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Abstract then determine the relations between the entities. How-
ever, this approach has several problems. First, errors
made by the named entity recognizer propagate to the
relation classifier and may degrade its performance sig-
nificantly. For example, if “Boston” is mislabeled as a
person, it will never be classified as the location of Poe’s
birthplace. Second, relation information is sometimes
crucial to resolving ambiguous named entity recognition.
For instance, if the entity “JFK” is identified as the vic-
tim of the assassination, the named entity recognizer is
unlikely to misclassify it as a location (e.g. JFK airport).

This paper develops a method for recognizing rela
tions and entities in sentences, while taking mutual
dependencies among them into account. E.g.kite
(Johns, OswaldYyelation in: “J. V. Oswald was
murdered at JFK after his assassin,
K. F. Johns... " depends on identifying Oswald
and Johns apeople JFK being identified as cation,
and thekill relation between Oswald and Johns; this, in
turn, enforces that Oswald and Johnspeeple

In our framework, classifiers that identify entities and
relations among them are first learned from local infor-
mation in the sentence; this information, along with con-jo, probabilistic framework for recognizing entities
straints induced among entity types and relations, is use nd relations together. In this framework, separate clas-
to perform global inference th.at accounts for the rnlJtuaIsifiers are first trained for entities and relations. Their
dependenc_|e§ among the_ entities. .. output is used to represent a conditional distribution for

Our preliminary experlmental results are PromiSiNg g5ch entity and relation, given the observed data. This
and show that our global inference approach improvesysormation, along with constraints induced among rela-
over learning relations and entities separately. tions and entities (e.g. the first argumenkof is likely

) to be aperson the second argument dbrn.in is alo-

1 Introduction cation) are used to make global inferences for the most

Recognizing and classifying entities and relations in textProbable assignment for all entities and relations of in-
data is a key task in many NLP problems such as inferest. Our global inference approach accepts as input
formation extraction (IE) (Califf and Mooney, 1999 cond|t|ona}l_probabllltles which are the outcomes of'“llo—
Freitag, 2000; Roth and Yih, 2001), question an-cal” classifiers. Note that each of the local classifiers
swering (QA) (Voorhees, 2000) and story comprehen-COU|d depend on a large number .of features, but these
sion (Hirschman et al., 1999). In a typical |E application &re not viewed as relevant to the inference process and
of constructing a jobs database from unstructured textare abstracted away in this process of “inference with
the system has to extract meaningful entitiesfite and ~ classifiers”. In this sense, this work extends previous
salaryand, ideally, to determine whether the entities areWorks in this paradigm, such as (Punyakanok and Roth,
associated with the same position. In a QA system, many001), in which inference with classifiers was studied
questions ask for specific entities involved in some relawhen the outcomes of the classifiers were sequentially
tions. For example, the question “Where was Poe bom?eonstrqmed; herga the constraints are more general, which
in TREC-9 asks for théocationentity in which Poe was Necessitates a different inference approach.
born. The question “Who killed Lee Harvey Oswald?” ) )
seeks gpersonentity that has the relatiokill with the ~ The rest of the paper is organized as follows. Sec-
personLee Harvey Oswald. tion 2. defines the problem in a formal way. Sect_lon 3
In all earlier works we know of, the tasks of identify- describes our approach to thI_S' problem. It f|'rst intro-
ing entities and relations were treated as separate profices how we learn the classifiers, and then introduces
lems. The common procedure is to first identify and clasN€ Pelief network we use to reason for global predic-
sify entities using a named entity recognizer and 0n|yt|ons. Sgc_tlon 4 records _pr_ellmmary experiments we ran
and exhibits some promising results. Finally, section 5
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This paper develops a novel approach for this prob-
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Figure 2: A sentence that has three entities

Label
R R2s /[5 \ A relation is defined by the entities that are involved in
it (its arguments). In this paper, we only discuss binary
Rus relations.

Label-1
Label-2

Definition 2.2 (Relation) A (binary) relation R;; =

Tebdn (E;, E;) represents the relation betweel; and E;,
whereE; is the first argument and; is the second. In

addition, R;; can range over a set of entity typ€$®.

