
Using Bag-of-Concepts to Improve the Performance of Support
Vector Machines in Text Categorization

Magnus Sahlgren
SICS

Box 1263
SE-164 29 Kista

Sweden
mange@sics.se

Rickard Cöster
SICS

Box 1263
SE-164 29 Kista

Sweden
rick@sics.se

Abstract

This paper investigates the use of concept-
based representations for text categoriza-
tion. We introduce a new approach to cre-
ate concept-based text representations, and
apply it to a standard text categorization
collection. The representations are used as
input to a Support Vector Machine classi-
fier, and the results show that there are cer-
tain categories for which concept-based rep-
resentations constitute a viable supplement
to word-based ones. We also demonstrate
how the performance of the Support Vec-
tor Machine can be improved by combining
representations.

1 Introduction

Text categorization is the task of assigning a
text1 to one or more of a set of predefined cat-
egories. As with most other natural language
processing applications, representational factors
are decisive for the performance of the catego-
rization. The incomparably most common rep-
resentational scheme in text categorization is
the Bag-of-Words (BoW) approach, in which a
text is represented as a vector ~t of word weights,
such that ~ti = (w1...wn) where wn are the
weights (usually a tf×idf -value)2 of the words
in the text. The BoW representation ignores all
semantic or conceptual information; it simply
looks at the surface word forms.

There have been attempts at deriving more
sophisticated representations for text catego-
rization, including the use of n-grams or phrases

1In the remainder of this paper, we use the terms
“text” and “document” synonymously.

2The tf×idf measure is a standard weighting scheme,
where tf i is simply the frequency of word i in the doc-
ument, and idf is the inverse document frequency, given
by N

ni
where N is the total number of documents in the

data, and ni is the number of documents in which word
i occurs. The most common version of the tf×idf for-
mula is wi = tf i× log N

ni
(Baeza-Yates and Ribeiro-Neto,

1999).

(Lewis, 1992; Dumais et al., 1998), or augment-
ing the standard BoW approach with synonym
clusters or latent dimensions (Baker and Mc-
Callum, 1998; Cai and Hofmann, 2003). How-
ever, none of the more elaborate representations
manage to significantly outperform the stan-
dard BoW approach (Sebastiani, 2002). In ad-
dition to this, they are typically more expensive
to compute.

What interests us in this paper is the differ-
ence between using standard BoW and more
elaborate, concept-based representations. Since
text categorization is normally cast as a prob-
lem concerning the content of the text (Du-
mais et al., 1998), one might assume that look-
ing beyond the mere surface word forms should
be beneficial for the text representations. We
believe that, even though BoW representations
are superior in most text categorization tasks,
concept-based schemes do provide important in-
formation, and that they can be used as a sup-
plement to the BoW representations. Our goal
is therefore to investigate whether there are spe-
cific categories in a standard text categorization
collection for which using concept-based repre-
sentations is more appropriate, and if combi-
nations of word-based and concept-based repre-
sentations can be used to improve the catego-
rization performance.

In order to do this, we introduce a new
method for producing concept-based represen-
tations for natural language data. The method
is efficient, fast and scalable, and requires no
external resources. We use the method to cre-
ate concept-based representations for a stan-
dard text categorization problem, and we use
the representations as input to a Support Vector
Machine classifier. The categorization results
are compared to those reached using standard
BoW representations, and we also demonstrate
how the performance of the Support Vector Ma-
chine can be improved by combining represen-
tations.



2 Bag-of-Concepts

The standard BoW representations are usually
refined before they are used as input to a clas-
sification algorithm. One refinement method
is to use feature selection, which means that
words are removed from the representations
based on statistical measures, such as document
frequency, information gain, χ2, or mutual in-
formation (Yang and Pedersen, 1997). Another
refinement method is to use feature extraction,
which means that “artificial” features are cre-
ated from the original ones, either by using clus-
tering methods, such as distributional clustering
(Baker and McCallum, 1998), or by using factor
analytic methods such as singular value decom-
position.

