
Grammar Modularity and its Impact
on Grammar Documentation

Stefanie Dipper
Universität Potsdam Humboldt-Universität zu Berlin

Institut für Linguistik Inst. für deutsche Sprache und Linguistik
D-14415 Potsdam D-10099 Berlin

Germany Germany
dipper@ling.uni-potsdam.de stefanie.dipper@rz.hu-berlin.de

Abstract
This paper addresses the documentation of
large-scale grammars.1 We argue that grammar
implementation differs from ordinary software
programs: the concept of modules, as known
from software engineering, cannot be trans-
ferred directly to grammar implementations,
due to grammar-specific properties. These
properties also put special constraints on the
form of grammar documentation. To fulfill
these constraints, we propose an XML-based,
grammar-specific documentation technique.

1 Introduction

Research in the field of grammar development fo-
cuses on grammar modularization, ambiguity man-
agement, robustness, testing and evaluation, main-
tainability and reusability. A point which has of-
ten been neglected is the detailed documentation
of large-scale grammars—despite the fact that thor-
ough documentation of the grammar code is a pre-
requisite for code maintainability and reusability.

In this paper, we argue that documenting large-
scale grammars is a complex task that requires spe-
cial, grammar-specific documentation techniques.
The line of reasoning goes as follows. We show
that maintainability (and, hence, reusability) of a
grammar depends to a large extent on the modular-
ization of the grammar rules: a large-scale gram-
mar remains maintainable only if linguistic gener-
alizations are encoded explicitly, i.e., by modules
(sec. 3.1). However, in contrast to modules in ordi-
nary software programs, (certain) grammar modules
cannot be black boxes (sec. 3.2). This property puts
special constraints on the form of grammar docu-
mentation (sec. 4). Finally, we present an XML-
based documentation technique that allows us to ac-
comodate these constraints (sec. 5).

1The paper is based on my doctoral dissertation (Dipper,
2003), which I wrote at the IMS Stuttgart. I am very grateful
to Anette Frank for invaluable discussions of the dissertation.
Many thanks go to Bryan Jurish and the anonymous reviewers
for helpful comments on the paper.

To illustrate the needs of documentation, we refer
to a German LFG toy grammar (Lexical-Functional
Grammar, cf. sec. 2). Our argumentation, however,
applies not only to grammars in the LFG formalism
but to any grammar that is modularized to a certain
extent.

2 Lexical-Functional Grammar

LFG is a constraint-based linguistic theory (Bresnan
(2001), Dalrymple (2001)). It defines different lev-
els of representation to encode syntactic, semantic
and other information.

The levels that are relevant here are constituent
structure (c-structure) and functional structure (f-
structure). The level of c-structure represents the
constituents of a sentence and the order of the ter-
minals. The level of f-structure encodes the func-
tions of the constituents (e.g. subject, adjunct) and
morpho-syntactic information, such as case, num-
ber, and tense.

The c-structure of a sentence is determined by a
context-free phrase structure grammar and is repre-
sented by a tree. In contrast, the f-structure is rep-
resented by a matrix of attribute-value pairs. The
structures are linked by a correspondence function
(or mapping relation), called “φ-projection”.

The (simplified) analysis of the sentence in (1)
illustrates both representation levels, see fig. 1.

(1) Maria liest oft Bücher
M. reads often books
‘Maria often reads books’

As an example, we display the CP rule in (2)
(which gives rise to the top-most subtree in fig. 1).

(2) CP → NP C′

(↑SUBJ)=↓ ↑=↓

The arrows ↑ and ↓ refer to f-structures; they de-
fine the φ-projection from c-structure nodes to f-
structures. The ↑-arrow refers to the f-structure of



CP

NP C′

Maria V VP

liest ADV NP

oft Bücher



























PRED ‘read<SUBJ,OBJ>’

SUBJ





PRED ‘Maria’
CASE nom
NUM sg





OBJ





PRED ‘book’
CASE acc
NUM pl





ADJUNCT
{ [

PRED ‘often’
]}

TENSE present



























Figure 1: LFG c-structure and f-structure analysis of Maria liest oft Bücher

the mother node (= the CP), the ↓-arrow to the f-
structure of the node itself (= NP, C′).2

That is, the above rule states that CP dominates
an NP and a C′ node; the NP functions as the sub-
ject (SUBJ) of CP, and C′ is the head of CP (shar-
ing all features, by unification of their respective f-
structures).