Figure 1: Conceptual view of entities and relations  Example 2.2 In the sentence given in Figure 2, there are
six relations between the entitie®;, = (“Dole”, “Eliz-
abeth”), Ro; = (“Elizabeth”, “Dole™), R;5 = (“Dole”,

2 Global Inference of Entities/Relations “Salisbury, N.C?), R3, = (“Salisbury, N.C, “Dole”),

The problem at hand is that of producing a coherent Ia—f§§3a|;b(ulr5):'Zﬁtgt,h“izlizsstl)gg:ﬂ)ry’ N.C), and Fsp =
beling of entities and relations in a given sentence. Con- B

ceptually, the entities and relations can be viewed, tak- \yg gefine the types (i.e. classes) of relations and enti-
ing into account the mutual dependencies, as the labeleghq o5 follows.
graph in Figure 1, where the nodes represent entities

(e.g. phrases) and the links denote the binary relationgefinition 2.3 (Classes)We denote the set of predefined
between the entities. Each entity and relation has SeVentity classes and relation classes@& andCE respec-
eral properties — denoted as labels of nodes and edges ffyely. C'Z has one special elemeatherent which rep-
the graph. Some of the properties, such as words insidgsents any unlisted entity class. Similady? also has
the entities, can be read directly from the input; othersone special elememttherrel, which means the involved
like pos tags of words in the context of the sentence, ar@ntities are irrelevant or the relation class is undefined.
easy to acquire via learned classifiers. However, proper-

ties like semantic types of phrases (i.e., class labels, sucjyhen clear from the context, we usg andR;; to refer

" ow

as “people”, “locations”) and relations among them areto the entity and relation, as well as their types (class
more difficult to acquire. Identifying the labels of entities |abels).

and relations is treated here as the target of our learning
problem. In particular, we learn these target propertieExample 2.3 SupposeC'” = { otherent person lo-
as functions of all other “simple to acquire” properties of cation } and C* = { otherrel, bornin, spouseof }.

the sentence. For the entities in Figure 2F; and FE» belong toperson
To describe the problem in a formal way, we first de- and E5 belongs tdocation In addition, relationRys is
fine sentences and entities as follows. bornin, R, and Ry, are spouseof. Other relations are
otherrel.

Definition 2.1 (Sentence & Entity) A sentenceS is a
linked list which consists of words and entitiesf. An The class label of a single entity or relation depends
entity can be a single word or a set of consecutive wordshot only on its local properties, but also on properties
with a predefined boundary. Entities in a sentence areof other entities and relations. The classification task is
labeled asE, Es, - - - according to their order, and they somewhat difficult since the predictions of entity labels
take values that range over a set of entity types and relation labels are mutually dependent. For instance,
the class label oF; depends on the class label Bf,
Notice that determining the entity boundaries is alsoand the class label aR,-> also depends on the class la-
a difficult problem — thesegmentatior(or phrase de- bel of E; and F;. While we can assume that all the
tection) problem (Abney, 1991; Punyakanok and Roth, data is annotated for training purposes, this cannot be
2001). Here we assume it is solved and given to us aassumed at evaluation time. We may presume that some
input; thus we only concentrate on classification. local properties such as the word, pos, etc. are given, but
none of the class labels for entities or relations is.
Example 2.1 The sentence in Figure 2 has three enti- To simplify the complexity of the interaction within
ties: £y = “Dole”, E, = “Elizabeth”, and E3 = “Sal- the graph but still preserve the characteristic of mutual
isbury, N.C” dependency, we abstract this classification problem in the



following probabilistic framework. First, the classifiers of variables. In order to predict the most suitable co-
are trained independently and used to estimate the prob&erent labels, we would like to make inferences on sev-
bilities of assigning different labels given the observationeral variables. However, when modeling the interaction
(that is, the easily classified properties in it). Then, thebetween the target properties, it is crucial to avoid ac-
output of the classifiers is used as a conditional distribu-counting for dependencies among the huge set of vari-
tion for each entity and relation, given the observation.ables on which these properties depend. Incorporating
This information, along with the constraints among thethese dependencies into our inference is unnecessary and
relations and entities, is used to make global inferencewill make the inference intractable. Instead, we can ab-
for the most probable assignment of types to the entitiestract these dependencies away by learning the proba-
and relations involved. bility of each property conditioned upon an observation.
The class labels of entities and relations in a sentenc&he number of features on which this learning problem
must satisfy some constraints. For examplefrif the  depends could be huge, and they can be of different gran-
first argument ofR,,, is alocation, then R, cannot be ularity and based on previous learned predicates (e.qg.
born.in because the first argument of relatlmorn.in has  pos), as caricatured using the “network-like” structure in
to be aperson We define constraints as follows. Figure 1. Inference is then made based on the probabili-
ties. This approach is similar to (Punyakanok and Roth,
Definition 2.4 (Constraint) A constraintC is a 3-tuple  2001; Lafferty et al., 2001) only that there it is restricted
(R,E',€?%), whereR € C®and&',£2 € CF. Ifthe  to sequential inference, and done for syntactic structures.
class label of a relation ik, then the legitimate class  The following subsections describe the details of these
labels of its two entity arguments afé and£? respec-  two stages. Section 3.1 explains the feature extraction
tively. method and learning algorithm we used. Section 3.2 in-
troduces the idea of using a belief network in search of