Note that feature extraction methods also
handle problems with synonymy, by grouping
together words that mean similar things, or by
restructuring the data (i.e. the number of fea-
tures) according to a small number of salient di-
mensions, so that similar words get similar rep-
resentations. Since these methods do not rep-
resent texts merely as collections of the words
they contain, but rather as collections of the
concepts they contain — whether these be syn-
onym sets or latent dimensions — a more fitting
label for these representations would be Bag-of-
Concepts (BoC).

3 Random Indexing

One serious problem with BoC approaches is
that they tend to be computationally expensive.
This is true at least for methods that use fac-
tor analytic techniques. Other BoC approaches
that use resources such as WordNet have limited
portability, and are normally not easily adapt-
able to other domains and to other languages.

To overcome these problems, we have devel-
oped an alternative approach for producing BoC
representations. The approach is based on Ran-
dom Indexing (Kanerva et al., 2000; Karlgren
and Sahlgren, 2001), which is a vector space
methodology for producing context vectors3 for
words based on cooccurrence data. The context
vectors can be used to produce BoC represen-
tations by combining the context vectors of the
words that occur in a text.

In the traditional vector space model, con-
text vectors are generated by representing the

3Context vectors represent the distributional profile
of words, making it possible to express distributional
similarity between words by standard vector similarity
measures.

data in a cooccurrence matrix F of order w× c,
such that the rows Fw represent the words,
the columns Fc represent the contexts (typi-
cally words or documents4), and the cells are
the (weighted and normalized) cooccurrence
counts of a given word in a given context. The
point of this representation is that each row of
cooccurrence counts can be interpreted as a c-
dimensional context vector ~w for a given word.

In the Random Indexing approach, the cooc-
currence matrix is replaced by a context ma-
trix G of order w × k, where k � c. Each
row Gi is the k-dimensional context vector for
word i. The context vectors are accumulated
by adding together k-dimensional index vectors
that have been assigned to each context in the
data — whether document, paragraph, clause,
window, or neighboring words. The index vec-
tors constitute a unique representation for each
context, and are sparse, high-dimensional, and
ternary, which means that their dimensionality
k typically is on the order of thousands and that
they consist of a small number of randomly dis-
tributed +1s and −1s. The k-dimensional index
vectors are used to accumulate k-dimensional
context vectors by the following procedure: ev-
ery time a given word occurs in a context, that
context’s index vector is added (by vector addi-
tion) to the context vector for the given word.

Note that the same procedure will produce a
standard cooccurrence matrix F of order w×c if
we use unary index vectors of the same dimen-
sionality c as the number of contexts.5 Math-
ematically, the unary vectors are orthogonal,
whereas the random index vectors are only
nearly orthogonal. However, since there are
more nearly orthogonal than truly orthogonal
directions in a high-dimensional space, choos-
ing random directions gets us sufficiently close
to orthogonality to provide an approximation of
the unary vectors (Hecht-Nielsen, 1994).

The Random Indexing approach is motivated
by the Johnson-Lindenstrauss Lemma (John-
son and Lindenstrauss, 1984), which states that
if we project points into a randomly selected
subspace of sufficiently high dimensionality, the

4Words are used as contexts in e.g. Hyperspace Ana-
logue to Language (HAL) (Lund et al., 1995), whereas
documents are used in e.g. Latent Semantic Index-
ing/Analysis (LSI/LSA) (Deerwester et al., 1990; Lan-
dauer and Dumais, 1997).

5These unary index vectors would have a single 1
marking the place of the context in a list of all con-
texts — the nth element of the index vector for the nth
context would be 1.



distances between the points are approximately
preserved. Thus, if we collect the random index
vectors into a random matrix R of order c× k,
whose row Ri is the k-dimensional index vector
for context i, we find that the following relation
holds:

Gw×k = Fw×cRc×k

That is, the Random Indexing context matrix
G contains the same information as we get by
multiplying the standard cooccurrence matrix
F with the random matrix R, where RRT ap-
proximates the identity matrix.