However, the NP preceding C′ may as well func-
tion as the direct (OBJ) or indirect object (OBJ2),
depending on case marking. We therefore refine the
CP rule by making use of disjunctive annotations,
marked by curly brackets, cf. (3).

(3) CP →
NP C′

{ (↑SUBJ)=↓ (↓CASE)=nom ↑= ↓
| (↑OBJ)=↓ (↓CASE)=acc
| (↑OBJ2)=↓ (↓CASE)=dat }

3 Grammar Modularity
Large grammars are similar to other types of large
software projects in that modularity plays an impor-
tant role in the maintainability and, hence, reusabil-
ity of the code. Modularity implies that the software
code consists of different modules, which in ordi-
nary sofware engineering are characterized by two
prominent properties: (P1) they are “black boxes”,
and (P2) they are functional units.

Black boxes Modules serve to encapsulate data
and are “black boxes” to each other. That is, the
input and output of each module (i.e. the interfaces
between the modules) are clearly defined, while the
module-internal routines, which map the input to
the output, are invisible to other modules.

Functional units Usually, a module consists of
pieces of code that belong together in some way
(e.g. they perform similar actions on the input).

2Whenever an arrow is followed by a feature, e.g. SUBJ,
they are enclosed in parentheses, (↑SUBJ).

That is, the code is structured according to func-
tional considerations.

Modular code design supports transparency, con-
sistency, and maintainability of the code. (i) Trans-
parency: irrelevant details of the implementation
can be hidden in a module, i.e. the code is not ob-
scured by too many details. (ii) Consistency is fur-
thered by applying once-defined modules to many
problem instances. (iii) Maintainability: if a certain
functionality of the software is to be modified, the
software developer ideally only has to modify the
code within the module encoding that functionality.
In this way, all modifications are local in the sense
that they do not require subsequent adjustments to
other modules.

Turning now to modules in grammar implemen-
tations, we see that similar to modules in ordinary
software projects, grammar modules encode gener-
alizations (functional units, property P2). However,
we argue below that (certain) grammar modules are
not black boxes (whose internal structure is irrel-
evant, property P1), because these generalizations
encode important linguistic insights.

3.1 Grammar Modules

Similarly to modules in ordinary software projects,
modules in grammar implementations assemble
pieces of code that are functionally related: they
do this by encoding linguistic generalizations. A
linguistic generalization is a statement about prop-
erties that are common to/shared by different con-
structions. A grammar module consists of a coher-
ent piece of code that encodes such common prop-
erties and in this sense represents a functional unit.

In a modularized grammar, all constructions that
share a certain property should make use of the
same grammar module to encode this property.
Generalizations that remain implicit (i.e. gener-
alizations that are not encoded by modules) are
error-prone. If the analysis of a certain phe-
nomenon is modified, all constructions that adhere



to the same principles should be affected as well,
automatically—which is not the case with implicit
generalizations.

Which sorts of modules can be distinghuished in
a grammar implementation? In this paper, we limit
ourselves to two candidate modules: (i) syntactic
rules and (ii) macros.

Syntactic rules Each syntactic rule, such as the
CP rule in (3), can be viewed as a module. A syn-
tactic category occurring on the right-hand side of
a rule (e.g. NP in (3)) then corresponds to a mod-
ule call (routine call); the f-structure annotations of
such a category ((↑SUBJ)=↓) can be seen as the in-
stantiated (actual) parameters that are passed to the
routine. Groups of rules (e.g. CP, C′, and C) form
higher-level modules: X′-projections.

To sum up, syntactic rules can sensibly be viewed
as modules (cf. also Wintner (1999), Zajac and
Amtrup (2000)). Their internal expansion is irrele-
vant for the calling rule (property P1), and they form
a linguistically motivated unit (property P2).3

Macros Grammar development environments
(such as XLE, Xerox Linguistic Environment,
described in Butt et al. (1999, ch. 11)) provide
further means of abstraction to modularize the
grammar code, e.g. (parametrized) macros and
templates. Each macro/template can be viewed as a
module, encoding common properties.4

An example macro is NPfunc in (4), which may
be used by the closely related annotations of NPs in
different positions in German, e.g. the annotations
of NPs dominated by CP and by VP, cf. (5). (Macro
calls are indicated by ‘@’.)

