
The Importance of Supertagging for Wide-Coverage CCG Parsing

Stephen Clark
School of Informatics

University of Edinburgh
2 Buccleuch Place, Edinburgh, UK
stephen.clark@ed.ac.uk

James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

james@it.usyd.edu.au

Abstract
This paper describes the role of supertagging
in a wide-coverage CCG parser which uses a
log-linear model to select an analysis. The
supertagger reduces the derivation space over
which model estimation is performed, reducing
the space required for discriminative training.
It also dramatically increases the speed of the
parser. We show that large increases in speed
can be obtained by tightly integrating the su-
pertagger with the CCG grammar and parser.
This is the first work we are aware of to success-
fully integrate a supertagger with a full parser
which uses an automatically extracted grammar.
We also further reduce the derivation space us-
ing constraints on category combination. The
result is an accurate wide-coverage CCG parser
which is an order of magnitude faster than com-
parable systems for other linguistically moti-
vated formalisms.

1 Introduction

Lexicalised grammar formalisms such as Lexical-
ized Tree Adjoining Grammar (LTAG) and Com-
binatory Categorial Grammar (CCG) assign one or
more syntactic structures to each word in a sentence
which are then manipulated by the parser. Supertag-
ging was introduced for LTAG as a way of increasing
parsing efficiency by reducing the number of struc-
tures assigned to each word (Bangalore and Joshi,
1999). Supertagging has more recently been applied
to CCG (Clark, 2002; Curran and Clark, 2003).

Supertagging accuracy is relatively high for man-
ually constructed LTAGs (Bangalore and Joshi,
1999). However, for LTAGs extracted automati-
cally from the Penn Treebank, performance is much
lower (Chen et al., 1999; Chen et al., 2002). In
fact, performance for such grammars is below that
needed for successful integration into a full parser
(Sarkar et al., 2000). In this paper we demonstrate
that CCG supertagging accuracy is not only suffi-
cient for accurate and robust parsing using an auto-
matically extracted grammar, but also offers several
practical advantages.

Our wide-coverage CCG parser uses a log-linear
model to select an analysis. The model paramaters
are estimated using a discriminative method, that is,
one which requires all incorrect parses for a sen-
tence as well as the correct parse. Since an auto-
matically extracted CCG grammar can produce an
extremely large number of parses, the use of a su-
pertagger is crucial in limiting the total number of
parses for the training data to a computationally
manageable number.

The supertagger is also crucial for increasing the
speed of the parser. We show that spectacular in-
creases in speed can be obtained, without affecting
accuracy or coverage, by tightly integrating the su-
pertagger with the CCG grammar and parser. To
achieve maximum speed, the supertagger initially
assigns only a small number of CCG categories to
each word, and the parser only requests more cate-
gories from the supertagger if it cannot provide an
analysis. We also demonstrate how extra constraints
on the category combinations, and the application
of beam search using the parsing model, can further
increase parsing speed.

This is the first work we are aware of to succes-
fully integrate a supertagger with a full parser which
uses a lexicalised grammar automatically extracted
from the Penn Treebank. We also report signifi-
cantly higher parsing speeds on newspaper text than
any previously reported for a full wide-coverage
parser. Our results confirm that wide-coverage CCG

parsing is feasible for many large-scale NLP tasks.

2 CCG Supertagging
Parsing using CCG can be viewed as a two-stage
process: first assign lexical categories to the words
in the sentence, and then combine the categories to-
gether using CCG’s combinatory rules.1 The first
stage can be accomplished by simply assigning to
each word all categories from the word’s entry in
the lexicon (Hockenmaier, 2003).

1See Steedman (2000) for an introduction to CCG, and see
Clark et al. (2002) and Hockenmaier (2003) for an introduction
to wide-coverage parsing using CCG.



The WSJ is a publication that I enjoy reading

NP/N N (S[dcl]\NP)/NP NP/N N (NP\NP)/(S[dcl]/NP) NP (S[dcl]\NP)/(S[ng]\NP) (S[ng]\NP)/NP

Figure 1: Example sentence with CCG lexical categories

frequency # cat types # cat tokens in # sentences in 2-21 # cat tokens in # sentences in 00
cut-off 2-21 not in cat set with missing cat 00 not in cat set with missing cat

1 1 225 0 0 12 (0.03%) 12 (0.6%)
10 409 1 933 (0.2%) 1 712 (4.3%) 79 (0.2%) 69 (3.6%)

Table 1: Statistics for the lexical category set

An alternative is to use a statistical tagging ap-
proach to assign one or more categories. A statisti-
cal model can be used to determine the most likely
categories given the word’s context. The advan-
tage of this supertagging approach is that the num-
ber of categories assigned to each word can be re-
duced, with a correspondingly massive reduction in
the number of derivations.