3.1 Advantages of Random Indexing
One advantage of using Random Indexing is
that it is an incremental method, which means
that we do not have to sample all the data
before we can start using the context vectors
— Random Indexing can provide intermediary
results even after just a few vector additions.
Other vector space models need to analyze the
entire data before the context vectors are oper-
ational.

Another advantage is that Random Indexing
avoids the “huge matrix step”, since the di-
mensionality k of the vectors is much smaller
than, and not directly dependent on, the num-
ber of contexts c in the data. Other vector space
models, including those that use dimension re-
duction techniques such as singular value de-
composition, depend on building the w × c co-
occurrence matrix F .

This “huge matrix step” is perhaps the most
serious deficiency of other models, since their
complexity becomes dependent on the num-
ber of contexts c in the data, which typically
is a very large number. Even methods that
are mathematically equivalent to Random In-
dexing, such as random projection (Papadim-
itriou et al., 1998) and random mapping (Kaski,
1999), are not incremental, and require the ini-
tial w × c cooccurrence matrix.

Since dimension reduction is built into Ran-
dom Indexing, we achieve a significant gain
in processing time and memory consumption,
compared to other models. Furthermore, the
approach is scalable, since adding new contexts
to the data set does not increase the dimension-
ality of the context vectors.

3.2 Bag-of-Context vectors
The context vectors produced by Random In-
dexing can be used to generate BoC representa-
tions. This is done by, for every text, summing

the (weighted) context vectors of the words that
occur in the particular text. Note that summing
vectors result in tf -weighting, since a word’s
vector is added to the text’s vector as many
times as the word occurs in the text. The same
procedure generates standard BoW representa-
tions if we use unary index vectors of the same
dimensionality as the number of words in the
data instead of context vectors, and weight the
summation of the unary index vectors with the
idf -values of the words.6

4 Experiment Setup

In the following sections, we describe the setup
for our text categorization experiments.

4.1 Data
We use the Reuters-21578 test collection, which
consists of 21,578 news wire documents that
have been manually assigned to different cat-
egories. In these experiments, we use the
“ModApte” split, which divides the collection
into 9,603 training documents and 3,299 test
documents, assigned to 90 topic categories. Af-
ter lemmatization, stopword filtering based on
document frequency, and frequency threshold-
ing that excluded words with frequency < 3, the
training data contains 8,887 unique word types.

4.2 Representations
The standard BoW representations for this
setup of Reuters-21578 are 8,887-dimensional
and very sparse. To produce BoC represen-
tations, a k-dimensional random index vector
is assigned to each training document. Con-
text vectors for the words are then produced
by adding the index vectors of a document to
the context vector for a given word every time
the word occur in that document.7 The context

6We can also use Random Indexing to produce re-
duced BoW representations (i.e. BoW representations
with reduced dimensionality), which we do by summing
the weighted random index vectors of the words that
occur in the text. We do not include any results from
using reduced BoW representations in this paper, since
they contain more noise than the standard BoW vec-
tors. However, they are useful in very high-dimensional
applications where efficiency is an important factor.

7We initially also used word-based contexts, where
index vectors were assigned to each unique word, and
context vectors were produced by adding the random in-
dex vectors of the surrounding words to the context vec-
tor of a given word every time the word ocurred in the
training data. However, the word-based BoC representa-
tions consistently produced inferior results compared to
the document-based ones, so we decided not to pursue
the experiments with word-based BoC representations
for this paper.



vectors are then used to generate BoC represen-
tations for the texts by summing the context
vectors of the words in each text, resulting in
k-dimensional dense BoC vectors.