(4) NPfunc =
{ (↑SUBJ)=↓ (↓CASE)=nom
| (↑OBJ)=↓ (↓CASE)=acc
| (↑OBJ2)=↓ (↓CASE)=dat }

(5) CP → NP C′

@NPfunc ↑=↓

VP → ADV NP
↓∈(↑ADJUNCT) @NPfunc

3With regard to f-structure, however, these modules are not
canonical black boxes. LFG provides powerful referencing
means within global f-structures, i.e. f-structure restrictions are
not (and can in general not be) limited to local subtrees. In a
way, f-structure information represents what is called “global
data” in software engineering: all rules and macros are essen-
tially operating on the same “global” data structures.

4XLE macros/templates can be used to encapsulate c-
structure and f-structure code. Moreover, macros/templates can
be nested, and can thus be used to model constraints similar to
type hierarchies (Dalrymple et al., To Appear).

That is, NPfunc is used to encapsulate the alterna-
tive NP functions in German. This encoding tech-
nique has the advantage that the code is easier to
maintain. For instance, the grammar writer might
decide to rename the function OBJ2 by IOBJ. Then
she/he simply has to modify the definition of the
macro NPfunc rather than the annotations of all NPs
in the code. Clearly, NPfunc represents a functional
unit; the question of whether NPfunc is a black box
to other modules, such as the syntactic rule CP, is
addressed in the next section.

3.2 Code Transparency and Black Boxes
The above example shows how macros can be used
to encode common properties. In this way, the in-
tentions of the grammar writer are encoded explic-
itly: it is not by accident that the NPs within the CP
and VP are annotated by identical annotations. In
this sense, the use of macros improves code trans-
parency. Further, macros help guarantee code main-
tainability: if the analysis of the NP functions is
modified, only one macro (NPfunc) has to be ad-
justed.

In another sense, however, the grammar code is
now obscured: the functionality of the CP and VP
rules cannot be understood properly without the def-
inition of the macro NPfunc. Macro definitions may
even be stacked, and thus need to be traced back to
understand the rule encodings. In this sense, one
might say that the use of macros hinders code trans-
parency.5

In order to distinguish these opposing views more
precisely we introduce two notions of transparency,
which we call intensional and extensional.

Intensional transparency of grammar code
means that the characteristic defining properties of
a construction are encoded by means of suitable
macros, i.e in terms of generalizing definitions.
Hence, all constructions that share certain defining
properties make use of the same macros to encode
these properties (e.g. the CP and VP rules in (5)).

Conversely, distinguishing properties of differ-
ent constructions are encoded by different macros—
even if the content of the macros is identical.

Extensional transparency means that linguis-
tic generalizations are stated “extensionally”, i.e.
macros are replaced by their content/definition
(similar to a compiled version of the code). The
grammar rules thus introduce the constraints di-
rectly rather than by calling a macro that would in-
troduce them (similar to the CP rule in (3)).

5The same argumentation applies to type hierarchies: to un-
derstand the functionality of a certain type, constraints that are
inherited from less specific, related types must be traced back.



Comparing both versions, the extensional version
(3) may seem easier to grasp and, hence, more trans-
parent. To understand the generalized version in (5),
it is necessary to follow the macro calls and look up
the respective definitions. Obviously, one needs to
read more lines of code in this version, and often
these lines of code are spread over different places
and files. For instance, the CP rule may be part of a
file covering the CP internal rules, while the macro
NPfunc figures in some other file.

Especially for people who are not well acquainted
with the grammar, the intensional version thus re-
quires more effort for understanding. In contrast,
people who work regularly on the grammar code
know the definitions/functionalities of macros more
or less by heart. They certainly grasp the grammar
and its generalizations more easily in the intensional
version.

One might argue that to know the name of a
macro, such as NPfunc, often suffices to “under-
stand” or “know” (or to correctly guess) the func-
tionality of the macro. Hence, a macro would be a
black box (whose definition/internal structure is ir-
relevant), similar to modules in ordinary software
programs.

However, there is an important difference be-
tween grammar implementations and canonical
software programs: grammars encode linguistic in-
sights. The grammar code by itself represents im-
portant information in that it encodes formalizations
of linguistic phenomena (in a particular linguistic
framework). As a consequence, users of the gram-
mar are not only interested in the pure functionality
(the input-output behaviour) of a grammar module.
Instead, the concrete definition of the module is rel-
evant, since it represents the formalization of a lin-
guistic generalization.

We therefore conclude that macro modules, such
as NPfunc, are only defined by property P2 (func-
tional unit), not by property P1 (black box).

