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Abstract
This paper develops a method for recognizing rela-
tions and entities in sentences, while taking mutual
dependencies among them into account. E.g., thekill
(Johns, Oswald)relation in: “J. V. Oswald was
murdered at JFK after his assassin,
K. F. Johns... ” depends on identifying Oswald
and Johns aspeople, JFK being identified as alocation,
and thekill relation between Oswald and Johns; this, in
turn, enforces that Oswald and Johns arepeople.

In our framework, classifiers that identify entities and
relations among them are first learned from local infor-
mation in the sentence; this information, along with con-
straints induced among entity types and relations, is used
to perform global inference that accounts for the mutual
dependencies among the entities.

Our preliminary experimental results are promising
and show that our global inference approach improves
over learning relations and entities separately.

1 Introduction
Recognizing and classifying entities and relations in text
data is a key task in many NLP problems such as in-
formation extraction (IE) (Califf and Mooney, 1999;
Freitag, 2000; Roth and Yih, 2001), question an-
swering (QA) (Voorhees, 2000) and story comprehen-
sion (Hirschman et al., 1999). In a typical IE application
of constructing a jobs database from unstructured text,
the system has to extract meaningful entities liketitle and
salaryand, ideally, to determine whether the entities are
associated with the same position. In a QA system, many
questions ask for specific entities involved in some rela-
tions. For example, the question “Where was Poe born?”
in TREC-9 asks for thelocationentity in which Poe was
born. The question “Who killed Lee Harvey Oswald?”
seeks apersonentity that has the relationkill with the
personLee Harvey Oswald.

In all earlier works we know of, the tasks of identify-
ing entities and relations were treated as separate prob-
lems. The common procedure is to first identify and clas-
sify entities using a named entity recognizer and only
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then determine the relations between the entities. How-
ever, this approach has several problems. First, errors
made by the named entity recognizer propagate to the
relation classifier and may degrade its performance sig-
nificantly. For example, if “Boston” is mislabeled as a
person, it will never be classified as the location of Poe’s
birthplace. Second, relation information is sometimes
crucial to resolving ambiguous named entity recognition.
For instance, if the entity “JFK” is identified as the vic-
tim of the assassination, the named entity recognizer is
unlikely to misclassify it as a location (e.g. JFK airport).

This paper develops a novel approach for this prob-
lem – a probabilistic framework for recognizing entities
and relations together. In this framework, separate clas-
sifiers are first trained for entities and relations. Their
output is used to represent a conditional distribution for
each entity and relation, given the observed data. This
information, along with constraints induced among rela-
tions and entities (e.g. the first argument ofkill is likely
to be aperson; the second argument ofborn in is a lo-
cation) are used to make global inferences for the most
probable assignment for all entities and relations of in-
terest. Our global inference approach accepts as input
conditional probabilities which are the outcomes of “lo-
cal” classifiers. Note that each of the local classifiers
could depend on a large number of features, but these
are not viewed as relevant to the inference process and
are abstracted away in this process of “inference with
classifiers”. In this sense, this work extends previous
works in this paradigm, such as (Punyakanok and Roth,
2001), in which inference with classifiers was studied
when the outcomes of the classifiers were sequentially
constrained; here the constraints are more general, which
necessitates a different inference approach.

The rest of the paper is organized as follows. Sec-
tion 2 defines the problem in a formal way. Section 3
describes our approach to this problem. It first intro-
duces how we learn the classifiers, and then introduces
the belief network we use to reason for global predic-
tions. Section 4 records preliminary experiments we ran
and exhibits some promising results. Finally, section 5
discusses some of the open problems and future work in
this framework.
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Figure 1: Conceptual view of entities and relations