Bangalore and Joshi (1999) use a standard
Markov model tagger to assign LTAG elementary
trees to words. Here we use the Maximum En-
tropy models described in Curran and Clark (2003).
An advantage of the Maximum Entropy approach
is that it is easy to encode a wide range of poten-
tially useful information as features; for example,
Clark (2002) has shown that POS tags provide use-
ful information for supertagging. The next section
describes the set of lexical categories used by our
supertagger and parser.

2.1 The Lexical Category Set

The set of lexical categories is obtained from CCG-
bank (Hockenmaier and Steedman, 2002; Hocken-
maier, 2003), a corpus of CCG normal-form deriva-
tions derived semi-automatically from the Penn
Treebank. Following Clark (2002), we apply a fre-
quency cutoff to the training set, only using those
categories which appear at least 10 times in sec-
tions 2-21. Figure 1 gives an example sentence su-
pertagged with the correct CCG lexical categories.

Table 1 gives the number of different category
types and shows the coverage on training (seen) and
development (unseen) data (section 00 from CCG-
bank). The table also gives statistics for the com-
plete set containing every lexical category type in
CCGbank.2 These figures show that using a fre-
quency cutoff can significantly reduce the size of
the category set with only a small loss in coverage.

2The numbers differ slightly from those reported in Clark
(2002) since a newer version of CCGbank is being used here.

Clark (2002) compares the size of grammars
extracted from CCGbank with automatically ex-
tracted LTAGs. The grammars of Chen and Vijay-
Shanker (2000) contain between 2,000 and 9,000
tree frames, depending on the parameters used in
the extraction process, significantly more elemen-
tary structures than the number of lexical categories
derived from CCGbank. We hypothesise this is a
key factor in the higher accuracy for supertagging
using a CCG grammar compared with an automati-
cally extracted LTAG.

2.2 The Tagging Model
The supertagger uses probabilities p(y|x) where y is
a lexical category and x is a context. The conditional
probabilities have the following log-linear form:

p(y|x) =
1

Z(x)
e
∑

i λi fi(y,x) (1)

where fi is a feature, λi is the corresponding weight,
and Z(x) is a normalisation constant. The context
is a 5-word window surrounding the target word.
Features are defined for each word in the window
and for the POS tag of each word. Curran and Clark
(2003) describes the model and explains how Gen-
eralised Iterative Scaling, together with a Gaussian
prior for smoothing, can be used to set the weights.

The supertagger in Curran and Clark (2003) finds
the single most probable category sequence given
the sentence, and uses additional features defined
in terms of the previously assigned categories. The
per-word accuracy is between 91 and 92% on un-
seen data in CCGbank; however, Clark (2002)
shows this is not high enough for integration into a
parser since the large number of incorrect categories
results in a significant loss in coverage.

Clark (2002) shows how the models in (1) can
be used to define a multi-tagger which can assign
more than one category to a word. For each word in
the sentence, the multi-tagger assigns all those cat-



β CATS/ ACC SENT ACC SENT

WORD ACC (POS) ACC

0.1 1.4 97.0 62.6 96.4 57.4
0.075 1.5 97.4 65.9 96.8 60.6
0.05 1.7 97.8 70.2 97.3 64.4
0.01 2.9 98.5 78.4 98.2 74.2
0.01k=100 3.5 98.9 83.6 98.6 78.9
0 21.9 99.1 84.8 99.0 83.0

Table 2: Supertagger accuracy on section 00

egories whose probability according to (1) is within
some factor, β, of the highest probability category
for the word.

We follow Clark (2002) in ignoring the features
based on the previously assigned categories; there-
fore every tagging decision is local and the Viterbi
algorithm is not required. This simple approach has
the advantage of being very efficient, and we find
that it is accurate enough to enable highly accu-
rate parsing. However, a method which used the
forward-backward algorithm to sum over all possi-
ble sequences, or some other method which took
into account category sequence information, may
well improve the results.

