
Text Authoring, Knowledge Acquisition and Description Logics

Marc Dymetman
Xerox Research Centre Europe

6 chemin de Maupertuis
38240 Meylan

email: marc.dymetman@xrce.xerox.com

Abstract
We present a principled approach to the problem of con-
necting a controlled document authoring system with a
knowledge base. We start by describing closed-world au-
thoring situations, in which the knowledge base is used
for constraining the possible documents and orienting the
user’s selections. Then we move to open-world author-
ing situations in which, additionally, choices made dur-
ing authoring are echoed back to the knowledge base. In
this way the information implicitly encoded in a docu-
ment becomes explicit in the knowledge base and can be
re-exploited for simplifying the authoring of new doc-
uments. We show how a Datalog KB is sufficient for
the closed-world situation, while a Description Logic KB
is better-adapted to the more complex open-world situ-
ation. All along, we pay special attention to logically
sound solutions and to decidability issues in the different
processes.

Introduction
Recently there has been a surge of interest in interactive
natural language generation systems (Paris et al., 1995;
Power and Scott, 1998; Coch and Chevreau, 2001); such
systems rely on a capability of generating a natural lan-
guage text from an abstract content representation, but
— contrary to traditional NLG (Natural Language Gen-
eration) systems — this representation is only partially
available at the beginning of the text production process;
it is then gradually completed by a human author, typ-
ically using content-selection menus correlated with re-
gions of the evolving generated text..

One such system, MDA (Multilingual Document Au-
thoring) (citation omitted) is based on a formal specifi-
cation — using a variant of Definite Clause Grammars
(DCGs) (Pereira and Warren, 1980) — of what counts
as a valid abstract content representation. The different
derivation trees in the grammar correspond to texts with
different contents, and at each step of the authoring pro-
cess the user is asked to make interactive choices on how
to expand the current partial derivation tree one step fur-
ther. There are important analogies between this process
and the process of authoring an XML document under
the control of a DTD or a Schema, but DCGs are more
expressive in terms of the contextual constraints that can
be expressed and also are more adapted to the production

of grammatical text.1

In published MDA work, all the knowledge about
what constitutes a valid document is provided in the
grammars, with no clear separation between (1) world
knowledge (the fact that a certain pharmaceutical drug
contains some molecule makes it dangerous for a certain
patient condition) and (2) constraints about document or-
ganization (if a certain drug is dangerous for a certain
condition, then a warning should be generated at a cer-
tain place in the document).

A more principled and modular solution is to leave
in the grammar all constraints pertaining to docu-
ment/textual organization, and to use an external logical
theory to express knowledge about the world described
by the documents. A document will then be constrained
to have a semantic interpretation that is compatible with
the external theory.

The aims of this paper are the following.

1. To provide a formally precise and computationally
tractable model for this approach. The logical the-
ory we will be using will take the form of a De-
scription Logic (DL) knowledge base (Donini et al.,
1996); DLs are subsets of FOPC (First-Order Pred-
icate Calculus) which provide a trade-off between
expressivity and tractability (in particular decidabil-
ity) and have recently be given a lot of attention in
the knowledge representation community and in ac-
tivities around the Semantic Web. They are now
starting to attract attention in the computational lin-
guistics community as well (Gabsdil et al., 2001;
Striegnitz, 2001);

2. To show how this model can be used not only for
constraining the document during the authoring pro-
cess, but also to use the document as a source of new
knowledge to be added in a logically sound way to
the KB (knowledge acquisition);

3. To discuss conditions under which the whole pro-
cess of authoring is decidable.

1The grammars used in MDA are typically more “semantically”
than “syntactically” oriented, and a choice between two alternatives
for expanding a nonterminal in the grammar tends to correlate with a
clear distinction of meaning in the final text. A given grammar cov-
ers a semantically unified class of documents (e.g. employment offers,
drug package leaflets, etc.), in a way analogous to the customized XML
DTDs used for technical documentation.