2 Global Inference of Entities/Relations
The problem at hand is that of producing a coherent la-
beling of entities and relations in a given sentence. Con-
ceptually, the entities and relations can be viewed, tak-
ing into account the mutual dependencies, as the labeled
graph in Figure 1, where the nodes represent entities
(e.g. phrases) and the links denote the binary relations
between the entities. Each entity and relation has sev-
eral properties – denoted as labels of nodes and edges in
the graph. Some of the properties, such as words inside
the entities, can be read directly from the input; others,
like pos tags of words in the context of the sentence, are
easy to acquire via learned classifiers. However, proper-
ties like semantic types of phrases (i.e., class labels, such
as “people”, “locations”) and relations among them are
more difficult to acquire. Identifying the labels of entities
and relations is treated here as the target of our learning
problem. In particular, we learn these target properties
as functions of all other “simple to acquire” properties of
the sentence.

To describe the problem in a formal way, we first de-
fine sentences and entities as follows.

Definition 2.1 (Sentence & Entity) A sentenceS is a
linked list which consists of wordsw and entitiesE. An
entity can be a single word or a set of consecutive words
with a predefined boundary. Entities in a sentence are
labeled asE1, E2, · · · according to their order, and they
take values that range over a set of entity typesCE .

Notice that determining the entity boundaries is also
a difficult problem – thesegmentation(or phrase de-
tection) problem (Abney, 1991; Punyakanok and Roth,
2001). Here we assume it is solved and given to us as
input; thus we only concentrate on classification.

Example 2.1 The sentence in Figure 2 has three enti-
ties: E1 = “Dole”, E2 = “Elizabeth”, and E3 = “Sal-
isbury, N.C.”

Dole ’s wife , Elizabeth , is a native of Salisbury , N.C.
 E1         E2                E3

Figure 2: A sentence that has three entities

A relation is defined by the entities that are involved in
it (its arguments). In this paper, we only discuss binary
relations.

Definition 2.2 (Relation) A (binary) relation Rij =
(Ei, Ej) represents the relation betweenEi and Ej ,
whereEi is the first argument andEj is the second. In
addition,Rij can range over a set of entity typesCR.

Example 2.2 In the sentence given in Figure 2, there are
six relations between the entities:R12 = (“Dole”, “Eliz-
abeth”), R21 = (“Elizabeth”, “Dole”), R13 = (“Dole”,
“Salisbury, N.C.”), R31 = (“Salisbury, N.C.”, “Dole”),
R23 = (“Elizabeth”, “Salisbury, N.C.”), and R32 =
(“Salisbury, N.C.”, “Elizabeth”)

We define the types (i.e. classes) of relations and enti-
ties as follows.

Definition 2.3 (Classes)We denote the set of predefined
entity classes and relation classes asCE andCR respec-
tively. CE has one special elementotherent, which rep-
resents any unlisted entity class. Similarly,CR also has
one special elementother rel, which means the involved
entities are irrelevant or the relation class is undefined.

When clear from the context, we useEi andRij to refer
to the entity and relation, as well as their types (class
labels).

Example 2.3 SupposeCE = { otherent, person, lo-
cation } and CR = { other rel, born in, spouseof }.
For the entities in Figure 2,E1 andE2 belong toperson
andE3 belongs tolocation. In addition, relationR23 is
born in, R12 andR21 arespouseof. Other relations are
other rel.

The class label of a single entity or relation depends
not only on its local properties, but also on properties
of other entities and relations. The classification task is
somewhat difficult since the predictions of entity labels
and relation labels are mutually dependent. For instance,
the class label ofE1 depends on the class label ofR12

and the class label ofR12 also depends on the class la-
bel of E1 and E2. While we can assume that all the
data is annotated for training purposes, this cannot be
assumed at evaluation time. We may presume that some
local properties such as the word, pos, etc. are given, but
none of the class labels for entities or relations is.

To simplify the complexity of the interaction within
the graph but still preserve the characteristic of mutual
dependency, we abstract this classification problem in the



following probabilistic framework. First, the classifiers
are trained independently and used to estimate the proba-
bilities of assigning different labels given the observation
(that is, the easily classified properties in it). Then, the
output of the classifiers is used as a conditional distribu-
tion for each entity and relation, given the observation.
This information, along with the constraints among the
relations and entities, is used to make global inferences
for the most probable assignment of types to the entities
and relations involved.

