimating lexical 
probabilities improved accuracy from 95.87% to 
96.59%, relatively reducing error rate by 17.4%. 
With the contextualized tagger we witness a small 
improvement in accuracy over the current state of 
the art when using the same amount of context. It 
is important to note that this accuracy can be 
obtained without the intensive training required by 
Toutanova et. al’s log-linear models. This result 
falls only slightly below the full-blown training-
intensive dependency-based conditional model. 

7 Conclusions 

We have presented a comprehensive evaluation of 
several methods for unsupervised part-of-speech 
tagging, comparing several variations of hidden 
Markov model taggers and unsupervised 
transformation-based learning using the same 
corpus and same lexicons.  We discovered that the  

 

 
Supervised Tagger Test Accuracy 

Baseline 92.19 
Standard HMM 95.87 
Contextualized HMM 96.59 
Dependency  
Using LR tag features 96.55 

Dependency  
Best Feature Set 

97.24 

Table 3: Comparison of Supervised Taggers 

quality of the lexicon made available to 
unsupervised learner made the greatest difference 
to tagging accuracy. Filtering the possible part-of-
speech assignments contained in a basic lexicon 
automatically constructed from the commonly-
used Penn Treebank improved results by as much 
as 22%. This finding highlights the importance of 
the need for clean dictionaries whether they are 
constructed by hand or automatically when we 
seek to be fully unsupervised. 

In addition, we presented a variation on HMM 
model training in which the tag sequence and 
lexical probabilities are estimated in sequence. 
This helped stabilize training when estimation of 
lexical probabilities can be noisy. 

Finally, we experimented with using left and 
right context in the estimation of lexical 
probabilities, which we refer to as a contextualized 
HMM. Without supervision, this new HMM 
structure improved results slightly compared to a 
simple trigram tagger as described in Merialdo, 
which takes into account only the current tag in 
predicting the lexical item.  With supervision, this 
model achieves state of the art results without the 
lengthy training procedure involved in other high-
performing models. In the future, we will consider 
making an increase the context-size, which helped 
Toutanova et al. (2003). 
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