Example 2.4 Some examples of constraints are: the pest global class labeling and the applied inference
(born.in, person location), (spouseof, person persor,  algorithm.

and (murder personperson
3.1 Learning Basic Classifiers
__The constraints described above could be modeled usxjthough the labels of entities and relations from a sen-
ing a joint probability distribution over the space of val- tence mutually depend on each other, two basic classi-
ues of the relevant entities and relations. In the context ofiers for entities and relations are first learned, in which
this work, for algorithmic reasons, we model only some 4 multi-class classifier for E(or R) is learned as a func-
of .the conditional probabilities. In. particular, 'the proba- tion of all other “known” properties of the observation.
bility P(R;;|E;, E;) has the following properties. The classifier for entities is a named entity classifier, in
which the boundary of an entity is predefined (Collins
and Singer, 1999). On the other hand, the relation clas-
sifier is given a pair of entities, which denote the two
arguments of the target relation. Accurate predictions of
e P(R;; = otherrel|E; = e!, E; = €?) = 1, if there these 'gwo classifiers seem to re[y on complicated syntax
exists nar, such that(r, e!, e?) is a constraint. analysis and semantics rela.ted |nformat|or! pf the whole
e P(Ri; = r|E; = e, B; = ¢2) = 0, if there exists sentence. However, we derive weak classifiers by treat-
o cgnstrain'r; suck; thjatc — (r,e! ’62) ing these two learning tasks as shallow text processing
' R problems. This strategy has been successfully applied on
Note that the conditional probabilities do not need toseveral NLP tasks,.such_ as informfation extraction (Califf
be specified manually. In fact, they can be easily Iearnetﬁmd Moon(_ay, 1.999’ Freitag, 2(.)00’ Roth and Yih, 2001)
. and chunking (i.e. shallow paring) (Munoz et al., 1999).
from an annotated training dataset. It assumes that the class labels can be decided by lo-
Under this framework, finding the most suitable y

coherent labels becomes the problem of searchin al properties, such as the information provided by the

the most probable assignment to all the E and R[ ords around or inside the target. Examples include
variables.  In other words, the global prediction he spelling of a word, part-of-speech, and semantic re-

€1, €2, s €0y 112,721+ s T(n_1) SaliSfies the following {;;\lltoer%lztet{lbmes acquired from external resources such as
equation. ) . .
q(e o rior , )= The propositional learner we use is SNoW (Roth,
1arg L 21;;,;1')’(5'("_”}2 R R R ), 1998; Carlesonetal, 1999BNoW is a multi-class clas-
Cirmik by B T2 A2 s B sfier that is specifically tailored for large scale learning
tasks. The learning architecture makes use of a network

3 Computational Approach of linear functions, in which the targets (entity classes
or relation classes, in this case) are represented as linear

Property 1 The probability of the label of relatiof;;
given the labels of its arguments and E; has the fol-
lowing properties.

Each nontrivial property of the entities and relations,
such as the class label, depends on a very large number lavailable at http://L2R.cs.uiuc.edutogcomp/cc-software.html




functions over a common feature space. Within SNoW, P(R=IX)
we use here a learning algorithm which is a variation of
Winnow (Littlestone, 1988), a feature efficient algorithm
that is suitable for learning in NLP-like domains, where
the number of potential features is very large, but only a
few of them are active in each example, and only a small
fraction of them are relevant to the target concept.