The paper is organized as follows. We first describe
a class of situations, closed-world authoring, in which
the flow of information is strictly from the knowledge
base to the document. The MDA approach is briefly pre-
sented, and we show how the document specification can
be interfaced with an “informationally complete” KB,
using a Datalog representation (Ceri et al., 1989); then
we present conditions on the specification which guar-
antee decidability of the closed-world authoring process,
that is, that guarantee that at each authoring step, the se-
lections presented to the author are “real choices” which
will not result in dead-ends at a later stage of authoring.
We then move on to open-world authoring, in which the
flow of information is bi-directional between the KB and
the document. Now we start working with an “informa-
tionally incomplete” KB, using a Description Logic rep-
resentation, which can be satisfied in several “possible
worlds”; the document being authored has to be compat-
ible with at least one of these possible worlds. We give
conditions on the grammar which guarantee that, as long
as the DL on which the KB is built is intrinsically de-
cidable, then the authoring process as a whole is also de-
cidable. We introduce a notion of light semantics, which
corresponds to a restricted form of semantic interpreta-
tion for the document allowing exchange of information
between the document and the knowledge base and per-
mitting knowledge acquisition during the authoring pro-
cess. In particular the knowledge gained during the au-
thoring of a document can be re-used for simplifying the
authoring of other documents.

Closed-world authoring
MDA. We start by introducing briefly the MDA

framework through a simplified example. The focus of
this paper is on the document content aspects (as repre-
sented by what we call the abstract content tree) and not
on the textual realization aspects, which are handled in a
simplistic way here (see (citation omitted) for details on
MDA).
Grammar G1:

dfa1: dfa(D,F,A) � “the drug”, drug(D),
“has the form of a”, dform(D,F),
“and is administered by”, dadm(D,A).

dform1: dform(D,F) � form(F), & df(D,F).
dadm1: dadm(D,A) � admin(A), comments(D,A).
coms1: comments(D,A) � “ ”, & da(D,A).
coms2: comments(D,A) � comments(D,A),

“;”, comment(D,A).
com1: comment(D,A) � “strictly follow instructions”.
com2: comment(diprox,A) � “take a glass of water”.
diprox: drug(diprox) � “Diprox”.
xenor: drug(xenor) � “Xenor”.
burpal: drug(burpal) � “Burpal”.
tablet: form(tablet) � “tablet”.
solution: form(solution) � “solution”.
swallow: admin(swallow) � “swallowing”.
chew: admin(chew) � “chewing”.
drink: admin(drink) � “drinking”.

Auxiliary clauses D1:

df(diprox,tablet).
df(xenor,tablet).
df(burpal,solution).
da(diprox,swallow).
da(xenor,chew).
da(burpal,drink).

The form of grammar G1 is a variant of the DCG for-
mat (Pereira and Warren, 1980): (1) each of the grammar
clauses is given a unique name (e.g. dfa1); (2) the nonter-
minals are notated in lowercase and are parameterized by
variable or ground terms; (3) the terminals are enclosed
in double quotes; (4) the auxiliary predicates (a.k.a. Pro-
log calls, usually enclosed in curly brackets) appear after
the ampersand sign.

Free generation. If we start from the initial nonter-
minal dfa(D,F,A) and expand it nondeterministically un-
til we get to terminal strings (so-called free generation
mode), we can obtain (among others) the texts:

(T1) “the drug Diprox has the form of a tablet and is
administered by swallowing”,

(T2)“the drug Xenor has the form of a tablet and is
administered by chewing; strictly follow instructions”,

but not the text:
“the drug Burpal has the form of a tablet and is ad-

ministered by swallowing”.
Authoring. The authoring mode is different from

the free generation mode in that it gives the author the
responsibility of choosing expansions for nonterminals
rather than enumerating all possible expansions nonde-
terministically. Thus, after all the obligatory expan-
sions from dfa(D,F,A) (expansions for which there is only
one possibility in the grammar) have been done, the
frontier of the derivation tree contains some terminals
and the nonterminals drug(D), form(F), admin(A), com-
ments(D,A), and has to satisfy the constraint df(D,F). At
this point the user can freely choose which of these non-
terminals to expand next — say form(F). There are two
possible ways to expand this nonterminal: through the
clause of name tablet or through the clause with name
solution, and the system displays to the user a menu list-
ing these two choices. Assume that the author chooses
tablet. The nonterminal form(F) is expanded into the ter-
minal “tablet”, F is unified with tablet, and the process
is repeated until no more nonterminal needs to be ex-
panded.

At the end of this process, the collection of choices
that the user has made can be represented as a tree labeled
by names of clauses, for instance:

(AT1) dfa1(diprox, dform1(tablet), dadm1(swallow,coms1))

from which a complete derivation tree can be recon-
structed as well as the associated terminal string, which
in this case is seen to be equal to T1.

