
Detecting Errors in Corpora Using Support Vector Machines

Tetsuji Nakagawa∗ and Yuji Matsumoto
Graduate School of Information Science
Nara Institute of Science and Technology

8916−5 Takayama, Ikoma, Nara 630−0101, Japan
nakagawa378@oki.com, matsu@is.aist-nara.ac.jp

Abstract

While the corpus-based research relies on hu-
man annotated corpora, it is often said that a
non-negligible amount of errors remain even in
frequently used corpora such as Penn Treebank.
Detection of errors in annotated corpora is im-
portant for corpus-based natural language pro-
cessing. In this paper, we propose a method
to detect errors in corpora using support vec-
tor machines (SVMs). This method is based
on the idea of extracting exceptional elements
that violate consistency. We propose a method
of using SVMs to assign a weight to each ele-
ment and to find errors in a POS tagged corpus.
We apply the method to English and Japanese
POS-tagged corpora and achieve high precision
in detecting errors.

1 Introduction

Corpora are widely used in natural language
processing today. For example, many statistical
part-of-speech (POS) taggers have been devel-
oped and they use corpora as the training data
to obtain statistical information or rules (Brill,
1995; Ratnaparkhi, 1996). For natural language
processing systems based on a corpus, the quan-
tity and quality of the corpus affect their per-
formance. In general, corpora are annotated
by hand, and therefore are error-prone. These
errors are problematic for corpus-based sys-
tems. The errors become false training exam-
ples and deteriorate the performance of the sys-
tems. Furthermore, incorrect instances may be
used as testing examples and prevent the accu-
rate measurement of performance. Many stud-
ies and improvements have been conducted for

∗ Presently with Service Media Laboratory, Corporate
Research and Development Center, Oki Electric Industry
Co.,Ltd.

POS tagging, and major methods of POS tag-
ging achieve an accuracy of 96–97% on the Penn
Treebank WSJ corpus, but obtaining higher ac-
curacies is difficult (Ratnaparkhi, 1996). It is
mentioned that the limitation is largely caused
by inconsistencies in the corpus (Ratnaparkhi,
1996; Padró and Màrquez, 1998; van Halteren
et al., 2001). Therefore, correcting the errors in
a corpus and improving its quality is important.
However, to find and correct errors in corpora
by hand is costly, since the size of corpora is
usually very large. Hence, automatic detection
of errors in corpora is necessary.

One of the approaches for corpus error de-
tection is use of machine learning techniques
(Abney et al., 1999; Matsumoto and Yamashita,
2000; Ma et al., 2001). These methods regard
difficult elements for a learning model (boosting
or neural networks) to learn as corpus errors.
Abney et al. (1999) studied corpus error detec-
tion using boosting. Boosting assigns weights to
training examples, and the weights are large for
the examples that are difficult to classify. Misla-
beled examples caused by annotators tend to be
difficult examples to classify and these authors
conducted error detection of POS tags and PP
attachment information in a corpus by extract-
ing examples with a large weight.

Some probabilistic approaches for corpus er-
ror detection have also been studied (Eskin,
2000; Murata et al., 2000). Eskin (2000) con-
ducted corpus error detection using anomaly de-
tection. He supposed that all the elements in a
corpus are generated by a mixture model con-
sisting of two distributions, a majority distri-
bution (typically a structured distribution) and
an anomalous distribution (a uniform random
distribution), and erroneous elements are gen-
erated by the anomalous distribution. For each
element in a corpus, the likelihood of the mixed

model is calculated in both cases when the el-
ement is generated from the majority distribu-
tion and from the anomalous one. The element
is detected as an error if the likelihood in the
latter case is large enough.

In this paper, we focus on detection of er-
rors in corpora annotated with POS tags, and
propose a method for corpus error detection us-
ing support vector machines (SVMs). SVMs
are one of machine learning models and applied
to many natural language processing tasks with
success recently. In the next section, we explain
a method to use SVMs for corpus error detec-
tion.

2 Corpus Error Detection Using
Support Vector Machines

Training data for corpus error detection is usu-
ally not available, so we have to solve it as an
unsupervised learning problem. We consider in
the following way: in general, a corpus is built
according to a set of guidelines, thus it should
be consistent. If there is an exceptional element
in the corpus that jeopardizes consistency, it is
likely to be an error. Therefore, corpus error
detection can be conducted by detecting excep-
tional elements that causes inconsistency.