While typically SNoW is used as a classifier, and pre-
dicts using a winner-take-all mechanism over the activa-
tion value of the target classes, here we rely directly on
the raw activation value it outputs, which is the weighted
linear sum of the features, to estimate the posteriors.
It can be verified that the resulting values are mono-
tonic with the confidence in the prediction, therefore is
a good source of probability estimation. We use softmax
(Bishop, 1995) over the raw activation values as proba-
bilities. Specifically, suppose the number of classes is
and the raw activation values of clasis act;. The pos-
terior estimation for class is derived by the following

P(Ra(X)

Figure 3: Belief network of 3 entity nodes and 6 relation

nodes
equation.
(undirected cycles), which is exactly the case in our net-
B edcti work. Therefore, we resort to the following approxima-
pi = — act; tion method instead.
Zl<] <n e . .
== Recently, researchers have achieved great success in
3.2 Bayesian Inference Model solving the problem of decoding messages through a

noisy channel with the help of belief networks (Gal-
lager, 1962; MacKay, 1999). The network structure used
in their problem is similar to the network used here,

amely a loopy bipartite DAG. The inference algorithm
hey used is Pearl’s belief propagation algorithm (Pearl,
71988), which outputs exact posteriors in linear time if the
network is singly connected (i.e. without loops) but does
Hot guarantee to converge for loopy networks. However,
'researchers have empirically demonstrate that by iterat-
Shg the belief propagation algorithm several times, the
outputted values often converge to the right posteriors
Murphy et al., 1999). Due to the existence of loops, we
Iso apply belief propagation algorithm iteratively as our
inference procedure.

Broadly used in the Al communitypelief network
is a graphical representation of a probability distri-
bution (Pearl, 1988). It is a directed acyclic graph
(DAG), where the nodes are random variables an
each node is associated with a conditional probabil
ity table which defines the probability given its par-
ents. We construct a belief network that represent
the constraints existing among R’s and E's. Then
for each sentence, we use the classifiers from se
tion 3.1 to compute theProb(E|observations) and
Prob(R|observations), and use the belief network to
compute the most probable global predictions of the clas
labels.

The structure of our belief network, which represents
the constraints is a bipartite grgph. In particular, the vari-4 Experiments
ableE’s andR’s are the nodes in the network, where the ) ) ) )
E nodes are in one layer, and tReodes are in the other. The following subsections describe the data preparation

Since the label of a relation is dependent on the entityProcess, the approaches tested in the experiments, and
classes of its arguments, the links in the network connecie e€xperimental results.
the entity nodes, and the relation nodes that have thesgy pata Preparation
entities as arguments. For instance, ndti¢ has two
incoming links from nodes”; and E;. The conditional
probabilitiesP(R;;|E;, E;) encodes the constraints as in
Property 1. As an illustration, Figure 3 shows a be-
lief network that consists of 3 entity nodes and 6 relation : Y e

y 245 sentences contain relatikifl (i.e. two entities that

nodes. " : ,
Finding a most probable class assignment to the enave themurder-victimrelation). 179 sentences contain

tities and relations is equivalent to finding the assign_relatlonborrun (i.e. a pair of entities where the second

ment of all the variables in the belief network that is the birthplace of the first). In addition to the above
maximizes the joint probability. However, this most- sentences, we also collected 502 sentences that contain

probable-explanation (MPE) inference problem is in-"° relations’
tractable (Roth, 1996) if the network contains loops 2available at http:/I2r.cs.uiuc.edutogcomp/Data/ER/

In order to build different datasets, we first collected sen-
tences from TREC documents, which are mostly daily
news such as Wall Street Journal, Associated Press, and
San Jose Mercury News. Among the collected sentences,




Entities in these sentences are segmented by the simelations, thus all the predictions it makes will be coher-
ple rule: consecutive proper nouns and commas are conent.
bined and treated as an entity. Predefined entity class la- All the experiments of these approaches are done in
bels includeotherent person andlocation Moreover, 5-fold validation. In other words, these datasets are ran-
relations are defined by every pair of entities in a sen-domly separated into 5 disjoint subsets, and experiments
tence, and the relation class labels definedotiner.rel,  are done 5 times by iteratively using 4 of them as training
kill, andbirthplace data and the rest as testing.