The criteria of maintainability and consistency
clearly favour intensional over extensional trans-
parency. We argue that the shortcomings of inten-
sional transparency—namely, poorer readability for
casual users of the grammar—can be compensated
for by a special documentation structure.

4 Grammar Documentation

In large software projects, code documentation
consists of high-level and low-level documenta-
tion. The high-level documentation comprises in-
formation about the function and requirements of
(high-level) modules and keeps track of higher-level

design decisions (e.g. which modules are distin-
guished). More detailed documentation includes
lower-level design decisions, such as the reasons for
the chosen algorithms or data structures.

The lowest level is that of code-level documen-
tation. It reports about the code’s intent rather
than implementation details however, i.e. it focuses
on “why” rather than “how”. For instance, it
summarizes relevant features of functions and rou-
tines. A large part of the code-level documenta-
tion is taken over by “good programming style”,
e.g. “use of straightforward and easily understand-
able approaches, good variable names, good routine
names” (McConnell (1993, p. 454)).

The level that is of interest to us is that of code-
level documentation. In contrast to documentation
of other types of software, grammar documentation
has to focus both on “why” and “how”, due to the
fact that in a grammar implementation the code in
and of itself represents important information, as ar-
gued above. That is, the details of the input–output
mapping represent the actual linguistic analysis. As
a consequence, large parts of grammar documenta-
tion consist of highly detailed code-level documen-
tation.

Moreover, the content/definition of certain de-
pendent modules (such as macros) is relevant to
the understanding of the functionality of the mother
rule. Hence, the content of dependent modules must
be accessible in some way within the documentation
of the mother rule.

One way of encoding such dependencies is by
means of links. Within the documentation of the
mother rule, a pointer would point to the documen-
tation of the macros that are called by this rule.
The reader of the documentation would simply fol-
low these links (which might be realized by hyper-
links).6 However, a typical grammar rule calls many
macros, and macros often call other macros. This
hierarchical structure makes the reading of link-
based documentation troublesome, since the reader
has to follow all the links to understand the func-
tionality of the top-most module.7

We therefore conclude that the structure of the
6Certain programming languages provide tools for the au-

tomatic generation of documentation, based on comments
within the program code (e.g. Java provides the docu-
mentation tool Javadoc, URL: http://java.sun.com/
javadoc/). The generated documentation makes use of hy-
perlinks as described above, which point to the documentation
of all routines and functions that are used by the documented
module.

7Routines and functions in ordinary software may be hier-
archically organized as well. In contrast to grammar modules,
however, these modules are (usually) black boxes. That is, a
reader of the documentation is not forced to follow all the links



Source Documentation
(XML)

Source Grammar
(LFG)

Perl Processing Perl Scripts

Grammar (XML)

XSLT Processing Stylesheets

Documentation
(LATEX)

Documentation
(HTML)

Documentation
(. . . )

Figure 2: XML-based grammar documentation

documentation should be independent of the struc-
ture of the grammar code. We suggest a documenta-
tion method that permits copying of relevant gram-
mar parts (such as macros) and results in a user-
friendly presentation of the documentation.

5 An XML-based Grammar
Documentation Technique

In our approach, grammar code and documentation
are represented by separate documents. The docu-
mentation of a rule comprises (automatically gen-
erated) copies of the relevant macros rather than
simple links to these macros. In a way, our docu-
mentation tool mirrors a compiler, which replaces
each macro call by the content/definition of the re-
spective macro. In constrast to a (simple) com-
piler, however, our documentation keeps a record
of the macro calls (i.e. the original macro calls are
still apparent). In the terminology introduced above,
our documentation thus combines extensional trans-
parency (by copying the content of the macros) with
intensional transparency (by keeping a record of the
macro calls).

The copy-based method has the advantage that
the structure of the documentation is totally inde-
pendent of the structure of the code which is being
documented.

We propose an XML-based documentation
method, i.e. the source documentation and the
grammar code are enriched by XML markup. XSLT
stylesheets operate on this markup to generate the
actual documentation (e.g. an HTML document or
a LaTeX document, which is further processed to

to understand the functionality of the top-most module.

result in a postscript or PDF file). The XML tags
are used to link and join the documentation text and
the grammar code. In this way, the documentation
is independent of the structure of the code.