While this is a simple and straightforward
approach and any machine learning method is
applicable to this task, we will use SVMs as
the learning algorithm in the settings described
in Section 2.2. The advantage of using SVMs
in this setting is the following: In our setting,
each position in the annotated corpus receives
a weight according to the SVM algorithm and
these weights can be used as the confidence
level of erroneous examples. By effectively us-
ing those weights the inspection of the erroneous
parts can be undertaken in the order of the con-
fidence level, so that an efficient browsing of
corpus becomes possible. We believe this is a
particular advantage of our method compared
with the methods that use other machine learn-
ing methods.

2.1 Support Vector Machines
Support Vector Machines (SVMs) are a su-
pervised machine learning algorithm for binary
classification (Vapnik, 1998). Given l training
examples of feature vector xi ∈ RL with label
yi ∈ {+1,−1}, SVMs map them into a high di-
mensional space by a nonlinear function Φ(x)

and linearly separate them. The optimal hy-
perplane to separate them is found by solving
the following quadratic programming problem:

minimize
α1,...,αl

1
2

l∑

i,j=1

αiαjyiyjK(xi,xj)−
l∑

i=1

αi,

subject to 0 ≤ αi ≤ C (1 ≤ i ≤ l),
l∑

i=1

αiyi = 0,

where the function K(xi,xj) is the inner prod-
uct of the nonlinear function (K(xi,xj) =
Φ(xi) ·Φ(xj)) called a kernel function, and the
constant C controls the training errors and be-
comes the upper bound of αi. Given a test
example x, its label y is decided by summing
the inner products of the test example and the
training examples weighted by αi:

y = sgn
(l∑

i=1

αiyiK(xi,x) + b
)
,

where b is a threshold value. Thus, SVMs as-
sign a weight αi to each training example. The
weights are large for examples that are hard for
SVMs to classify, that is, exceptional examples
in training data have a large weight. We con-
duct corpus error detection using the weights.

To detect exceptional examples in a corpus
annotated with POS tags, we first construct an
SVM model for POS tagging using all the el-
ements in a corpus as the training examples.
Note that each example corresponds to a word
in the corpus. Then SVMs assign weights to
the examples, and large weights are assigned to
difficult examples. Finally, we extract examples
with a large weight greater than or equal to a
threshold value θα. In the next subsection, we
describe how to construct an SVM model for
POS tagging.

2.2 Revision Learning for POS tagging
We use a revision learning method (Nakagawa
et al., 2002) for POS tagging with SVMs1. This
method creates training examples of SVMs with

1The well known one-versus-rest method (Allwein et
al., 2000) can be also used for POS tagging with SVMs,
but it has large computational cost and cannot han-
dle segmentation of words directly that is necessary for
Japanese morphological analysis.

binary labels for each POS tag class using a
stochastic model (e.g. n-gram) as follows: each
word in a corpus becomes a positive example
of its POS tag class. We then build a simple
stochastic POS tagger based on n-gram (POS
bigram or trigram) model, and words in the cor-
pus that the stochastic model failed to tag with
a correct part-of-speech are collected as nega-
tive examples of the incorrect POS tag class.
In such way, revision learning makes a model of
SVMs to revise outputs of the stochastic model.

For example, assume that for a sentence:
"11/CD million/CD yen/NNS are/VBP paid/VBN",

a stochastic model tags incorrectly:
"11/CD million/CD yen/NN are/VBP paid/VBN".

In this case, the following training examples
are created for SVMs (each line corresponds to
an example):

<Class (Label)> <Feature Vector>
CD (+1) (word:11, word-1:BOS, ...)
CD (+1) (word:million, word-1:11, ...)
NN (-1) (word:yen, word-1:million, ...)
NNS (+1) (word:yen, word-1:million, ...)
VBP (+1) (word:are, word-1:yen, ...)
VBN (+1) (word:paid, word-1:are, ...)

Thus, the positive and negative examples are
created for each class (POS tag), and a model
of SVMs is trained for each class using the
training examples.