The class labels of entities and relations in a sentence
must satisfy some constraints. For example, ifE1, the
first argument ofR12, is a location, thenR12 cannot be
born in because the first argument of relationborn in has
to be aperson. We define constraints as follows.

Definition 2.4 (Constraint) A constraintC is a 3-tuple
(R, E1, E2), whereR ∈ CR and E1, E2 ∈ CE . If the
class label of a relation isR, then the legitimate class
labels of its two entity arguments areE1 andE2 respec-
tively.

Example 2.4 Some examples of constraints are:
(born in, person, location), (spouseof, person, person),
and (murder, person, person)

The constraints described above could be modeled us-
ing a joint probability distribution over the space of val-
ues of the relevant entities and relations. In the context of
this work, for algorithmic reasons, we model only some
of the conditional probabilities. In particular, the proba-
bility P (Rij |Ei, Ej) has the following properties.

Property 1 The probability of the label of relationRij

given the labels of its argumentsEi andEj has the fol-
lowing properties.

• P (Rij = other rel|Ei = e1, Ej = e2) = 1, if there
exists nor, such that(r, e1, e2) is a constraint.

• P (Rij = r|Ei = e1, Ej = e2) = 0, if there exists
no constraintc, such thatc = (r, e1, e2).

Note that the conditional probabilities do not need to
be specified manually. In fact, they can be easily learned
from an annotated training dataset.

Under this framework, finding the most suitable
coherent labels becomes the problem of searching
the most probable assignment to all the E and R
variables. In other words, the global prediction
e1, e2, ..., en, r12, r21, ..., rn(n−1) satisfies the following
equation.

(e1, ..., en, r12, r21, ..., rn(n−1)) =

arg maxei,rjk
Prob(E1, ..., En, R12, R21, ..., Rn(n−1)).

3 Computational Approach
Each nontrivial property of the entities and relations,
such as the class label, depends on a very large number

of variables. In order to predict the most suitable co-
herent labels, we would like to make inferences on sev-
eral variables. However, when modeling the interaction
between the target properties, it is crucial to avoid ac-
counting for dependencies among the huge set of vari-
ables on which these properties depend. Incorporating
these dependencies into our inference is unnecessary and
will make the inference intractable. Instead, we can ab-
stract these dependencies away by learning the proba-
bility of each property conditioned upon an observation.
The number of features on which this learning problem
depends could be huge, and they can be of different gran-
ularity and based on previous learned predicates (e.g.
pos), as caricatured using the “network-like” structure in
Figure 1. Inference is then made based on the probabili-
ties. This approach is similar to (Punyakanok and Roth,
2001; Lafferty et al., 2001) only that there it is restricted
to sequential inference, and done for syntactic structures.

The following subsections describe the details of these
two stages. Section 3.1 explains the feature extraction
method and learning algorithm we used. Section 3.2 in-
troduces the idea of using a belief network in search of
the best global class labeling and the applied inference
algorithm.

3.1 Learning Basic Classifiers

Although the labels of entities and relations from a sen-
tence mutually depend on each other, two basic classi-
fiers for entities and relations are first learned, in which
a multi-class classifier for E(or R) is learned as a func-
tion of all other “known” properties of the observation.
The classifier for entities is a named entity classifier, in
which the boundary of an entity is predefined (Collins
and Singer, 1999). On the other hand, the relation clas-
sifier is given a pair of entities, which denote the two
arguments of the target relation. Accurate predictions of
these two classifiers seem to rely on complicated syntax
analysis and semantics related information of the whole
sentence. However, we derive weak classifiers by treat-
ing these two learning tasks as shallow text processing
problems. This strategy has been successfully applied on
several NLP tasks, such as information extraction (Califf
and Mooney, 1999; Freitag, 2000; Roth and Yih, 2001)
and chunking (i.e. shallow paring) (Munoz et al., 1999).
It assumes that the class labels can be decided by lo-
cal properties, such as the information provided by the
words around or inside the target. Examples include
the spelling of a word, part-of-speech, and semantic re-
lated attributes acquired from external resources such as
WordNet.