Such a tree of choices as AT1 will be called an ab-
stract content tree, or simply an abstract tree. Different
abstract trees correspond to different sets of choices of



content and also to different document instances in the
class of documents associated with the grammar. It is
then natural to see an abstract tree as a representation of
the content of a document belonging to that class.2

Life/death issues There is one important issue that
we did not discuss in the explanation just given, namely
how exactly the system determines which choices to pro-
pose to the user once he has selected a new nonterminal
to be expanded. One possibility is to present him with all
the possible names of clauses which are headed by the
nonterminal in question (as was done for form(F)), but
then it is possible that the author makes a choice that will
never lead to a complete valid document.

For instance, let us go back to the point just after
the author has chosen tablet as the clause for expand-
ing form(F); at this point the nonterminals on the fron-
tier of the derivation tree are: drug(D), admin(A), com-
ments(D,A), with the constraint df(D,tablet) in the back-
ground. Suppose the author next chooses to expand ad-
min(A); if the system was working in a naive fashion, it
would then display the choices swallow, chew, and drink.
However it is easy to see that drink is in fact ruled out as
a choice: any complete document would eventually have
to satisfy the constraints df(D,tablet) and da(D,drink), but
there is no drug in the database which is compatible with
both this form and this administration. We can say that
drink is a “dead” choice in this context.

In order to prevent the author from entering a dead-
end, what is really needed is for the system to foresee
such possible clashes and to present to the author only
those choices which may eventually lead to a valid doc-
ument; in the case at hand, it should present the “live”
choices swallow and chew.

Remark. When exactly one choice is possible, the
system should not even present any choice to the au-
thor, but make the only possible expansion decision on
its own: authoring should be done automatically at that
point. In these cases the authoring mode becomes closer
to the classical non-interactive NLG mode, and in the
limit, when knowledge-base inferences force all author-
ing choices, the two modes converge.

Finitely-parameterized grammars, Datalog, and
decidability of life/death In the current MDA system,
the method for determining whether a choice is live or
dead is incomplete. This is due to the fact that the non-
terminal parameters can be terms of arbitrary complex-
ity (built from variables, constants and functional sym-
bols) and then it is easy to simulate with a DCG an arbi-
trary Prolog program.3 Determining whether the initial

2This abstract tree approach to document content stems from the
work of Aarne Ranta on his “Grammatical Framework (GF)” in which
he was inspired by the interactive proof editors in a higher-order
typed/functional setting such as ALF and COQ in which the user at-
tempts to build a proof of a formula through stepwise top-down refine-
ments of a partial proof (Ranta, 1999 ). In the present paper the abstract
trees can be seen as proofs of an initial goal in a logic programming set-
ting.

3Even without the use of auxiliary predicates: a pure Prolog pro-
gram is equivalent to a DCG generating empty strings.

nonterminal may lead to a complete valid document is
then undecidable in general. It is usually possible for the
grammar writer to exercise some care in designing the
grammars so that life/death problems do not hinder the
authoring process in practice, but a principled solution
would be preferable.

In order to tackle this problem, we will be making two
fundamental assumptions: (i) the nonterminal parame-
ters in the grammar clauses — as well as the goal argu-
ments in the auxiliary program clauses — are variables
or constants; (ii) all variables take their value in the fi-
nite set of constants present in the grammar and auxil-
iary clauses .

Under these assumptions, we are now dealing with a
DCG with finite-domainparameters both for its grammar
and for its auxiliary predicates components. The auxil-
iary predicate component is then formally the same as a
Datalog database (Ceri et al., 1989), as in our example
D1.4

We can then see the authoring model as consisting of
two components: a finitely parameterized DCG, and a
Datalog database.

Now, it is striking that, when working with finite-
domain DCGs, not only the auxiliary predicate compo-
nent, but also the grammar component, has formal simi-
larities to a Datalog base: in fact, if one “forgets” in the
grammar G1 all the terminal strings, then one obtains a
Datalog program DP1:

DP1:

dfa1: dfa(D,F,A) � drug(D), dform(D,F), dadm(D,A).
dform1: dform(D,F) � form(F), & df(D,F).
dadm1: dadm(D,A) � admin(A), comments(D,A).
coms1: comments(D,A) � & da(D,A).
coms2: comments(D,A) � comments(D,A), com-
ment(D,A).
com1: comment(D,A).
com2: comment(diprox,A).
diprox: drug(diprox).
xenor: drug(xenor).
burpal: drug(burpal).
tablet: form(tablet).
solution: form(solution).
swallow: admin(swallow).
chew: admin(chew).
drink: admin(drink).

