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Abstract

This paper proposes a new approach for text
categorization, based on a feature projection
technique. In our approach, training data are
represented as the projections of training
documents on each feature. The voting for a
classification is processed on the basis of
individual feature projections. The final
classification of test documents is
determined by a majority voting from the
individual classifications of each feature.
Our empirical results show that the proposed
approach, Text Categorization using Feature
Projections (TCFP), outperforms k-NN,
Rocchio, and Naïve Bayes. Most of all,
TCFP is about one hundred times faster than
k-NN. Since TCFP algorithm is very simple,
its implementation and training process can
be done very easily. For these reasons,
TCFP can be a useful classifier in the areas,
which need a fast and high-performance text
categorization task.

Introduction

An issue of text categorization is to classify
documents into a certain number of pre-defined
categories. Text categorization is an active
research area in information retrieval and
machine learning. A wide range of supervised
learning algorithms has been applied to this
issue, using a training data set of categorized
documents. The Naïve Bayes (McCalum et al.,
1998; Ko et al., 2000), Nearest Neighbor (Yang
et al., 2002), and Rocchio (Lewis et al., 1996)
are well-known algorithms.

Among these learning algorithms, we focus

on the Nearest Neighbor algorithm. In particular,
the k-Nearest Neighbor (k-NN) classifier in text
categorization is one of the state-of-the-art
methods including Support Vector Machine
(SVM) and Boosting algorithms. Since the
Nearest Neighbor algorithm is much simpler
than the other algorithms, the k-NN classifier is
intuitive and easy to understand, and it learns
quickly. But the weak point of k-NN is too slow
at running time. The main computation is the
on-line scoring of all training documents, in
order to find the k nearest neighbors of a test
document. In order to reduce the scaling
problem in on-line ranking, a number of
techniques have been studied in the literature.
Techniques such as instance pruning technique
(Wilson et al., 2000) and projection (Akkus et al.,
1996) are well known.

The instance pruning technique is one of the
most straightforward ways to speed
classification in a nearest neighbor system. It
reduces time necessary and storage requirements
by removing instances from the training set. A
large number of such reduction techniques have
been proposed, including the Condensed Nearest
Neighbor Rule (Hart, 1968), IB2 and IB3 (Aha et
al., 1991), and the Typical Instance Based
Learning (Zhang, 1992). These and other
reduction techniques were surveyed in depth in
(Wilson et al., 1999), along with several new
reduction techniques called DROP1-DROP5. Of
these, DROP4 had the best performance.

Another trial to overcome this problem exists
on feature projections. Akkus and Guvenir
presented a new approach to classification based
on feature projections (Akkus et al., 1996). They
called their resulting algorithm k-Nearest
Neighbor on Feature Projections (k-NNFP). In



this approach, the classification knowledge is
represented as the sets of projections of training
data on each feature dimension. The
classification of an instance is based on a voting
by the k nearest neighbors of each feature in a
test instance. The resulting system allowed the
classification to be much faster than that of
k-NN and its performance were comparable with
k-NN.

In this paper, we present a particular
implementation of text categorization using
feature projections. When we applied the feature
projection technique to text categorization, we
found several problems caused by the special
properties of text categorization problem. We
describe these problems in detail and propose a
new approach to solve them. The proposed
system shows the better performance than k-NN
and it is much faster than k-NN.

The rest of this paper is organized as follows.
Section 1 simply presents k-NN and k-NNFP
algorithm. Section 2 explains a new approach
using feature projections. In section 3, we
discuss empirical results in our experiments.
Section 4 is devoted to an analysis of time
complexity and strong points of the new
proposed classifier. The final section presents
conclusions.

1. k-NN and k-NNFP Algorithm

In this section, we simply describe k-NN and
k-NNFP algorithm.

1.1 k-NN Algorithm

As an instance-based classification method,
k-NN has been known as an effective approach
to a broad range of pattern recognition and text
classification problems (Duda et al., 2001; Yang,
1994). In k-NN algorithm, a new input instance
should belong to the same class as their k nearest
neighbors in the training data set. After all the
training data is stored in memory, a new input
instance is classified with the class of k nearest
neighbors among all stored training instances.

For the distance measure and the document
representation, we use the conventional vector
space model in text categorization; each
document is represented as a vector of term

weights, and similarity between two documents
is measured by the cosine value of the angle
between the corresponding vectors (Yang et al.,
2002).