Fig. 2 presents the generation of the output doc-
umentation. The source documentation is created
manually in XML format (e.g. by means of an XML
editor); the source grammar is written manually in
LFG/XLE format. Next, XML markup is added to
the source LFG grammar via Perl processing. Spe-
cific XML tags within the documentation refer to
tags within the grammar code. The XSLT process-
ing copies the referenced parts of the code to the
output documentation.

This approach guarantees that the code fragments
that are displayed in the documentation are always
up-to-date: whenever the source documentation or
grammar have been modified, the output documen-
tation is newly created by XSLT processing, which
newly copies the code parts from the most recent
version of the grammar.

5.1 Further Features of the Approach

The described documentation method is a powerful
tool. Besides the copying task, it can be exploited
in various other ways, both to further the readibil-
ity of the documentation and to support the task of
grammar writing (see also the suggestions by Er-
bach (1992)).8

Snapshots Grammar documentation is much eas-
ier to read if pictures of c- and f-structures illustrate
the analyses of example sentences. XLE supports

8Except for the different output formats, all of the features
mentioned in this paper have been implemented.



the generation of snapshot postscript files, display-
ing trees and f-structures, which can be included in
a LaTeX document. Note, however, that after any
grammar modification, such snapshots have to be
updated, since the modified grammar may now yield
different c- and f-structure analyses.

In our approach, snapshots are updated automat-
ically: All example sentences in the source docu-
mentation are marked by a special XML tag. XLE
snapshots are triggered by this markup and auto-
matically generated and updated for the entire doc-
umentation, by running the XSLT stylesheet.

Indices In our approach, the documentation does
not follow the grammar structure but assembles
grammar code from different modules. Moreover,
documentation may refer to partial rules only (or
macros). That is, the complete documentation of
an entire rule can be spread over different sections
of the documentation.

User-friendly documentation therefore has to in-
clude an index that associates a grammar rule (or
macro) with the documentation sections that com-
ment on this rule. That is, besides referencing from
the documentation to the grammar (by copying), the
documentation must also support referencing (in-
dexing) from various parts of the grammar to the
relevant parts of the documentation.

Again, such indices are generated automatically
based on XML tags in our approach.

Test-Suites Example sentences in the documenta-
tion can be used to automatically generate a test-
suite. In this way, the grammar writer can easily
check whether the supposed coverage—as reported
by the documentation—and the actual coverage of
the grammar are identical.

It is also possible to create specialized test-suites.
For instance, one can create a test-suite of inter-
rogative NPs, by extracting all examples occurring
within the section documenting interrogative NPs.

Up to now, we have seen how to create and ex-
ploit XML-based grammar documentation. The
next section addresses the question of how to main-
tain such a type of documentation.

5.2 Maintainability
A grammar implementation is a complex software
project and, hence, often needs to be modified, e.g.
to fix bugs, to widen coverage, to reduce overgen-
eration, to improve performance, or to adapt the
grammar to specific applications. Obviously, the
documentation sections that document the modified
grammar parts need to be modified as well.9

9As mentioned above, in some respects, the (output) doc-
umentation is updated automatically by our XML/XSLT-based

In our approach, grammar code and docu-
mentation are represented by separate documents.
Compared to code-internal comments, such code-
external documentation is less likey to remain up-to-
date, because it is not as closely associated with the
code. This section discusses techniques that could
be applied to support maintenance of our XML-
based documentation.

We distinguish three types of grammar modifi-
cations. (i) An existing rule (or macro) is deleted.
(ii) An existing rule is modified. (iii) A new rule is
added to the code.

In case (i), the XSLT processing indicates
whether a documentation update is necessary: Any
rule that is documented in the documentation is ref-
erenced by its ‘id’ attribute. If such a rule is deleted
from the code, the referenced ‘id’ attribute does not
exist any more. In this case, the XSLT process-
ing prints out a warning that the referenced element
could not be found.

If, instead, rules are modified or added (cases (ii)
and (iii)), utilities such as the UNIX command ‘diff’
can be applied to the output text files: Suppose that
the grammar has been modified while leaving the
documentation text untouched. Now, if the LaTeX
files are newly generated, the only parts that may
possibly have changed are the parts citing grammar
code. These parts can be located by means of the
‘diff’ command. If such changes between the last
and the current LaTeX files have occurred, these
changes indicate that the surrounding documenta-
tion sections may need to be updated. If no changes
have occurred, despite the grammar modifications,
this implies that the modified parts are not docu-
mented in the (external) documentation and, hence,
no update is necessary. By this technique, the gram-
mar writer gets precise hints as to where to search
for documentation parts that may need to be ad-
justed.