Deciding the productivity of a parameterized nonter-
minal in the combination G1+D1 is then formally equiv-
alent to proving it as a program goal in the combination
DP1+D1 (which is itself a global Datalog program), and
a derivation in G1 has a one-to-one correspondence to a
proof in DP1.

For instance, deciding the productivity of the nonter-
minal dfa(D,tablet,drink)is equivalent to proving the goal
dfa(D,tablet,drink) in the Datalog program DP1+D1: be-

4The database D1 only contains facts (Datalog’s EDB), but it could
also contain recursively defined predicates (Datalog’s IDB) without im-
pact on the discussion.



cause no such proof can be found, the nonterminal is not
productive.

Now, the interest of this translation is that provability
of a goal in a Datalog program is not only known to be
decidable, but also to be amenable to efficient implemen-
tation (Abiteboul et al., 1995).

Consider the situation discussed before, just after the
author has chosen the form tablet, and at the point where
the system needs to present him with a list of choices for
admin(A). At that point, the system is confronted with
the following question: what are the possible values for
A such that the following goal:

drug(D), admin(A), comments(D,A), df(D,tablet)

is satisfiable?
This question can be succinctly represented as the fol-

lowing conjunctive Datalog query:

answer(A) � drug(D), admin(A), com-
ments(D,A), df(D,tablet)

for which a number of optimization techniques exist
(see (Ceri et al., 1989; Abiteboul et al., 1995)), and
which returns as possible values for A the set fswallow,
chewg.5 The advantage for authoring is clear: at each
choice point, the system is capable to return a valid list
of choices more efficiently than by applying more naive
techniques. It is also worthy of note that some funda-
mental issues in authoring are so closely connected with
database query optimization.6 7

Open-world authoring
In an authoring context, some grammatically valid doc-
uments will never be authored because they do not cor-
respond to any possible state of affairs. Typically the
grammar specifies a much larger set of documents than

5In this case, the set of possible values for the parameter A coincides
with the set of possible values for the names of the expanding clauses
for admin(A). In general it is not the case, but it is simple to add a
parameter to each nonterminal that indexes its (finitely many) possible
expanding clauses.

6A DCG is nothing else than a context-free grammar with param-
eterized nonterminals and a unification mechanism between the pa-
rameters. Because of the analogy between DTD/Schemas and CFGs,
it seems likely that the same approach could be useful for extending
XML-based authoring through the use of finite-domain parameters and
unification.

7The fact that the program DP1 is equivalent to G1 as far as non-
terminal productivity is concerned does not mean that the two objects
are equivalent for authoring purposes. The grammar associates dif-
ferent texts with different derivations of the same ground nonterminal
(for instance, there are an infinite number of texts produced by com-
ments(diprox,tablet), corresponding to different combinations of
coms1, coms2, com1, com2.), whereas the program is of inter-
est to us here not in the different proofs of a given ground goal, but in
the fact that this goal is provable or not. Note that the clause of name
coms2 can be eliminated from the program DP1 without changing its
interpretation (because in order to prove comments(D,A) it requires
a proof of comments(D,A)), but making the program non-recursive
and therefore simplifying the check for productivity; eliminating the
same clause from G1 would however completely change the meaning
of the grammar.

the ones which are actually possible. If this were not the
case, then an author would not have to take the trouble to
direct the production process by making content choices
that he alone can make. That is to say, a document which
has actually been authored conveys more meaning than
just stating “I am a valid document relative to the speci-
fication”. However, in a closed-world environment as we
have been discussing until now, that additional meaning
has no explicit counterpart in the knowledge-base; it is
only represented implicitly in the abstract content tree,
in a form which is not perspicuous and would be difficult
to re-use for the authoring of other documents or to share
with other processes.8

In a closed-world context, the KB constraints which
are tested during the authoring process are completely
passive: they are seen purely as validity checks against
the knowledge base.