4.3 Support Vector Machines
For learning the categories, we use the Sup-
port Vector Machine (SVM) (Vapnik, 1995) al-
gorithm for binary classification. SVM finds
the separating hyperplane that has maximum
margin between the two classes. Separating the
examples with a maximum margin hyperplane
is motivated by results from statistical learning
theory, which states that a learning algorithm,
to achieve good generalisation, should minimize
both the empirical error and also the “capacity”
of the functions that the learning algorithm im-
plements. By maximizing the margin, the ca-
pacity or complexity of the function class (sep-
arating hyperplanes) is minimized. Finding this
hyperplane is expressed as a mathematical op-
timization problem.

Let {(~x1, y1), . . . , (~xl, yl)} where ~xi ∈ Rn, yi ∈
±1 be a set of training examples. The SVM sep-
arates these examples by a hyperplane defined
by a weight vector ~w and a threshold b, see Fig-
ure 1. The weight vector ~w determines a direc-
tion perpendicular to the hyperplane, while b
determines the distance to the hyperplane from
the origin. A new example ~z is classified accord-
ing to which side of the hyperplane it belongs
to. From the solution of the optimization prob-
lem, the weight vector ~w has an expansion in a
subset of the training examples, so classifying a
new example ~z is:

f(~z) = sgn

(
l∑

i=1

αiyiK(~xi, ~z) + b

)
(1)

where the αi variables are determined by the
optimization procedure and K(~xi, ~z) is the inner
product between the example vectors.

The examples marked with grey circles in Fig-
ure 1 are called Support Vectors. These exam-
ples uniquely define the hyperplane, so if the
algorithm is re-trained using only the support
vectors as training examples, the same separat-
ing hyperplane is found. When examples are
not linearly separable, the SVM algorithm al-
lows for the use of slack variables for allowing
classification errors and the possibility to map
examples to a (high-dimensional) feature space.
In this feature space, a separating hyperplane
can be found such that, when mapped back
to input space, describes a non-linear decision

x2

x1

b

w

Figure 1: A maximum margin hyperplane sepa-
rating a set of examples in R2. Support Vectors
are marked with circles.

function. The implicit mapping is performed by
a kernel function that expresses the inner prod-
uct between two examples in the desired fea-
ture space. This function replaces the function
K(~xi, ~z) in Equation 1.

In our experiments, we use three standard
kernel functions — the basic linear kernel, the
polynomial kernel, and the radial basis kernel:8

• Linear: K(~xi, ~z) = ~xi · ~z

• Polynomial: K(~xi, ~z) = (~xi · ~z)d

• Radial Basis: K(~xi, ~z = exp(−γ‖~xi − ~z‖2)

For all experiments, we select d = 3 for the
polynomial kernel and γ = 1.0 for the radial
basis kernel. These parameters are selected as
default values and are not optimized.

5 Experiments and Results

In these experiments, we use a one-against-all
learning method, which means that we train
one classifier for each category (and represen-
tation). When using the classifiers to predict
the class of a test example, there are four pos-
sible outcomes; true positive (TP), true nega-
tive (TN), false positive (FP), and false nega-
tive (FN). Positive means that the document
was classified as belonging to the category, neg-
ative that it was not, whereas true means that
the classification was correct and false that it
was not. From these four outcomes, we can
define the standard evaluation metrics preci-
sion P = TP/(TP + FP ) and recall R =

8We use a modified version of SVM light that is avail-
able at: http://svmlight.joachims.org/



TP/(TP+FN). We report our results as a com-
bined score of precision and recall, the micro-
averaged F1 score:9

F1 =
2 ∗ P ∗ R
P +R

There are a number of parameters that need to
be optimized in this kind of experiment, includ-
ing the weighting scheme, the kernel function,
and the dimensionality of the BoC vectors. For
ease of exposition, we report the results of each
parameter set separately. Since we do not ex-
periment with feature selection in this investi-
gation, our results will be somewhat lower than
other published results that use SVM with op-
timized feature selection. Our main focus is to
compare results produced with BoW and BoC
representations, and not to produce a top score
for the Reuters-21578 collection.