For words seen at least k times in the training
data, the tagger can only assign categories appear-
ing in the word’s entry in the tag dictionary. Each
entry in the tag dictionary is a list of all the cate-
gories seen with that word in the training data. For
words seen less than k times, we use an alternative
dictionary based on the word’s POS tag: the tagger
can only assign categories that have been seen with
the POS tag in the training data. A value of k = 20
was used in this work, and sections 2-21 of CCG-
bank were used as training data.

Table 2 gives the per-word accuracy (acc) on sec-
tion 00 for various values of β, together with the
average number of categories per word. The sent
acc column gives the precentage of sentences whose
words are all supertagged correctly. The figures for
β = 0.01k=100 correspond to a value of 100 for the
tag dictionary parameter k. The set of categories as-
signed to a word is considered correct if it contains
the correct category. The table gives results for gold
standard POS tags and, in the final 2 columns, for
POS tags automatically assigned by the Curran and
Clark (2003) tagger. The drop in accuracy is ex-
pected given the importance of POS tags as features.

The figures for β = 0 are obtained by assigning
all categories to a word from the word’s entry in the
tag dictionary. For words which appear less than 20
times in the training data, the dictionary based on

the word’s POS tag is used. The table demonstrates
the significant reduction in the average number of
categories that can be achieved through the use of
a supertagger. To give one example, the number of
categories in the tag dictionary’s entry for the word
is is 45 (only considering categories which have ap-
peared at least 10 times in the training data). How-
ever, in the sentence Mr. Vinken is chairman of Else-
vier N.V., the Dutch publishing group., the supertag-
ger correctly assigns 1 category to is for β = 0.1,
and 3 categories for β = 0.01.

3 The Parser
The parser is described in detail in Clark and Curran
(2004). It takes POS tagged sentences as input with
each word assigned a set of lexical categories. A
packed chart is used to efficiently represent all of the
possible analyses for a sentence, and the CKY chart
parsing algorithm described in Steedman (2000) is
used to build the chart.

Clark and Curran (2004) evaluate a number of
log-linear parsing models for CCG. In this paper we
use the normal-form model, which defines proba-
bilities with the conditional log-linear form in (1),
where y is a derivation and x is a sentence. Features
are defined in terms of the local trees in the deriva-
tion, including lexical head information and word-
word dependencies. The normal-form derivations in
CCGbank provide the gold standard training data.
The feature set we use is from the best performing
normal-form model in Clark and Curran (2004).

For a given sentence the output of the parser is
a dependency structure corresponding to the most
probable derivation, which can be found using the
Viterbi algorithm. The dependency relations are de-
fined in terms of the argument slots of CCG lexical
categories. Clark et al. (2002) and Clark and Curran
(2004) give a detailed description of the dependency
structures.

3.1 Model Estimation
In Clark and Curran (2004) we describe a discrim-
inative method for estimating the parameters of a
log-linear parsing model. The estimation method
maximises the following objective function:

L′(Λ) = L(Λ) −G(Λ) (2)

= log
m∏

j=1

PΛ(d j|S j) −
n∑

i=1

λ2
i

2σ2

The data consists of sentences S 1, . . . , S m, to-
gether with gold standard normal-form derivations,
d1, . . . , dm. L(Λ) is the log-likelihood of model Λ,
and G(Λ) is a Gaussian prior term used to avoid



overfitting (n is the number of features; λi is the
weight for feature fi; and σ is a parameter of the
Gaussian). The objective function is optimised us-
ing L-BFGS (Nocedal and Wright, 1999), an itera-
tive algorithm from the numerical optimisation lit-
erature.

The algorithm requires the gradient of the objec-
tive function, and the value of the objective func-
tion, at each iteration. Calculation of these val-
ues requires all derivations for each sentence in
the training data. In Clark and Curran (2004) we
describe efficient methods for performing the cal-
culations using packed charts. However, a very
large amount of memory is still needed to store the
packed charts for the complete training data even
though the representation is very compact; in Clark
and Curran (2003) we report a memory usage of 30
GB. To handle this we have developed a parallel
implementation of the estimation algorithm which
runs on a Beowulf cluster.