In English POS tagging, for each word w in
the tagged corpus, we use the following features
for SVMs:

1. the POS tags and the lexical forms of the
two words preceding w;

2. the POS tags and the lexical forms of the
two words succeeding w;

3. the lexical form of w and the prefixes and
suffixes of up to four characters, the exis-
tence of numerals, capital letters and hy-
phens in w.

Japanese morphological analysis can be con-
ducted with revision learning almost in the same
way as English POS tagging, and we use the fol-
lowing features for a morpheme µ:

1. the POS tags, the lexical forms and the in-
flection forms of the two morphemes pre-
ceding µ;

2. the POS tags and the lexical forms of the
two morphemes succeeding µ;

3. the lexical form and the inflection form of
µ.

2.3 Extraction of Inconsistencies

So far, we discussed how to detect exceptional
elements in a corpus. However, it is insuffi-
cient and inconvenient for corpus error detec-
tion, because an exceptional element is not al-
ways an error, that is, an exceptional element
may be a correct or an incorrect exceptional el-
ement. Furthermore, it is often difficult to judge
whether it is a true error or not when only the
exceptional element is shown. To solve these
problems, we extract not only an exceptional
example but also another similar example that
is inconsistent with the exceptional example. If
the exceptional example is correct, the second
example is likely to be an error, and vice versa.

We assume that an inconsistency occurs when
two examples have similar features but have op-
posite labels. The similarity between two ex-
amples xi and xj on SVMs is measured by the
following distance:

d(xi,xj) =
√
‖Φ(xi)−Φ(xj)‖2,

=
√

K(xi,xi) + K(xj ,xj)− 2K(xi,xj).

We can extract inconsistencies from a corpus
as follows: given an example x which was de-
tected as an exceptional example (following the
proposal in the previous subsection), we extract
an example z with the smallest values of the
distance d(x, z) from the examples whose label
is different from x. Intuitively, z is a closest
opposite example to x in the SVMs’ higher di-
mensional space and may be a cause for x to be
attached a large weight.

3 Experiments

We perform experiments of corpus error detec-
tion using the Penn Treebank WSJ corpus (in
English), the RWCP corpus (in Japanese) and
the Kyoto University Corpus (in Japanese). In
the following experiments, we use SVMs with
second order polynomial kernel, and the upper
bound value C is set to 1.

Table 1: Examples of Correctly Detected Errors and Incorrectly Detected Errors in the WSJ Corpus

Correctly Detected Errors
pay about 11 million yen/NNS ($ 77,000 budgeted about 11 million yen/NN ($ 77,500
, president and chief/JJ executive officer of named president and chief/NN executive officer
for its fiscal first quarter ended/VBN Sept. 30 its first quarter ended/VBD Sept. 30 was

Incorrectly Detected Errors
EOS 3/LS . EOS Send your child to Nov. 1-Dec . EOS 3/CD . EOS

3.1 Experiments on the Penn Treebank
WSJ Corpus (English)

Experiments are performed on the Penn Tree-
bank WSJ corpus, which consists of 53,113 sen-
tences (1,284,792 tokens).

We create models of SVMs for POS tag-
ging using the corpus with revision learning.
The distribution of the obtained weights αi are
shown in Figure 1. The values of αi concentrate
near the lower bound zero and the upper bound
C. The examples with αi near the upper bound
seem to be exceptional. Therefore, we regarded
the examples with αi ≥ 0.5 as exceptional ex-
amples (i.e. θα = 0.5). As a result, 1,740 ele-
ments were detected as errors. We implemented
a browsing tool for corpus error detection with
HTML (see Figure 2). A detected inconsistency
pair is displayed in the lower part of the screen.
We examined by hand whether the detected er-
rors are true errors or not for the first 200 el-
ements in the corpus from the detected 1,740
elements, and 199 were actual errors and 1 was
not. The precision (the ratio of correctly de-
tected errors for all of the detected errors) was
99.5%. Examples of correctly detected errors
and incorrectly detected errors from the corpus
are shown in Table 1. The underlined words
were detected as errors. To judge whether they
are true errors or not is easy by comparing the
pair of examples that contradict each other.