The propositional learner we use is SNoW (Roth,
1998; Carleson et al., 1999)1 SNoW is a multi-class clas-
sifier that is specifically tailored for large scale learning
tasks. The learning architecture makes use of a network
of linear functions, in which the targets (entity classes
or relation classes, in this case) are represented as linear

1available at http://L2R.cs.uiuc.edu/∼cogcomp/cc-software.html



functions over a common feature space. Within SNoW,
we use here a learning algorithm which is a variation of
Winnow (Littlestone, 1988), a feature efficient algorithm
that is suitable for learning in NLP-like domains, where
the number of potential features is very large, but only a
few of them are active in each example, and only a small
fraction of them are relevant to the target concept.

While typically SNoW is used as a classifier, and pre-
dicts using a winner-take-all mechanism over the activa-
tion value of the target classes, here we rely directly on
the raw activation value it outputs, which is the weighted
linear sum of the features, to estimate the posteriors.
It can be verified that the resulting values are mono-
tonic with the confidence in the prediction, therefore is
a good source of probability estimation. We use softmax
(Bishop, 1995) over the raw activation values as proba-
bilities. Specifically, suppose the number of classes isn,
and the raw activation values of classi is acti. The pos-
terior estimation for classi is derived by the following
equation.

pi =
eacti

∑
1≤j≤n eactj

3.2 Bayesian Inference Model

Broadly used in the AI community,belief network
is a graphical representation of a probability distri-
bution (Pearl, 1988). It is a directed acyclic graph
(DAG), where the nodes are random variables and
each node is associated with a conditional probabil-
ity table which defines the probability given its par-
ents. We construct a belief network that represents
the constraints existing among R’s and E’s. Then,
for each sentence, we use the classifiers from sec-
tion 3.1 to compute theProb(E|observations) and
Prob(R|observations), and use the belief network to
compute the most probable global predictions of the class
labels.

The structure of our belief network, which represents
the constraints is a bipartite graph. In particular, the vari-
ableE’s andR’s are the nodes in the network, where the
E nodes are in one layer, and theR nodes are in the other.
Since the label of a relation is dependent on the entity
classes of its arguments, the links in the network connect
the entity nodes, and the relation nodes that have these
entities as arguments. For instance, nodeRij has two
incoming links from nodesEi andEj . The conditional
probabilitiesP (Rij |Ei, Ej) encodes the constraints as in
Property 1. As an illustration, Figure 3 shows a be-
lief network that consists of 3 entity nodes and 6 relation
nodes.

Finding a most probable class assignment to the en-
tities and relations is equivalent to finding the assign-
ment of all the variables in the belief network that
maximizes the joint probability. However, this most-
probable-explanation (MPE) inference problem is in-
tractable (Roth, 1996) if the network contains loops
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Figure 3: Belief network of 3 entity nodes and 6 relation
nodes

(undirected cycles), which is exactly the case in our net-
work. Therefore, we resort to the following approxima-
tion method instead.

Recently, researchers have achieved great success in
solving the problem of decoding messages through a
noisy channel with the help of belief networks (Gal-
lager, 1962; MacKay, 1999). The network structure used
in their problem is similar to the network used here,
namely a loopy bipartite DAG. The inference algorithm
they used is Pearl’s belief propagation algorithm (Pearl,
1988), which outputs exact posteriors in linear time if the
network is singly connected (i.e. without loops) but does
not guarantee to converge for loopy networks. However,
researchers have empirically demonstrate that by iterat-
ing the belief propagation algorithm several times, the
outputted values often converge to the right posteriors
(Murphy et al., 1999). Due to the existence of loops, we
also apply belief propagation algorithm iteratively as our
inference procedure.