By contrast, open-world authoring sees the KB con-
straints not only as checks, but also as conditions on the
world being described. When authoring a document, the
author is not neutrally picking out one of the documents
valid relative to the KB, but asserting that the constraints
do hold of the actual world.9

Let us illustrate this idea. We are now viewing the
formal specification of valid documents as consisting, as
before, of a grammar of the type previously described
(we will take again the grammar G1), but instead of a
Datalog database, we are now using an informationally
incomplete description logic knowledge base KB1:10

KB1:

TBOX:
TabletDrugs = �df.ftabletg
SolutionDrugs = �df.fsolutiong
SwallowDrugs = �da.fswallowg
ChewDrugs = �da.fchewg
DrinkDrugs = �da.fdrinkg

Drugs = TabletDrugs � SolutionDrugs
Drugs = SwallowDrugs � ChewDrugs � DrinkDrugs

TabletDrugs = SwallowDrugs � ChewDrugs
SolutionDrugs = DrinkDrugs

ABOX :
df(burpal,solution)
da(burpal,drink)

This knowledge-base is written using a certain number
of DL constructors — existential quantification, concept

8Note an analogy here with the Semantic Web perspective: tags
used in XML documents may convey implicit semantic information,
but in order to make this information sharable, it had better be repre-
sented explicitly in some formal knowledge representation.

9In the language of pragmatics, the author is then performing a
speech act by committing to the “truth” of the document.

10An introduction to DLs would take us too far afield; let’s just say
that there is a whole family of DLs, which differ by the logical con-
structors they allow, and that most can be seen as decidable fragments
of first-order logic. An accessible recent introduction to DLs is avail-
able at http://www.cs.man.ac.uk/ horrocks/Slides/leipzig-jun-01.pdf .



enumeration, disjoint union (an abbreviation: A = B�C
can be replaced by the two constraints A=BtC and BuC
= �, and B�C�D is an abbreviation for (B�C)�D) —,
and we are assuming the unique name convention (all
named individuals are different). The constructors which
are used place the knowledge base in the class ALCO
(Donini et al., 1996).

The TBOX can be glossed in the following way. The
TabletDrugs are those drugs D for which df(D,tablet), the
SolutionDrugs those drugs for which df(D,solution), ...,
the DrinkDrugs those drugs for which da(D,drink). The
drugs can come in either one of the two forms: tablet and
solution, and in either one of the three administrations
swallow, chew and drink. Finally TabletDrugs are either
swallow drugs or chew drugs, whereas SolutionDrugs are
always drink drugs. The ABOX says what we already
know about the form and administration of Burpal.

The list of relations in D1 is compatible with KB1:
indeed it is easy to see that one can obtain a model of
KB1 by taking the relations of D1 along with the facts:

diprox: TabletDrugs
xenor : TabletDrugs
burpal : SolutionDrugs
diprox: SwallowDrugs
xenor : ChewDrugs
burpal : DrinkDrugs

In a certain sense the TBOX of KB1 can be seen as
a conceptual schema for the database D1, which states
certain general relations about the forms and adminis-
trations of drugs, or about the uniqueness of form and
administration for a drug, but which does not say how
many drugs there are or what are the properties of these
drugs.

Valid abstract trees and incomplete KBs Let us re-
turn to our authoring example in this new context. We
now associate grammar G1 with KB1 instead of DB1.
We then make the assumption that all constant param-
eters appearing in the grammar (diprox, xenor, burpal,
tablet, etc.) are to be considered distinct named indi-
viduals for the KB, and that the constraint relations (da,
df) are all unary or binary and correspond to concepts or
roles in the KB.

Let’s now look again at the abstract tree AT1:

dfa1(diprox, dform1(tablet), dadm1(swallow,coms1))

This abstract tree is valid relative to G1 (it corresponds
to a possible complete derivation) but it is not necessarily
valid relative to the combination �G1,KB1�; this no-
tion is defined in the following way: because the abstract
tree uniquely determines the set of rules which have been
used for building the derivation, it also uniquely deter-
mines a set of associated KB constraints; thus AT1 is
associated with the set of constraints: fdf(diprox,tablet),
da(diprox,swallow)g.

Now we say that AT1 is valid relative to the combi-
nation �G1,KB1� if and only if it is both valid rel-
ative to G1 and if its associated set of constraints is

compatible with KB1. In other words we need to show
that the addition of the two constraints df(diprox,tablet),
da(diprox,swallow) to the ABOX still leads to a satisfi-
able knowledge base. This can be shown by exhibiting
a model as we did a few paragraphs ago, and therefore
AT1 is a valid abstract tree relative to �G1,KB1�.