To examine the recall (the ratio of correctly
detected errors for all of the existing actual er-
rors in corpora), we conduct another experi-
ments on an artificial data. We made the arti-
ficial data by randomly changing the POS tags
of randomly selected ambiguous tokens in the
WSJ corpus. The tags of 12,848 tokens (1% for
the whole corpus) are changed, and the results

1

10

100

1000

10000

100000

1000000

10000000

0 0.2 0.4 0.6 0.8 1

N
um

be
r

Positive Examples

Negative Examples

α

Figure 1: Distribution of the Value α on the
WSJ Corpus

Figure 2: A Tool for Corpus Error Detection

are shown in Table 2 for various values of θα
2.

For the smaller threshold θα, the larger recall
were obtained, but the value is not high.

2Precisions cannot be calculated automatically be-
cause actual errors as well as the mixed errors are also
detected.

Table 2: Recall for the Artificial Data

θα # of Correctly Detected Errors Recall
1.0 607 4.7%
0.5 1520 11.8%
0.2 1555 12.1%
0.1 1749 13.6%
0.05 2381 18.5%

1

10

100

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

N
um

be
r

α

Positive Examples

Negative Examples

Figure 3: Distribution of the Value α on the
RWCP Corpus

3.2 Experiments on the RWCP Corpus
(Japanese)

We use the RWCP corpus, which consists of
35,743 sentences (921,946 morphemes).

The distribution of the weights αi are shown
in Figure 3. The distribution of αi shows the
same tendency as in the case of the WSJ corpus.

We conducted corpus error detection for vari-
ous values of θα, and examined by hand whether
the detected errors are true errors or not. The
results are shown in Table 3, where the correctly
detected errors are distinguished into two types,
one type is errors of word segmentation and the
other is errors of POS tagging, since Japanese
has two kinds of ambiguities, word segmenta-
tion and POS tagging. Precision of more than
80% are obtained, and the number of POS tag
errors is larger than that of segmentation errors.

Examples of correctly detected errors and in-
correctly detected errors from the corpus are
shown in Table 4. The underlined morphemes
were detected as errors. In the examples of
correctly detected errors, both segmentation er-

rors (upper) and POS tag errors (lower) are de-
tected. On the other hand, the examples of in-
correctly detected errors show the limitations
of our method. We use the two morphemes on
either side of the current morpheme as features
for SVMs. In the examples, the two morphemes
on either side are the same and only the POS
tag of the current morpheme is different, so that
SVMs cannot distinguish them and regard them
as errors (inconsistency).

3.3 Experiments on the Kyoto
University Corpus (Japanese)

Experiments are performed on a portion of the
Kyoto University corpus version 2.0, consisting
of the articles of January 1, and from January 3
to January 9 (total of 9,204 sentences, 229,816
morphemes). We set the value of θα to 0.5.

By repeating corpus error detection and cor-
rection of the detected errors by hand, new er-
rors that are not detected previously may be
detected. To examine this, we repeated corpus
error detection and correction by hand. Table 5
shows the result. All the detected errors in all
rounds were true errors, that is, the precision
was 100%. Applying the corpus error detection
repeatedly, the number of detected errors de-
crease rapidly, and no errors are detected in the
fourth round. In short, even if we repeat corpus
error detection with feedback, few new errors
were detected in this experiment.

4 Discussion

Compared to conventional probabilistic ap-
proaches for corpus error detection, although
precise comparison is difficult, our approach
achieved relatively high precision. Using a prob-
abilistic approach, Murata et al. (2000) de-
tected errors of morphemes in a corpus with a
precision of 70−80%, and Eskin (2000) detected
errors with a precision of 69%, but our approach
achieved more than 80%. The probabilistic
methods cannot handle infrequent events or
compare events with similar probabilities, since
the probabilities cannot be calculated or com-
pared with enough confidence, but our method
can handle such infrequent events.