Let a document d with n terms (t) be
represented as the feature vector:
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We compute the weight vectors for each
document using one of the conventional TF-IDF
schemes (Salton et al., 1988). The weight of
term t in document d is calculated as follows:
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Given an arbitrary test document d, the k-NN
classifier assigns a relevance score to each
candidate category cj using the following
formula:
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where )(dR
k

r
denotes a set of the k nearest

neighbors of document d and Dj is a set of
training documents in class cj.

1.2 k-Nearest Neighbor on Feature Projection
(k-NNFP) Algorithm

The k-NNFP is a variant of k-NN method. The
main difference is that instances are projected on
their features in the n-dimensional space (see
figure 1) and distance between two instances is
calculated according to a single feature. The



distance between two instances di and dj with
regard to m-th feature tm is distm(tm(i), tm(j)) as
follows:

),(),())(),(( jmimmm dtwdtwjtitdist
m

rr
−= (4)

where )(itm denotes m-th feature t in a instance

id
r

.
The classification on a feature is done

according to votes of the k-nearest neighbors of
that feature in a test instance. The final
classification of the test instance is determined
by a majority voting from individual
classification of each feature. If there are n
features, this method returns n× k votes whereas
k-NN method returns k votes.

2. A New Approach of Text
Categorization on Feature Projections

First of all, we show an example of feature
projections in text categorization for more easy
understanding. We then enumerate the problems
to be duly considered when the feature
projection technique is applied to text
categorization. Finally, we propose a new
approach using feature projections to overcome
these problems.

2.1 An Example of Feature Projections in
Text Categorization
We give a simple example of the feature
projections in text categorization. To simplify
our description, we suppose that all documents
have just two features (f1 and f2) and two
categories (c1 and c2). The TF-IDF value by
formula (2) is used as the weight of a feautre.
Each document is normalized as a unit vector
and each category has three instances:

{ }3211 ,, dddc = and { }6542 ,, dddc = . Figure 1
shows how document vectors in conventional
vector space are transformed into feature
projections and stored on each feature dimension.
The result of feature projections on a term (or
feature) can be seen as a set of weights of
documents for the term. Since a term with 0.0
weight is useless, the size of the set equals to the
DF value of the term.
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Figure 1. Feature representation on feature
projections

2.2 Problems in Applying Feature Projections
to Text Categorization

There are three problems: (1) the diversity of the
Document Frequency (DF) values of terms, (2)
the property of using TF-IDF value of a term as
the weight of the feature, and (3) the lack of
contextual information.

2.2.1 The diversity of the Document Frequency
values of terms
Table 1 shows a distribution of the DF values of
the terms in Newsgroup data set. The numerical
values of Table 1 are calculated from training
data set with 16,000 documents and 10,000
features chosen by feature selection. The k in
fourth column means the number of nearest
neighbors selected in k-NNFP; the k in k-NNFP
was set to 20 in our experiments.

Table 1. A distribution of the DF values of the terms
in Newsgroup data set

Average
DF

maximum
DF

Minimum
DF

The # of
features

DF < k (20)
54.59 8,407 4 6,489



According to Table 1, more than a half of the
features have the DF values less than k (20).
This result is also explained by Zipf’s law. The
problem is that some features have the DF
values less than k while other features have the
DF values much greater than k. For a feature that
has a DF value less than k, all the elements of
the feature projections on the feature could and
should participate for voting. In this case, the
number of elements chosen for voting is less
than k. For other features, only maximum k
elements among the elements of the feature
projections should be chosen for voting.
Therefore, we need to normalize the voting ratio
for each feature. As shown in formula (5), we
use a proportional voting method to normalize
the voting ratio.

2.2.2 The property of using TF-IDF value of a
term as weight of a feature
The TF-IDF value of a term is their presumed
value for identifying the content of a document
(Salton et al., 1983). On feature projections,
elements with a high TF-IDF value for a feature
become more useful classification criterions for
the feature than any elements with low TF-IDF
values. Thus we use only elements with TF-IDF
values above the average TF-IDF value for
voting. The selected elements also participate for
proportional voting with the same importance as
TF-IDF value of each element. The voting ratio
of each category cj in a feature tm(i) of a test
document id

r
is calculated by the following

formula:
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In above formula, Im denotes a set of elements
selected for voting and { }1.0))(,( ∈ltcy mj is a
function; if the category for a element )(ltm is
equal to jc , the output value is 1. Otherwise, the
output value is 0.