5.1 Weighting Scheme

Using appropriate word weighting functions is
known to improve the performance of text cate-
gorization (Yang and Pedersen, 1997). In or-
der to investigate the impact of using differ-
ent word weighting schemes for concept-based
representations, we compare the performance
of the SVM using the following three weighting
schemes: tf, idf, and tf×idf.

The results are summarized in Table 1. The
BoW run uses the linear kernel, while the BoC
runs use the polynomial kernel. The numbers in
boldface are the best BoC runs for tf, idf, and
tf×idf, respectively.

tf idf tf×idf
BoW 82.52 80.13 82.77
BoC 500-dim 79.97 80.18 81.25
BoC 1,000-dim 80.31 80.87 81.93
BoC 1,500-dim 80.41 80.81 81.79
BoC 2,000-dim 80.54 80.85 82.04
BoC 2,500-dim 80.64 81.19 82.18
BoC 3,000-dim 80.67 81.15 82.11
BoC 4,000-dim 80.60 81.07 82.24
BoC 5,000-dim 80.78 81.09 82.29
BoC 6,000-dim 80.78 81.08 82.12

Table 1: Micro-averaged F1 score for tf, idf and
tf×idf using BoW and BoC representations.

9Micro-averaging means that we sum the TP, TN,
FP and FN over all categories and then compute the F1

score. In macro-averaging, the F1 score is computed for
each category, and then averaged.

As expected, the best results for both BoW
and BoC representations were produced using
tf×idf. For the BoW vectors, tf consistently
produced better results than idf, and it was even
better than tf×idf using the polynomial and ra-
dial basis kernels. For the BoC vectors, the only
consistent difference between tf and idf is found
using the polynomial kernel, where idf outper-
forms tf.10 It is also interesting to note that for
idf weighting, all BoC runs outperform BoW.

5.2 Parameterizing RI
In theory, the quality of the context vectors
produced with the Random Indexing process
should increase with their dimensionality. Kaski
(1999) show that the higher the dimensional-
ity of the vectors, the closer the matrix RRT

will approximate the identity matrix, and Bing-
ham and Mannila (2001) observe that the mean
squared difference between RRT and the iden-
tity matrix is about 1

k , where k is the dimen-
sionality of the vectors. In order to evaluate the
effects of dimensionality in this application, we
compare the performance of the SVM with BoC
representations using 9 different dimensionali-
ties of the vectors. The index vectors consist
of 4 to 60 non-zero elements (≈ 1% non-zeros),
depending on their dimensionality. The results
for all three kernels using tf×idf -weighting are
displayed in Figure 2.

0 1000 2000 3000 4000 5000 6000
79.5

80

80.5

81

81.5

82

82.5

Dimensionality

F
−

sc
or

e

Linear
Poly
RBF

Figure 2: Micro-averaged F1 score for three ker-
nels using 9 dimensionalities of the BoC vectors.

Figure 2 demonstrates that the quality of
the concept-based representations increase with
their dimensionality as expected, but that the

10For the linear and radial basis kernels, the tendency
is that tf in most cases is better than idf.



increase levels out when the dimensionality be-
comes sufficiently large; there is hardly any dif-
ference in performance when the dimensionality
of the vectors exceeds 2,500. There is even a
slight tendency that the performance decreases
when the dimensionality exceeds 5,000 dimen-
sions; the best result is produced using 5,000-
dimensional vectors with 50 non-zero elements
in the index vectors.

There is a decrease in performance when the
dimensionality of the vectors drops below 2,000.
Still, the difference in F1 score between using
500 and 5,000 dimensions with the polynomial
kernel and tf×idf is only 1.04, which indicates
that Random Indexing is very robust in com-
parison to, e.g., singular value decomposition,
where choosing appropriate dimensionality is
critical.