To sum up, maintenance of the documentation
text can be supported by techniques that give hints
as to where the text needs to be adjusted. In the sce-
narios sketched above, the grammar writer would
first modify the grammar only and generate some
new, temporary output documentation. Comparing
the current with the last version of the output doc-
umentation would yield the desired hints. After an
update of the documentation text, a second run of
the XSLT processing would generate the final out-
put documentation.

approach. XSLT operates on the most recent version of the
grammar, therefore all grammar-related elements within the
output documentation that are generated via XSLT are automat-
ically synchronized to the current grammar (e.g. snapshots).



6 Conclusion and Outlook

In this paper, we discussed the importance of main-
tainability and documentation in grammar devel-
opment. A modular and transparent design of the
grammar and detailed documentation are prerequi-
sites for reusability of the grammar code in general.

A modularized grammar is “intensionally trans-
parent”, as we put it, and thus favours maintain-
ability. However, for casual users of the grammar,
modularity may result in decreased readability. This
is related to the fact that grammar modules are not
black boxes, since they encode linguistic general-
izations. We argued that this can be compensated
for by a special documentation technique, which al-
lows for user-friendly documentation that is inde-
pendent of the structure of the grammar code.

Similar to common grammar-specific tools that
are provided by grammar development environ-
ments, we propose a grammar-specific documenta-
tion technique (which ought to be integrated into
the grammar development environments, as also
suggested by Erbach and Uszkoreit (1990), Erbach
(1992)).

Our XML-based documentation technique is a
very powerful means that can be exploited to sup-
port the difficult task of grammar (and documen-
tation) development in various further ways. For
instance, the grammar code can be “translated” to
a pure XML document, i.e. each atomic element
of the code (syntactic categories such as NP; f-
structure elements, e.g. ↑, SUBJ, =) is marked by
a tag. This markup can be used in various ways, for
instance:

– The grammar code can be displayed with re-
fined highlighting, e.g. c-structure and f-structure
elements can be printed in different colours. This
improves the transparency and readability of the
code.

– The grammar code can be mapped to a repre-
sentation that uses annotated trees instead of rules.
This may result in a better understanding of the
code. (However, the mapping to the annotated-tree
representation is not trivial, since c-structure rules
make use of regular expressions.)

References

Joan Bresnan. 2001. Lexical-Functional Syntax,
volume 16 of Textbooks in Linguistics. Oxford,
UK: Blackwell.

Miriam Butt, Tracy Holloway King, Marı́a-Eugenia
Niño, and Frédérique Segond. 1999. A Grammar
Writer’s Cookbook. Number 95 in CSLI Lecture
Notes. Stanford, CA: CSLI.

Mary Dalrymple, Ron Kaplan, and Tracy H. King.
To Appear. Lexical structure as generalizations
over descriptions. In Miriam Butt and Tracy H.
King, editors, Proceedings of the LFG04 Confer-
ence. CSLI Online Proceedings.

Mary Dalrymple. 2001. Lexical Functional Gram-
mar, volume 34 of Syntax and Semantics. New
York et al.: Academic Press.

Stefanie Dipper. 2003. Implementing and Docu-
menting Large-Scale Grammars—German LFG,
volume 9(1) of AIMS (Arbeitspapiere des Insti-
tuts für Maschinelle Sprachverarbeitung). Uni-
versity of Stuttgart.

Gregor Erbach and Hans Uszkoreit. 1990. Gram-
mar engineering: Problems and prospects.
CLAUS Report No. 1. Report on the Saarbr ücken
Grammar Engineering Workshop, University of
the Saarland, Germany.

Gregor Erbach. 1992. Tools for grammar engineer-
ing. In Proceedings of ANLP-92, pages 243–244,
Trento, Italy.

Steve McConnell. 1993. Code Complete. A Prac-
tical Handbook of Software Construction. Red-
mond, WA: Microsoft Press.

Shuly Wintner. 1999. Modularized context-free
grammars. In Proceedings of MOL6—Sixth
Meeting on Mathematics of Language, pages 61–
72, Orlando, Florida.

Rémi Zajac and Jan W. Amtrup. 2000. Modular
unification-based parsers. In Proceedings of the
Sixth International Workshop on Parsing Tech-
nologies, Trento, Italy.