The need for large high-performance computing
resources is a disadvantage of our earlier approach.
In the next section we show how use of the supertag-
ger, combined with normal-form constraints on the
derivations, can significantly reduce the memory re-
quirements for the model estimation.

4 Generating Parser Training Data
Since the training data contains the correct lexical
categories, we ensure the correct category is as-
signed to each word when generating the packed
charts for model estimation. Whilst training the
parser, the supertagger can be thought of as supply-
ing a number of plausible but incorrect categories
for each word; these, together with the correct cat-
egories, determine the parts of the parse space that
are used in the estimation process. We would like
to keep the packed charts as small as possible, but
not lose accuracy in the resulting parser. Section 4.2
discusses the use of various settings on the supertag-
ger. The next section describes how normal-form
constraints can further reduce the derivation space.

4.1 Normal-Form Constraints
As well as the supertagger, we use two additional
strategies for reducing the derivation space. The
first, following Hockenmaier (2003), is to only al-
low categories to combine if the combination has
been seen in sections 2-21 of CCGbank. For exam-
ple, NP/NP could combine with NP/NP according
to CCG’s combinatory rules (by forward composi-
tion), but since this particular combination does not
appear in CCGbank the parser does not allow it.

The second strategy is to use Eisner’s normal-
form constraints (Eisner, 1996). The constraints

SUPERTAGGING/PARSING USAGE

CONSTRAINTS DISK MEMORY

β = 0.01 → 0.05 → 0.1 17 GB 31 GB

CCGbank constraints 13 GB 23 GB

Eisner constraints 9 GB 16 GB

β = 0.05 → 0.1 2 GB 4 GB

Table 3: Space requirements for model training data

prevent any constituent which is the result of a for-
ward (backward) composition serving as the pri-
mary functor in another forward (backward) com-
position or a forward (backward) application. Eis-
ner only deals with a grammar without type-raising,
and so the constraints do not guarantee a normal-
form parse when using a grammar extracted from
CCGbank. However, the constraints are still useful
in restricting the derivation space. As far as we are
aware, this is the first demonstration of the utility of
such constraints for a wide-coverage CCG parser.

4.2 Results (Space Requirements)

Table 3 shows the effect of different supertagger set-
tings, and the normal-form constraints, on the size
of the packed charts used for model estimation. The
disk usage is the space taken on disk by the charts,
and the memory usage is the space taken in mem-
ory during the estimation process. The training sen-
tences are parsed using a number of nodes from a
64-node Beowulf cluster.3 The time taken to parse
the training sentences depends on the supertagging
and parsing constraints, and the number of nodes
used, but is typically around 30 minutes.

The first row of the table corresponds to using
the least restrictive β value of 0.01, and reverting
to β = 0.05, and finally β = 0.1, if the chart size
exceeds some threshold. The threshold was set at
300,000 nodes in the chart. Packed charts are cre-
ated for approximately 94% of the sentences in sec-
tions 2-21 of CCGbank. The coverage is not 100%
because, for some sentences, the parser cannot pro-
vide an analysis, and some charts exceed the node
limit even at the β = 0.1 level. This strategy was
used in our earlier work (Clark and Curran, 2003)
and, as the table shows, results in very large charts.

Note that, even with this relaxed setting on the su-
pertagger, the number of categories assigned to each
word is only around 3 on average. This suggests that
it is only through use of the supertagger that we are
able to estimate a log-linear parsing model on all of
the training data at all, since without it the memory

3The figures in the table are estimates based on a sample of
the nodes in the cluster.



requirements would be far too great, even for the
entire 64-node cluster.4

The second row shows the reduction in size if
the parser is only allowed to combine categories
which have combined in the training data. This sig-
nificantly reduces the number of categories created
using the composition rules, and also prevents the
creation of unlikely categories using rule combina-
tions not seen in CCGbank. The results show that
the memory and disk usage are reduced by approx-
imately 25% using these constraints.

The third row shows a further reduction in size
when using the Eisner normal-form constraints.
Even with the CCGbank rule constraints, the
parser still builds many non-normal-form deriva-
tions, since CCGbank does contain cases of compo-
sition and type-raising. (These are used to analyse
some coordination and extraction cases, for exam-
ple.) The combination of the two types of normal-
form constraints reduces the memory requirements
by 48% over the original approach. In Clark and
Curran (2004) we show that the parsing model re-
sulting from training data generated in this way
produces state-of-the-art CCG dependency recovery:
84.6 F-score over labelled dependencies.