SVMs are similar to boosting, and our ap-
proach uses the weights attached by SVMs
in a similar manner to what Abney et al.
(1999) studied. However, we introduced a post-
processing step to extract inconsistent similar

Table 3: Number of Detected Errors on the RWCP Corpus

θα Correct Detection (Segmentation Error/POS Tag Error) Incorrect Detection Precision
1.0 110 (30 / 80) 8 93.2%
0.5 165 (43 / 122) 11 93.8%
0.2 171 (45 / 126) 12 93.4%
0.1 188 (51 / 137) 31 85.8%
0.05 300 (73 / 227) 73 80.4%

Table 4: Examples of Correctly Detected Errors and Incorrectly Detected Errors in the RWCP
Corpus

Table 5: Number of Detected Errors on the Kyoto University Corpus for Repeated Experiment

Round 1 2 3 4
Correct Detection 85 11 2 0
(Segmentation Error) (21) (2) (0) (0)
(POS Tag Error) (64) (9) (2) (0)
Incorrect Detection 0 0 0 0
Total 85 11 2 0

examples, and this improved the precision of de-
tection and usability. Ma et al. (2001) studied
corpus error detection by finding conflicting ele-
ments using min-max modular neural networks.
Compared to their method, our method is use-
ful in the point that the detected errors can be
sorted by the attached weights, because human
can check more likely elements first.

In the experiment, our method had a high
precision but a low recall. The value will be
controlled by tuning the features for SVMs as
well as the threshold value θα, and detecting
more errors in a corpus remains as future work.

5 Conclusion

In this paper, we proposed a method for corpus
error detection using SVMs. This method can
extract inconsistencies in corpora. We achieved

precision of 80–100% and showed that many
annotation errors exist in widely used corpora.
The performance seems to be high enough for
practical use in corpus refinement.

References

Steven Abney, Robert E. Schapire, and Yoram
Singer. 1999. Boosting Applied to Tag-
ging and PP Attachment. In Proceedings of
the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and
Very Large Corpora, pages 38–45.

Erin L. Allwein, Robert E. Schapire, and Yoram
Singer. 2000. Reducing Multiclass to Binary:
A Unifying Approach for Margin Classifiers.
In Proceedings of 17th International Confer-
ence on Machine Learning, pages 9–16.

Eric Brill. 1995. Transformation-Based Error-

Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tag-
ging. Computational Linguistics, 21(4):543–
565.

Eleazar Eskin. 2000. Detecting Errors within
a Corpus using Anomaly Detection. In Pro-
ceedings of the 6th Applied Natural Language
Processing Conference and the 1st Meeting of
the North American Chapter of the Associa-
tion of Computational Linguistics, pages 148–
153.

Qing Ma, Bao-Liang Lu, Masaki Murata, Michi-
nori Ichikawa, and Hitoshi Isahara. 2001.
On-Line Error Detection of Annotated Cor-
pus Using Modular Neural Networks. In Pro-
ceedings of International Conference on Arti-
ficial Neural Networks (ICANN 2001), pages
1185–1192.

Yuji Matsumoto and Tatsuo Yamashita. 2000.
Using Machine Learning Methods to Improve
Quality of Tagged Corpora and Learning
Models. In Proceedings of the Second Interna-
tional Conference on Language Resource and
Evaluation, pages 11–16.

Masaki Murata, Masao Utiyama, Kiyotaka
Uchimoto, Qing Ma, and Hitoshi Isahara.
2000. Corpus Error Detection and Correc-
tion Using the Decision-List and Example-
Based Methods. In Information Processing
Society of Japan SIG Notes, Natural Lan-
guage No.136, pages 49–56. (in Japanese).

Tetsuji Nakagawa, Taku Kudo, and Yuji Mat-
sumoto. 2002. Revision Learning and its
Application to Part-of-Speech Tagging. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguis-
tics. (to appear).

Llúıs Padró and Llúıs Màrquez. 1998. On the
Evaluation and Comparison of Taggers: the
Effect of Noise in Testing Corpora. In Pro-
ceedings of the joint 17th International Con-
ference on Computational Linguistics and
36th Annual Meeting of the Association for
Computational Linguistics, pages 997–1002.

Adwait Ratnaparkhi. 1996. A Maximum En-
tropy Model for Part-of-Speech Tagging. In
Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing,
pages 133–142.

Hans van Halteren, Jakub Zavrel, and Wal-
ter Daelemans. 2001. Improving Accuracy

in Wordclass Tagging through Combination
of Machine Learning Systems. Computational
Linguistics, 27(2):199–230.

Vladimir Vapnik. 1998. Statistical Learning
Theory. Springer.

	Table of Content
	Topics
	Authors