4 Experiments
The following subsections describe the data preparation
process, the approaches tested in the experiments, and
the experimental results.

4.1 Data Preparation
In order to build different datasets, we first collected sen-
tences from TREC documents, which are mostly daily
news such as Wall Street Journal, Associated Press, and
San Jose Mercury News. Among the collected sentences,
245 sentences contain relationkill (i.e. two entities that
have themurder-victimrelation). 179 sentences contain
relationborn in (i.e. a pair of entities where the second
is the birthplace of the first). In addition to the above
sentences, we also collected 502 sentences that contain
no relations.2

2available at http://l2r.cs.uiuc.edu/∼cogcomp/Data/ER/



Entities in these sentences are segmented by the sim-
ple rule: consecutive proper nouns and commas are com-
bined and treated as an entity. Predefined entity class la-
bels includeother ent, person, andlocation. Moreover,
relations are defined by every pair of entities in a sen-
tence, and the relation class labels defined areother rel,
kill , andbirthplace.

Three datasets are constructed using the collected sen-
tences. Dataset “kill” has all the 245 sentences of re-
lation kill . Dataset “bornin” has all the 179 sentences
of relationborn in. The third dataset “all” mixes all the
sentences.

4.2 Tested Approaches

We compare three approaches in the experiments:basic,
omniscient, andBN. The first approach,basic, tests our
baseline – the performance of the basic classifiers. As
described in Section 3.1, these classifiers are learned in-
dependently using local features and make predictions on
entities and relations separately. Without taking global
interactions into account, the features extracted are de-
scribed as follows. For the entity classifier, features from
the words around each entity are: words, tags, conjunc-
tions of words and tags, bigram and trigram of words and
tags. Features from the entity itself include the number
of words it contains, bigrams of words in it, and some
attributes of the words inside such as the prefix and suf-
fix. In addition, whether the entity has some strings that
match the names of famous people and places is also
used as a feature. For the relation classifier, features are
extracted from words around and between the two en-
tity arguments. The types of features include bigrams,
trigrams, words, tags, and words related to “kill” and
“birth” retrieved from WordNet.

The second approach,omniscient, is similar tobasic.
The only difference here is the labels of entities are re-
vealed to the R classifier and vice versa. It is certainly
impossible to know the true entity and relation labels in
advance. However, this experiment may give us some
ideas about how much the performance of the entity clas-
sifier can be enhanced by knowing whether the target is
involved in some relations, and also how much the rela-
tion classifier can be benefited from knowing the entity
labels of its arguments. In addition, it also provides a
comparison to see how well the belief network inference
model can improve the results.

The third approach,BN, tests the ability of making
global inferences in our framework. We use the Bayes
Net Toolbox for Matlab by Murphy3 to implement the
network and set the maximum number of the iteration of
belief propagation algorithm as 20. Given the probabili-
ties estimated by basic classifiers, the network infers the
labels of the entities and relations globally in a sentence.
Compared to the first two approaches, where some pre-
dictions may violate the constraints, the belief network
model incorporates the constraints between entities and

3available at http://www.cs.berkeley.edu/∼murphyk/Bayes/bnt.html

relations, thus all the predictions it makes will be coher-
ent.

All the experiments of these approaches are done in
5-fold validation. In other words, these datasets are ran-
domly separated into 5 disjoint subsets, and experiments
are done 5 times by iteratively using 4 of them as training
data and the rest as testing.

4.3 Results

The experimental results in terms of recall, precision,and
Fβ=1 for datasets “kill”, “bornin”, and “all” are given
in Table 1, Table 2, and Table 3 respectively. We discuss
two interesting facts of the results as follows.