The final row corresponds to a more restrictive
setting on the supertagger, in which a value of β =
0.05 is used initially and β = 0.1 is used if the
node limit is exceeded. The two types of normal-
form constraints are also used. In Clark and Curran
(2004) we show that using this more restrictive set-
ting has a small negative impact on the accuracy of
the resulting parser (about 0.6 F-score over labelled
dependencies). However, the memory requirement
for training the model is now only 4 GB, a reduction
of 87% compared with the original approach.

5 Parsing Unseen Data
The previous section showed how to combine the
supertagger and parser for the purpose of creating
training data, assuming the correct category for each
word is known. In this section we describe our
approach to tightly integrating the supertagger and
parser for parsing unseen data.

Our previous approach to parsing unseen data
(Clark et al., 2002; Clark and Curran, 2003) was
to use the least restrictive setting of the supertag-
ger which still allows a reasonable compromise be-
tween speed and accuracy. Our philosophy was to
give the parser the greatest possibility of finding the
correct parse, by giving it as many categories as pos-
sible, while still retaining reasonable efficiency.

4Another possible solution would be to use sampling meth-
ods, e.g. Osborne (2000).

SUPERTAGGING/PARSING TIME SENTS WORDS

CONSTRAINTS SEC /SEC /SEC

β = 0.01→ . . .→ 0.1 3 523 0.7 16
CCGbank constraints 1 181 2.0 46
Eisner constraints 995 2.4 55
β = 0.1→ . . . 0.01k=100 608 3.9 90
CCGbank constraints 124 19.4 440
Eisner constraints 100 24.0 546
Parser beam 67 35.8 814
94% coverage 49 49.0 1 114
Parser beam 46 52.2 1 186
Oracle 18 133.4 3 031

Table 4: Parse times for section 23

The problem with this approach is that, for some
sentences, the number of categories in the chart still
gets extremely large and so parsing is unacceptably
slow. Hence we applied a limit to the number of
categories in the chart, as in the previous section,
and reverted to a more restrictive setting of the su-
pertagger if the limit was exceeded. We first used
a value of β = 0.01, and then reverted to β = 0.05,
and finally β = 0.1.

In this paper we take the opposite approach: we
start with a very restrictive setting of the supertag-
ger, and only assign more categories if the parser
cannot find an analysis spanning the sentence. In
this way the parser interacts much more closely with
the supertagger. In effect, the parser is using the
grammar to decide if the categories provided by the
supertagger are acceptable, and if not the parser re-
quests more categories. The parser uses the 5 levels
given in Table 2, starting with β = 0.1 and moving
through the levels to β = 0.01k=100 .

The advantage of this approach is that parsing
speeds are much higher. We also show that our
new approach slightly increases parsing accuracy
over the previous method. This suggests that, given
our current parsing model, it is better to rely largely
on the supertagger to provide the correct categories
rather than use the parsing model to select the cor-
rect categories from a very large derivation space.

5.1 Results (Parse Times)

The results in this section are all using the best per-
forming normal-form model in Clark and Curran
(2004), which corresponds to row 3 in Table 3. All
experiments were run on a 2.8 GHZ Intel Xeon P4
with 2 GB RAM.

Table 4 gives parse times for the 2,401 sentences
in section 23 of CCGbank. The final two columns
give the number of sentences, and the number of



β CATS/ 0.1 FIRST 0.01 FIRST

WORD PARSES % PARSES %

0.1 1.4 1689 88.4 0 0.0
0.075 1.5 43 2.3 7 0.4
0.05 1.7 51 2.7 39 2.0
0.01 2.9 79 4.1 1816 95.1
0.01k=100 3.5 33 1.7 33 1.7
NO SPAN 15 0.8 15 0.8

Table 5: Supertagger β levels used on section 00

words, parsed per second. For all of the figures re-
ported on section 23, unless stated otherwise, the
parser is able to provide an analysis for 98.5% of the
sentences. The parse times and speeds include the
failed sentences, but do not include the time taken
by the supertagger; however, the supertagger is ex-
tremely efficient, and takes less than 6 seconds to
supertag section 23, most of which consists of load
time for the Maximum Entropy model.