Three datasets are constructed using the collected sen-
tences. Dataset “kill" has all the 245 sentences of re4-3 Results
lation kill. Dataset “bornin” has all the 179 sentences The experimental results in terms of recall, precision,and
of relationborn.in. The third dataset “all” mixes all the Fj—,; for datasets “kill", “bornin”, and “all” are given

sentences. in Table 1, Table 2, and Table 3 respectively. We discuss
two interesting facts of the results as follows.
4.2 Tested Approaches First, the belief network approach tends to decrease re-

We compare three approaches in the experiméyatsic call in a small degree but increase precision significantly.
omniscientandBN. The first approachasic tests our  This phenomenon is especially clear on the classification
baseline — the performance of the basic classifiers. Asgesults of some relations. As a result, the value of
described in Section 3.1, these classifiers are learned inke relation classification results is still enhanced to the
dependently using local features and make predictions osxtent that is near or even higher than the results of the
entities and relations separately. Without taking globalOmniscientapproach. This may be explained by the fact
interactions into account, the features extracted are dehat if the label of a relation is predicted as positive (i.e.
scribed as follows. For the entity classifier, features fromnot other.rel), the types of its entity arguments must sat-
the words around each entity are: words, tags, conjuncisfy the constraints. This inference process reduces the
tions of words and tags, bigram and trigram of words anchumber of false positive, thus enhance the precision.
tags. Features from the entity itself include the number Second, knowing the class labels of relations does not
of words it contains, bigrams of words in it, and someseem to help the entity classifier much. In all three
attributes of the words inside such as the prefix and sufedatasets, the difference @asic and Omniscientap-

fix. In addition, whether the entity has some strings thatproaches is usually less than 3% in termsFof which
match the names of famous people and places is alsig not very significant given the size of our datasets. This
used as a feature. For the relation classifier, features agghenomenon may be due to the fact that only a few of en-
extracted from words around and between the two entities in a sentence are involved in some relations. There-
tity arguments. The types of features include bigramsfore, it is unlikely that the entity classifier can use the
trigrams, words, tags, and words related to “kill” and relation information to correct its prediction.

“birth” retrieved from WordNet.

The second approachmniscientis similar tobasic Approach person location
The only difference here is the labels of entities are re Rec Prec Fi | Rec Prec Fy
vealed to the R classifier and vice versa. It is certainly  Basic 96.6 923 94.4] 763 919 831
impossible to know the true entity and relation labels in BN 89.0 96.1 924 788 86.3 821
advance. However, this experiment may give us some Omniscient|| 96.4 92.6 94.5 754 90.2 81.9
ideas about how much the performance of the entity clag- Approach kil
sifier can be enhanced by knowing whether the target is Rec Prec Fi
involved in some relations, and also how much the relaf ~ Basic 61.8 57.2 58.6
tion classifier can be benefited from knowing the entity] BN _ 498 854 622
labels of its arguments. In addition, it also provides a_Omniscient|| 67.7 63.6 64.8

comparison to see how well the belief network inference
model can improve the results.

The third approachBN, tests the ability of making
global inferences in our framework. We use the Bayes; Djscussion
Net Toolbox for Matlab by Murphy to implement the . . i
network and set the maximum number of the iteration of! "€ Promising results of our preliminary experiments
belief propagation algorithm as 20. Given the probabi"_demonstrate the feasibility of our probabilistic fr_ame-
ties estimated by basic classifiers, the network infers th&/0rk. For the future work, we plan to extend this re-
labels of the entities and relations globally in a sentenceS€rch in the following directions. _
Compared to the first two approaches, where some pre- The first d|rept|on we would I'|ke to explore is to apply
dictions may violate the constraints, the belief network0Ur framework in a boot-strapping manner. The main dit-

model incorporates the constraints between entities anfculty in applying learning on NLP problems is not lack
of text corpus, but lack ofabeleddata. Boot-strapping,

Savailable at http:/Awww.cs.berkeley.eduhurphyk/Bayes/bnt.html  applying the classifiers to autonomously annotate the

Table 1: Results for dataset “kill”




Approach person location References
Rec Prec F, | Rec Prec I _
Basic 855 907 8/8 895 932 0Ll S. P. Abney. .1991. Parsing by chunks_. Ip S. P. Abney
BN 87.0 909 888 875 934 903 R. C. Berwick and C. Tenny, edltorBrlnCIpIe-based
Omniscient|| 90.6 93.4 91.7] 90.7 965 934 parsing: Computation and Psycholinguistigsages
Approach bormin 257-278. Kluwer, Dordrecht.
Rec Prec F C. Bishop, 1995Neural Networks for Pattern Recogni-
Basic 814 63.4 709 tion, chapter 6.4: Modelling conditional distributions,
BN 87.6 70.7 78.0 page 215. Oxford University Press.
Omniscient|| 86.9 718 78.0 M. Califf and R. Mooney. 1999. Relational learning of

pattern-match rules for information extraction.Na-
tional Conference on Artificial Intelligence