5.3 Parameterizing SVM

Regarding the different kernel functions, Fig-
ure 2 clearly shows that the polynomial kernel
produces consistently better results for the BoC
vectors than the other kernels, and that the lin-
ear kernel consistently produces better results
than the radial basis kernel. This could be a
demonstration of the difficulties of parameter
selection, especially for the γ parameter in the
radial basis kernel. To further improve the re-
sults, we can find better values of γ for the radial
basis kernel and of d for the polynomial kernel
by explicit parameter search.

6 Comparing BoW and BoC

If we compare the best BoW run (using the lin-
ear kernel and tf × idf -weighting) and the best
BoC run (using 5,000-dimensional vectors with
the polynomial kernel and tf × idf -weighting),
we can see that the BoW representations barely
outperform BoC: 82.77% versus 82.29%. How-
ever, if we only look at the results for the ten
largest categories in the Reuters-21578 collec-
tion, the situation is reversed and the BoC rep-
resentations outperform BoW. The F1 measure
for the best BoC vectors for the ten largest cat-
egories is 88.74% compared to 88.09% for the
best BoW vectors. This suggests that BoC rep-
resentations are more appropriate for large-size
categories.

The best BoC representations outperform the
best BoW representations in 16 categories, and
are equal in 6. Of the 16 categories where the
best BoC outperform the best BoW, 9 are bet-
ter only in recall, 5 are better in both recall and

precision, while only 2 are better only in preci-
sion.

It is always the same set of 22 categories
where the BoC representations score better
than, or equal to, BoW.11 These include the two
largest categories in Reuters-21578, “earn” and
“acq”, consisting of 2,877 and 1,650 documents,
respectively. For these two categories, BoC rep-
resentations outperform BoW with 95.57% ver-
sus 95.36%, and 91.07% versus 90.16%, respec-
tively. The smallest of the “BoC categories” is
“fuel”, which consists of 13 documents, and for
which BoC outperforms BoW representations
with 33.33% versus 30.77%. The largest per-
formance difference for the “BoC categories” is
for category “bop”, where BoC reaches 66.67%,
while BoW only reaches 54.17%. We also note
that it is the same set of categories that is prob-
lematic for both types of representations; where
BoW score 0.0%, so does BoC.

7 Combining Representations

The above comparison suggests that we can im-
prove the performance of the SVM by combin-
ing the two types of representation. The best F1

score can be achieved by selecting the quadruple
(TP, FP, TN,FN) for each individual category
from either BoW or BoC so that it maximizes
the overall score. There are 290 such combina-
tions, but by expressing the F1 function in its
equivalent form F1 = (2 ∗ TP )/(2 ∗ TP + FP +
FN), we can determine that for our two top
runs there are only 17 categories such that we
need to perform an exhaustive search to find
the best combination. For instance, if for one
category both runs have the same TP but one
of the runs have higher FP and FN , the other
run is selected for that category and we do not
include that category in the exhaustive search.

Combining the best BoW and BoC runs in-
creases the results from 82.77% (the best BoW
run) to 83.91%. For the top ten categories, this
increases the score from 88.74% (the best BoC
run) to 88.99%. Even though the difference is
admittedly small, the increase in performance
when combining representations is not negligi-
ble, and is consistent with the findings of previ-
ous research (Cai and Hofmann, 2003).

11The “BoC categories” are: veg-oil, heat, gold, soy-
bean, housing, jobs, nat-gas, cocoa, wheat, rapeseed, live-
stock, ship, fuel, trade, sugar, cpi, bop, lei, acq, crude,
earn, money-fx.



8 Conclusions

We have introduced a new method for pro-
ducing concept-based (BoC) text representa-
tions, and we have compared the performance of
an SVM classifier on the Reuters-21578 collec-
tion using both traditional word-based (BoW),
and concept-based representations. The re-
sults show that BoC representations outperform
BoW when only counting the ten largest cate-
gories, and that a combination of BoW and BoC
representations improve the performance of the
SVM over all categories.