The first three rows correspond to our strategy of
earlier work by starting with the least restrictive set-
ting of the supertagger. The first value of β is 0.01;
if the parser cannot find a spanning analysis, this is
changed to β = 0.01k=100; if the node limit is ex-
ceeded (for these experiments set at 1,000,000), β is
changed to 0.05. If the node limit is still exceeded,
β is changed to 0.075, and finally 0.1. The second
row has the CCGbank rule restriction applied, and
the third row the Eisner normal-form restrictions.

The next three rows correspond to our new strat-
egy of starting with the least restrictive setting of the
supertagger (β = 0.1), and moving through the set-
tings if the parser cannot find a spanning analysis.
The table shows that the normal-form constraints
have a significant impact on the speed, reducing the
parse times for the old strategy by 72%, and reduc-
ing the times for the new strategy by 84%. The
new strategy also has a spectacular impact on the
speed compared with the old strategy, reducing the
times by 83% without the normal-form constraints
and 90% with the constraints.

The 94% coverage row corresponds to using only
the first two supertagging levels; the parser ignores
the sentence if it cannot get an analysis at the β =
0.05 level. The percentage of sentences without an
analysis is now 6%, but the parser is extremely fast,
processing almost 50 sentences a second. This con-
figuration of the system would be useful for obtain-
ing data for lexical knowledge acquisition, for ex-
ample, for which large amounts of data are required.

The oracle row shows the parser speed when it
is provided with only the correct lexical categories.

The parser is extremely fast, and in Clark and Cur-
ran (2004) we show that the F-score for labelled
dependencies is almost 98%. This demonstrates
the large amount of information in the lexical cat-
egories, and the potential for improving parser ac-
curacy and efficiency by improving the supertagger.

Finally, the first parser beam row corresponds to
the parser using a beam search to further reduce the
derivation space. The beam search works by prun-
ing categories from the chart: a category can only
be part of a derivation if its beam score is within
some factor, α, of the highest scoring category for
that cell in the chart. Here we simply use the ex-
ponential of the inside score of a category as the
beam score; the inside score for a category c is the
sum over all sub-derivations dominated by c of the
weights of the features in those sub-derivations (see
Clark and Curran (2004).5

The value of α that we use here reduces the accu-
racy of the parser on section 00 by a small amount
(0.3% labelled F-score), but has a significant impact
on parser speed, reducing the parse times by a fur-
ther 33%. The final parser beam row combines the
beam search with the fast, reduced coverage config-
uration of the parser, producing speeds of over 50
sentences per second.

Table 5 gives the percentage of sentences which
are parsed at each supertagger level, for both the
new and old parsing strategies. The results show
that, for the old approach, most of the sentences are
parsed using the least restrictive setting of the su-
pertagger (β = 0.01); conversely, for the new ap-
proach, most of the sentences are parsed using the
most restrictive setting (β = 0.1).

As well as investigating parser efficiency, we
have also evaluated the accuracy of the parser on
section 00 of CCGbank, using both parsing strate-
gies together with the normal-form constraints. The
new strategy increases the F-score over labelled de-
pendencies by approximately 0.5%, leading to the
figures reported in Clark and Curran (2004).

5.2 Comparison with Other Work

The only other work we are aware of to investigate
the impact of supertagging on parsing efficiency is
the work of Sarkar et al. (2000) for LTAG. Sarkar et
al. did find that LTAG supertagging increased pars-
ing speed, but at a significant cost in coverage: only
1,324 sentences out of a test set of 2,250 received a
parse. The parse times reported are also not as good
as those reported here: the time taken to parse the
2,250 test sentences was over 5 hours.

5Multiplying by an estimate of the outside score may im-
prove the efficacy of the beam.



Kaplan et al. (2004) report high parsing speeds
for a deep parsing system which uses an LFG gram-
mar: 1.9 sentences per second for 560 sentences
from section 23 of the Penn Treebank. They also re-
port speeds for the publicly available Collins parser
(Collins, 1999): 2.8 sentences per second for the
same set. The best speeds we have reported for the
CCG parser are an order of magnitude faster.