The informal reasoning by which we just showed the
satisfiability of KB1 extended with the two relations can
also be established by a computational proof, due to
the decidability of KB-consistency checking in ALCO
(Donini et al., 1996).

Open- vs. closed-world authoring, satisfiability vs.
deducibility Note that validity of an abstract tree in the
open-world authoring context involves the satisfiability
of a conjunction of constraints relative to the knowledge
base, whereas the notion of validity of an abstract tree in
the closed-world authoring context involves the dual no-
tion of deducibility of a conjunction of constraints rela-
tive to the knowledge-base (in the Datalog context, being
true in the minimal Herbrand model is the same as being
deducible from the Horn clauses constituting the base).

Decidability of the authoring process In order to
illustrate the process, let’s go back to the point in the au-
thoring after all obligatory expansions of dfa(D,F,A) have
been made, where the frontier of the derivation tree is
drug(D), form(F), admin(A), comments(D,A), and where
the user has chosen to expand form(F). There are appar-
ently two possible expansions: the clauses with names
tablet and solution. Before presenting these choices to the
user, the system must check that they are live, namely, as
before, that they may lead to a complete valid document.

Choosing the tablet expansion leads to the derivation
frontier drug(D), admin(A), comments(D,A) with con-
straint df(D,tablet). In order to decide whether the frontier
is live, the system needs to enumerate possible complete
derivations of this frontier until it finds one that is satis-
fiable relative to KB1 and then return a positive answer,
and if it does not find one, it should return a negative an-
swer. In principle, the enumeration could never stop, but
because of the finite parameter condition on the gram-
mar, the system has only to enumerate a finite number of
trees; this is because if a derivation tree is of the form
S(... A1(... A2(...) ...) ...) where S is a ground instan-
tiation of the initial nonterminal and A1 and A2 are the
same ground instantiation of a nonterminal (“repetitive
derivation”), then the satisfiability of S(... A1(... A2(...)
...) ...) relative to KB1 implies the satisfiability of S(...
A2(...) ...): a model of the larger derivation tree is again
a model of the smaller derivation tree. This means that
when checking life/death we do not ever need to consider
a repetitive derivation during the enumeration of deriva-
tions. In particular, because we are dealing with a finite
parameter domain, the derivations that we need to con-
sider have a bounded depth (otherwise we would neces-
sarily encounter repetitive situations), and the decidabil-
ity of the process follows.11

11The same reasoning could be made for proving decidability in the



In the case of choosing tablet, the abstract tree AT1 is
enumerated at some point in the process, and its satisfi-
ability relative to KB1 can be decidably checked: tablet
is then shown to be a live authoring choice. The same
process shows solution to be live.

Now, let’s go to the point where, after having chosen
tablet, the author decides to select an expansion for ad-
min(A). The derivation frontier is then drug(D), admin(A),
comments(D,A), with the constraint df(D,tablet), and the
apparently possible expansions are swallow, chew, and
drink. Both swallow and chew can be seen to be live
by a similar reasoning as before. In the case of drink,
we have to check whether the sequence drug(D), com-
ments(D,drink), with the constraint df(D,tablet) is live.
Let’s choose to expand comments(D,drink) first. The
expansion coms2 leads to a repetitive situation (com-
ments(D,drink) is above comments(D,drink) in the deriva-
tion path.) and is therefore discarded; the expansion
coms1 leads to the frontier drug(D), with the constraints
df(D,tablet) and da(D,drink). However the two constraints
cannot be simultaneously satisfied in KB1; This can be
shown computationally by using the satisfiability check
in KB1, but also by the following informal reasoning:
df(D,tablet) and da(D,drink) imply that D is both in Tablet-
Drugs and in DrinkDrugs; by the second fact it is in So-
lutionDrugs, but SolutionDrugs and TabletDrugs have an
empty intersection. Thus all expansions of comments
lead to invalidity; hence drink is not a live choice.

Open-World authoring and hybrid knowledge
bases The process that we have just described for find-
ing live selections, although decidable, is clearly not op-
timized. In the case of closed-world authoring that we
discussed at the beginning of this paper, we said that,
from the point of view of detecting life/death situations,
a Datalog program such as DP1 could be used in place of
the grammar G1, and that the combination of DP1 + D1
could be treated as a global Datalog database to which
standard query optimization techniques could be applied.
Is there some comparable possibility here? A clue comes
from the area of hybrid knowledge bases in the descrip-
tion logic community. Some researchers have shown that
by associating Description Logics with Datalog one can
significantly increase the expressive power of both for-
malisms, which have a nice complementarity (recursive
definitions can be easily expressed in Datalog, but not in
DLs; partial knowledge can be easily expressed in DLs,
but not in Datalog) (Levy and Rousset, 1996; Donini et
al., 1998). The open-authoring approach we propose has
strong connections with these hybrid knowledge-bases
(citation omitted) and it seems likely that optimization
techniques from that area may be transferred to our prob-
lem.