We conclude that concept-based representa-
tions constitute a viable supplement to word-
based ones, and that there are categories in the
Reuters-21578 collection that benefit from using
concept-based representations.

9 Acknowledgements

This work has been funded by the Euro-
pean Commission under contract IST-2000-
29452 (DUMAS — Dynamic Universal Mobility
for Adaptive Speech Interfaces).

References

R. Baeza-Yates and B. Ribeiro-Neto. 1999.
Modern Information Retrieval. ACM Press /
Addison-Wesley.

D. Baker and A. McCallum. 1998. Distribu-
tional clustering of words for text classifica-
tion. In SIGIR 1998, pages 96–103.

Ella Bingham and Heikki Mannila. 2001. Ran-
dom projection in dimensionality reduction:
applications to image and text data. In
Knowledge Discovery and Data Mining, pages
245–250.

Lijuan Cai and Thomas Hofmann. 2003. Text
categorization by boosting automatically ex-
tracted concepts. In SIGIR 2003, pages 182–
189.

S. Deerwester, S. Dumais, G. Furnas, T. Lan-
dauer, and R. Harshman. 1990. Indexing by
latent semantic analysis. Journal of the Soci-
ety for Information Science, 41(6):391–407.

S. Dumais, J. Platt, D. Heckerman, and M. Sa-
hami. 1998. Inductive learning algorithms
and representations for text categorization.
In Proceedings of ACM-CIKM98, pages 148–
155.

R. Hecht-Nielsen. 1994. Context vectors: gen-
eral purpose approximate meaning represen-
tations self-organized from raw data. In J.M.
Zurada, R.J. Marks II, and C.J. Robinson,

editors, Computational Intelligence: Imitat-
ing Life, pages 43–56. IEEE Press.

W.B. Johnson and J. Lindenstrauss. 1984.
Extensions of lipshitz mapping into hilbert
space. Contemporary Mathematics, 26:189–
206.

P. Kanerva, J. Kristofersson, and A. Holst.
2000. Random indexing of text samples for
latent semantic analysis. In Proceedings of
the 22nd Annual Conference of the Cognitive
Science Society, page 1036. Erlbaum.

J. Karlgren and M. Sahlgren. 2001. From words
to understanding. In Y. Uesaka, P. Kan-
erva, and H. Asoh, editors, Foundations of
Real-World Intelligence, pages 294–308. CSLI
Publications.

S. Kaski. 1999. Dimensionality reduction by
random mapping: Fast similarity computa-
tion for clustering. In Proceedings of the
IJCNN’98, International Joint Conference
on Neural Networks, pages 413–418. IEEE
Service Center.

T. Landauer and S. Dumais. 1997. A solution
to plato’s problem: The latent semantic anal-
ysis theory of acquisition, induction and rep-
resentation of knowledge. Psychological Re-
view, 104(2):211–240.

D. Lewis. 1992. An evaluation of phrasal and
clustered representations on a text catego-
rization task. In SIGIR 1992, pages 37–50.

K. Lund, C. Burgess, and R. A. Atchley. 1995.
Semantic and associative priming in high-
dimensional semantic space. In Proceedings
of the 17th Annual Conference of the Cogni-
tive Science Society, pages 660–665. Erlbaum.

C. H. Papadimitriou, P. Raghavan, H. Tamaki,
and S. Vempala. 1998. Latent semantic in-
dexing: A probabilistic analysis. In Proceed-
ings of the 17th ACM Symposium on the
Principles of Database Systems, pages 159–
168. ACM Press.

F. Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM Computing
Surveys, 34(1):1–47.

V. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer.

Y. Yang and J. Pedersen. 1997. A compara-
tive study on feature selection in text cate-
gorization. In Proceedings of ICML-97, 14th
International Conference on Machine Learn-
ing, pages 412–420.