6 Conclusions
This paper has shown that by tightly integrating a
supertagger with a CCG parser, very fast parse times
can be achieved for Penn Treebank WSJ text. As far
as we are aware, the times reported here are an order
of magnitude faster than any reported for compara-
ble systems using linguistically motivated grammar
formalisms. The techniques we have presented in
this paper increase the speed of the parser by a fac-
tor of 77. This makes this parser suitable for large-
scale NLP tasks.

The results also suggest that further improve-
ments can be obtained by improving the supertag-
ger, which should be possible given the simple tag-
ging approach currently being used.

The novel parsing strategy of allowing the gram-
mar to decide if the supertagging is likely to be cor-
rect suggests a number of interesting possibilities.
In particular, we would like to investigate only re-
pairing those areas of the chart that are most likely
to contain errors, rather than parsing the sentence
from scratch using a new set of lexical categories.
This could further increase parsing effficiency.

Acknowledgements
We would like to thank Julia Hockenmaier, whose
work creating the CCGbank made this research pos-
sible, and Mark Steedman for his advice and guid-
ance. This research was supported by EPSRC grant
GR/M96889, and a Commonwealth scholarship and
a Sydney University Travelling scholarship to the
second author.

References
Srinivas Bangalore and Aravind Joshi. 1999. Supertag-

ging: An approach to almost parsing. Computational
Linguistics, 25(2):237–265.

John Chen and K. Vijay-Shanker. 2000. Automated ex-
traction of TAGS from the Penn Treebank. In Pro-
ceedings of IWPT 2000, Trento, Italy.

John Chen, Srinivas Bangalore, and K. Vijay-Shanker.
1999. New models for improving supertag disam-
biguation. In Proceedings of the 9th Meeting of
EACL, Bergen, Norway.

John Chen, Srinivas Bangalore, Michael Collins, and
Owen Rambow. 2002. Reranking an N-gram su-

pertagger. In Proceedings of the TAG+ Workshop,
pages 259–268, Venice, Italy.

Stephen Clark and James R. Curran. 2003. Log-linear
models for wide-coverage CCG parsing. In Proceed-
ings of the EMNLP Conference, pages 97–104, Sap-
poro, Japan.

Stephen Clark and James R. Curran. 2004. Parsing
the WSJ using CCG and log-linear models. In Pro-
ceedings of the 42nd Meeting of the ACL, Barcelona,
Spain.

Stephen Clark, Julia Hockenmaier, and Mark Steedman.
2002. Building deep dependency structures with a
wide-coverage CCG parser. In Proceedings of the
40th Meeting of the ACL, pages 327–334, Philadel-
phia, PA.

Stephen Clark. 2002. A supertagger for Combinatory
Categorial Grammar. In Proceedings of the TAG+
Workshop, pages 19–24, Venice, Italy.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

James R. Curran and Stephen Clark. 2003. Investigating
GIS and smoothing for maximum entropy taggers. In
Proceedings of the 10th Meeting of the EACL, pages
91–98, Budapest, Hungary.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In Proceedings of
the 34th Meeting of the ACL, pages 79–86, Santa
Cruz, CA.

Julia Hockenmaier and Mark Steedman. 2002. Acquir-
ing compact lexicalized grammars from a cleaner tree-
bank. In Proceedings of the Third LREC Conference,
pages 1974–1981, Las Palmas, Spain.

Julia Hockenmaier. 2003. Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Ronald M. Kaplan, Stefan Riezler, Tracy H. King,
John T. Maxwell III, Alexander Vasserman, and
Richard Crouch. 2004. Speed and accuracy in shal-
low and deep stochastic parsing. In Proceedings of
the HLT/NAACL Conference, Boston, MA.

Jorge Nocedal and Stephen J. Wright. 1999. Numerical
Optimization. Springer, New York, USA.

Miles Osborne. 2000. Estimation of stochastic
attribute-value grammars using an informative sam-
ple. In Proceedings of the 18th International Confer-
ence on Computational Linguistics, pages 586–592,
Saarbrücken, Germany.

Anoop Sarkar, Fei Xia, and Aravind Joshi. 2000. Some
experiments on indicators of parsing complexity for
lexicalized grammars. In Proceedings of the COLING
Workshop on Efficiency in Large-Scale Parsing Sys-
tems, pages 37–42, Luxembourg.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, Cambridge, MA.