Light semantics and knowledge acquisition Let’s
step back and reconsider the rationale behind open-world
authoring. We are considering a situation in which there
is an “actual world” which is not completely known ei-

closed-world case, instead of appealing there to the decidability of Dat-
alog queries.

ther to the knowledge base or to the author; however both
the KB and the author are supposed to have correct par-
tial knowledge about that world.

The system presents the author with a collection of
documents which, from its point of view, are compati-
ble with what it knows about the actual world. Among
these documents, the author picks (during the authoring
process) one document that, from his point of view, is
compatible with what he knows about the actual world.

So the author is not passively exploring the space of
document considered possible by the system (although
that could certainly be a nonstandard mode of operation
if the author takes a developer’s hat and wants to see what
the system believes is possible), but is actively commit-
ting to certain facts about the world.

What are these facts? What the author is produc-
ing is an abstract content tree, which corresponds to
a completely specific choice of expansion rules for the
nonterminals of the grammar. This means that the ab-
stract tree completely determines a set of associated
ground KB relations. For instance AT1 determines the
set fdf(diprox,tablet), da(diprox,swallow)g. These are the
facts that the author asserts to be true in the actual world.

Light semantics. Such facts are aspects of the doc-
ument content that the document “exports” to the knowl-
edge base and thereby makes formally explicit. They
provide what we shall call a light semantics for the
document. In terms of light semantics, if we were
to build a standard logical form for the whole docu-
ment, for instance for AT1, that logical form would sim-
ply be the conjunction of the associated asserted facts
df(diprox,tablet) �da(diprox,swallow). Light semantics
does not attempt to model the whole semantics of the
document (for instance, in our example, there is no ex-
plicit logical counterpart to the different choices for the
comment nonterminal), but focuses instead on model-
ing those parts of the document semantics that can be
tractably handled both by the knowledge representation
component and by the authoring process.12

Knowledge acquisition. Once the author has com-
mitted to a document, he has revealed a certain number
of facts that he knows about the actual world and that the

12When working in a more powerful framework for logical forms,
such as Montague semantics, the interpretation of a document may de-
pend in non-monotonic ways on the interpretations of its parts, as in
negated contexts: “it is not the case that ...” or in opaque contexts:
“John believes that ...”. Predicting at authoring time which selections
are live relative to such a knowledge representation framework, while
possible in principle, seems to be a difficult research question. An-
other (orthogonal) argument in favor of light semantics is the fact that
if we consider the communicative role of a document inside a prede-
fined class of documents, then there is no point in formally representing
those parts of a document that are not contrastive between two docu-
ments in the class; for instance, there is no need to analyze the sentence
“Always ask your doctor’s advice in case of doubt” in any semantic de-
tail if it appears in all documents of the class: these semantic details are
irrelevant to the informational content of the document as opposed to
other documents of the class. A thorough discussion of this point, con-
nected to considerations of information theory, would bring us outside
the scope of this paper.



KB possibly did not “know”. These facts (in our exam-
ple: df(diprox,tablet) and da(diprox,swallow)) can then be
added to the ABOX of the knowledge base, and can be
used either for their own sake (knowledge acquisition) or
in order to constrain the authoring of a new document.

So after the authoring of AT1, the ABOX of KB1 be-
comes:

ABOX :
df(burpal,solution)
da(burpal,drink)
df(diprox,tablet)
da(diprox,swallow)