First, the belief network approach tends to decrease re-
call in a small degree but increase precision significantly.
This phenomenon is especially clear on the classification
results of some relations. As a result, theF1 value of
the relation classification results is still enhanced to the
extent that is near or even higher than the results of the
Omniscientapproach. This may be explained by the fact
that if the label of a relation is predicted as positive (i.e.
notother rel), the types of its entity arguments must sat-
isfy the constraints. This inference process reduces the
number of false positive, thus enhance the precision.

Second, knowing the class labels of relations does not
seem to help the entity classifier much. In all three
datasets, the difference ofBasic and Omniscientap-
proaches is usually less than 3% in terms ofF1, which
is not very significant given the size of our datasets. This
phenomenon may be due to the fact that only a few of en-
tities in a sentence are involved in some relations. There-
fore, it is unlikely that the entity classifier can use the
relation information to correct its prediction.

Approach person location
Rec Prec F1 Rec Prec F1

Basic 96.6 92.3 94.4 76.3 91.9 83.1
BN 89.0 96.1 92.4 78.8 86.3 82.1

Omniscient 96.4 92.6 94.5 75.4 90.2 81.9
Approach kill

Rec Prec F1

Basic 61.8 57.2 58.6
BN 49.8 85.4 62.2

Omniscient 67.7 63.6 64.8

Table 1: Results for dataset “kill”

5 Discussion
The promising results of our preliminary experiments
demonstrate the feasibility of our probabilistic frame-
work. For the future work, we plan to extend this re-
search in the following directions.

The first direction we would like to explore is to apply
our framework in a boot-strapping manner. The main dif-
ficulty in applying learning on NLP problems is not lack
of text corpus, but lack oflabeleddata. Boot-strapping,
applying the classifiers to autonomously annotate the



Approach person location
Rec Prec F1 Rec Prec F1

Basic 85.5 90.7 87.8 89.5 93.2 91.1
BN 87.0 90.9 88.8 87.5 93.4 90.3

Omniscient 90.6 93.4 91.7 90.7 96.5 93.4
Approach born in

Rec Prec F1

Basic 81.4 63.4 70.9
BN 87.6 70.7 78.0

Omniscient 86.9 71.8 78.0

Table 2: Results for dataset “bornin”

Approach person location
Rec Prec F1 Rec Prec F1

Basic 92.1 87.0 89.4 83.2 81.1 82.0
BN 78.8 94.7 86.0 83.0 81.3 82.1

Omniscient 93.4 87.3 90.2 83.5 83.1 83.2
Approach kill born in

Rec Prec F1 Rec Prec F1

Basic 43.8 78.6 55.0 69.0 72.9 70.5
BN 47.2 86.8 60.7 68.4 87.5 76.6

Omniscient 52.8 79.5 62.1 76.1 71.3 73.2

Table 3: Results for dataset “all”

data and using the new data to train and improve exist-
ing classifiers, is a promising approach. Since the pre-
cision of our framework is pretty high, it seems possible
to use the global inference to annotate new data. Based
on this property, we can derive an EM-like approach for
labelling and inferring the types of entities and relations
simultaneously. The basic idea is to use the global infer-
ence output as a means to annotate entities and relations.
The new annotated data can then be used to train classi-
fiers, and the whole process is repeated again.

The second direction is to improve our probabilistic
inference model in several ways. First, since the results
of the inference procedure we use, the loopy belief prop-
agation algorithm, produces approximate values, some
of the results can be wrong. Although the computational
time of the exact inference algorithm for loopy network
is exponential, we may still be able to run it given the
small number of variables that are of interest each time
in our case. Therefore, we can further check if the perfor-
mance suffers from the approximation. Second, the be-
lief network model may not be expressive enough since
it allows no cycles. To fully model the problem, cycles
may be needed. For example, the class labels ofR12

andR21 actually depend on each other. (e.g. IfR12 is
born in, thenR21 will not be born in or kill .) Similarly,
the class labels ofE1 andE2 can depend on the labels
of R12. To fully represent the mutual dependencies, we
would like to explore other probabilistic models that are
more expressive than the belief network.
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