A. Carleson, C. Cumby, J. Rosen, and D. Roth. 1999.
The SNoW learning architecture. Technical Report

Table 2: Results for dataset “bam”

APPIOACh | e Poeo | Rec e UIUCDCS-R-99-2101, UIUC Computer Science De-
Basic || 921 870 804 832 8L1 820 partment, May. _

BN 788 947 860 830 813 821 M. Collins and Y. Singer. 1999. Unsupervised mod-
Omniscient|| 93.4 87.3 902 835 83.1 83.2 els for name entity classification. EMNLP-VLC'99,
Approach Kill bormin the Joint SIGDAT Conference on Empirical Methods

Rec Prec F, | Rec Prec F, in Natural Language Processing and Very Large Cor-
Basic | 438 786 550 60.0 729 705 pora, June.

BN 472 86.8 60.7 684 875 76.6 D. Freitag. 2000. Machine learning for information

Omniscient|| 52.8 795 62.1] 76.1 713 732 extraction in informal domainsMachine Learning
39(2/3):169-202.
Table 3: Results for dataset “all” R. Gallager. 1962. Low density parity check coddE

Trans. Info. TheorylT-8:21-28, Jan.

L. Hirschman, M. Light, E. Breck, and J. Burger. 1999.

data and using the new data to train and improve exist- Deep read: A reading comprehension systerPrin

ing classifiers, is a promising approach. Since the pre- c_eedmgs of the 3.7th An_nua! l\/_leetmg of the Associa-
cision of our framework is pretty high, it seems possible 110" for Computational Linguistics
to use the global inference to annotate new data. Basett Lafferty, A. McCallum, and F. Pereira. 2001. Con-
on this property, we can derive an EM-like approach for ditional random fields: Probabilistic models for seg-
labelling and inferring the types of entities and relations Menting and labeling sequence data.Pic. of the
simultaneously. The basic idea is to use the global infer- Intérnational Conference on Machine Learning
ence output as a means to annotate entities and relatior: Littlestone. 1988. Learning quickly when irrelevant
The new annotated data can then be used to train classi- attributes abound: A new linear-threshold algorithm.
fiers, and the whole process is repeated again. Machine Learning2:285-318.

. i ... D. MacKay. 1999. Good error-correcting codes based
. The second dl_rectlon is to improve our probabilistic 5 very sparse matricetEEE Transactions on Infor-
mference model in several ways. First, since the results mation Theory45.
ofthg mferenge procedure we use,the loopy bellefprop-M_ Munoz, V. Punyakanok, D. Roth, and D. Zimak.
a}ge;}hon algorithm, produces approximate values, SOME 1999, A learning approach to shallow parsing. In
of the results can be wrong. Although the computational EMNLP-VLC'99, the Joint SIGDAT Conference on

time of the ,?XFCt mferenc?"akl)gongwlm tfor Ioo_r;y _netvv(t)r:k Empirical Methods in Natural Language Processing
is exponential, we may still be able to run it given the 4 Very Large Corporalune.

small number of variables that are of interest each tim . .

in our case. Therefore, we can further check if the perfor-" Murphy, Y Weiss, and M Jordan. 1999_' Loopy b_e_hef
mance suffers from the approximation. Second, the be- propagation for approximate _mference. An empirical
lief network model may not be expressive enough since study. InProc. of Unc.e.rt’c.nnty In AIpage; 467_4.75'
it allows no cycles. To fully model the problem, cycles J- Pearl. 1988.Probabilistic Reasoning in Intelligent

may be needed. For example, the class label& of SystemsMorgan Kaufmann. _
and R,; actually depend on each other. (e.g.Rf,is V. I?uny_akanok an_d D Roth. 2001. The use of classi-
borrin, then Ry, will not be born_in or kill.) Similarly, fiers in sequential inference. INIPS-13; The 2000

the class labels oF; and F, can depend on the labels ~ Conference on Advances in Neural Information Pro-
of Ry. To fully represent the mutual dependencies, we cessing Systems

would like to explore other probabilistic models that areD. Roth and W. Yih. 2001. Relational learning via
more expressive than the belief network. propositional algorithms: An information extraction



case study. IrProc. of the International Joint Con-
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