Suppose now the user authors a new document, first
making a selection for drug(D), and choosing diprox.
Then the KB “knows” that tablet is the only choice
for F and swallow the only choice for A. Indeed
they are possible choices (because df(diprox,tablet) and
da(diprox,swallow) are in the ABOX of the KB), but are
also the only choices, for diprox is now known to be in
TabletDrugs and in SwallowDrugs; it can therefore not
be in SolutionDrugs or in ChewDrugs or in DrinkDrugs,
which means that none of the facts df(dirprox,solution),
da(diprox,chew) or da(diprox,drink) may hold. After
the author’s choice of diprox, the derivation frontier
is form(F), admin(A), comments(diprox,A) with the con-
straint df(diprox,F). The author then chooses to ex-
pand form(F), and the system notices that the only
live choice is tablet, and performs this expansion with-
out asking the user. The frontier is now admin(A),
comments(diprox,A), with the constraint df(diprox,tablet).
Now the user can choose to expand admin(A), and
the only live choice is swallow. At that point the
frontier is comments(diprox,swallow) with the constraint
df(diprox,tablet). The author can then make choices
for comments(diprox,swallow) that lead to zero or sev-
eral instances of comment(diprox,swallow). At a certain
point he will choose the nonrecursive expansion com1,
which will lead to an empty frontier, with the constraints
df(diprox,tablet) and da(diprox,swallow).

We could obviously suppose here that rather than wait-
ing for the user to point to the nonterminal he wants to
expand next before finding the live choices for this non-
terminal, the system could find all the live choices for
all nonterminals on the frontier beforehand, and do the
obligatory expansions without any input from the user,
but at a slightly higher computational cost. In this way,
after the initial choice of diprox as the drug, the other
steps of the authoring process would be done automat-
ically, apart from the choice of how many (and which)
comments to make, which would still remain the respon-
sibility of the author.

Conclusion
In the course of the paper we have defined different no-
tions such as live-death issues in authoring processes,
closed-world versus open-world authoring, and light
document semantics. We have presented a formal ap-

proach to closed-world authoring that shows a correspon-
dence between life-death problems and conjunctive Dat-
alog queries, as well as a formal approach to open-world
document authoring based on Description Logics. We
have also sketched proofs of decidability for life/death is-
sues in these different processes. Finally we have shown
how an open-world authoring context can be used for
supporting a novel form of knowledge acquisition.

Acknowledgments
Many thanks to Jean-Marc Andréoli, Caroline Brun, Éric
Fanchon, Pierre Isabelle, Aaron Kaplan, Aurélien Max,
and Sylvain Pogodalla for discussions and comments,
and to the anonymous reviewers for suggestions on im-
proving the paper.

References
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foun-

dations of Databases. Addison-Wesley.
S. Ceri, G. Gottlob, and L. Tanca. 1989. Logic Programming

and Databases. Springer-Verlag.
José Coch and Karine Chevreau. 2001. Interactive multi-

lingual generation. In A. Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, LNCS 2004.
Springer.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Andrea Schaerf. 1996. Reasoning in description logics. In
Gerhard Brewka, editor, Principles of Knowledge Represen-
tation, pages 191–236. CSLI Publications, Stanford, Cali-
fornia.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Andrea Schaerf. 1998. AL-log: Integrating datalog and de-
scription logics. Journal of Intelligent Information Systems,
10(3):227–252.

Marc Dymetman. 2002. Document content authoring and
hybrid knowledge bases. In Proceedings of the 9th In-
ternational Workshop on Knowledge Representation meets
Databases (KRDB-2002), Toulouse, April.

Malte Gabsdil, Alexander Koller, and Kristina Striegnitz.
2001. Building a text adventure on description logic. In
Proceedings of KI-2001 Workshop on Applications of De-
scription Logics, Vienna.

Alon Y. Levy and Marie-Christine Rousset. 1996. CARIN: A
representation language combining horn rules and descrip-
tion logics. In European Conference on Artificial Intelli-
gence, pages 323–327.

Cécile Paris, Keith Vander Linden, Markus Fischer, Anthony
Hartley, Lyn Pemberton, Richard Power, and Donia Scott.
1995. A Support Tool for Writing Multilingual Instruc-
tions. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI) 1995, pages 1398–1404,
Montréal, Canada.

F. Pereira and D. Warren. 1980. Definite clauses for language
analysis. Artificial Intelligence, 13:231 – 278, 1980.

Richard Power and Donia Scott. 1998. Multilingual authoring
using feedback texts. In COLING-ACL, pages 1053–1059.

Aarne Ranta. 1999—. Grammatical framework work page.
www.cs.chalmers.se/˜aarne/GF/pub/work-index/index.html.

K. Striegnitz. 2001. Model checking for contextual reason-
ing in nlg. ICOS-3. Inference in Computational Semantics
Workshop. Siena.


	Table of Content
	Topics
	Authors