2.2.3 The lack of contextual information
Since each feature votes separately on feature
projections, contextual information is missed.
We use the idea of co-occurrence frequency for
applying contextual information to our

algorithm.

To calculate a co-occurrence frequency value
between two terms ti and tl, we count the number
of documents that include both terms. It is
separately calculated in each category of training
data. Finally, the co-occurrence frequency value
of two terms is obtained by a maximum value
among co-occurrence frequency values in each
category as follows:

{ }),,(max),( jli
c

li cttcottco
j

= (6)

where ),( li ttco denotes a co-occurrence
frequency value of ti and tl, and

),,( jli cttco denotes a co-occurrence frequency

value of ti and tl in a category cj.

TF-IDF values of two terms ti and tj, which
occur in a test document d, are modified by
reflecting the co-occurrence frequency value.
That is, the terms with a high co-occurrence
frequency value and a low category frequency
value could have higher term weights as follows:

where i) tw(ti,d) denotes a modified term weight
assigned to term ti, ii) cf denotes the category
frequency, the number of categories in which ti

and tj co-occur, and iii) ),(max jttco
i is the

maximum value among all co-occurrence
frequency values.

Finally, in order to apply these improvements
(formulae (5) and (7)) to our algorithm, we
calculate the voting score of each category jc

in mt of a test document id
r

as the following
formula:

))(,(),())(,( itcrdttwitcs mimm jj ⋅=
r

(8)

Here, since the modified TF-IDF value of a
feature in a test document has to be also
considered as an important factor, it is used for
voting score instead of the simple voting value
(1).

(7)
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2.3 A New Text Categorization Algorithm
using Feature Projections

A new text categorization algorithm using
feature projections, named TCFP, is described
in the following:

In training phase, our algorithm needs only a
very simple process; the training documents are
projected on their each feature and numerical
values for the proportional voting (formula (5))
are calculated.

3. Empirical Evaluation

3.1 Data Sets and Experimental Settings

To test our proposed approach, we used two
different data sets. For fair evaluation, we used
the five-fold cross-validation method. Therefore,
all results of our experiments are averages of
five runs.

The Newsgroups data set, collected by Ken
Lang, contains about 20,000 articles evenly
divided among 20 UseNet discussion groups
(McCalum et al., 1998). After removing words
that occur only once or on a stop word list, the
average vocabulary from five training data has
51,325 words (with no stemming). The second
data set comes from the WebKB project at
CMU (Yang et al., 2002). We use the four most
populous entity-representing categories: course,

faculty, project, and student. The resulting
data set consists of 4,198 pages with a
vocabulary of 18,742 words. It is an uneven data
set; the largest category has 1,641 pages and the
smallest one has 503 pages.

We applied statistical feature selection at a
preprocessing stage for each classifier, using a

2χ statistics (Yang et al., 1997).

To compare TCFP to other algorithms for
speeding classification, we implemented
k-NNFP and k-NN with reduction. We used
DROP4 as reduction technique (Wilson et al.,
1999). By DROP4, only 26% of the original
training documents in both data sets was
retained. The k in k-NNFP was set to 20 and
the k in k-NN with reduction was set to 30. In
addition, we implement other classifiers: Naive
Bayes, k-NN, and Rocchio classifier. The k in
k-NN was set to 30 and and α=16 and β=4 were
used in Rocchio classifier.

As performance measures, we followed the
standard definition of recall, precision, and F1

measure. For evaluating performance average
across categories, we used the micro-averaging
method.

3.2 Experimental Results

3.2.1 Comparison of TCFP and k-NN (and
other algorithms for speeding classification )
Figure 2 and Table 2 show results from TCFP,
k-NN, k-NN with reduction, and k-NNFP. In
addition, we added other type of TCFP to our
experiment. It was TCFP without contextual
information (not using formula (7)).

��

��

��

��

��

��

��

��

���� ���� ���� ���� 	��� ���� ���� ���� 
��� �����

�����������������

�

��
��
�
�
�

���� ��������	
����
����

���� ������

�������	��������


Figure 2. Comparison of TCFP , k-NN, k-NNFP, and
k-NN with reduction

test document: d
r

=<t1,t2,…,tn>, category set:

C={c1,c2,…,cm}

begin
for each category cj

vote[cj] =0
for each feature ti

tw(ti,d) is calculated by formula (7)

/* majority voting*/
for each feature ti

for each category cj

vote[cj]=vote[cj]+tw(ti,d)×r(cj,ti)
by formula (8)

for each category cj

prediction = ][maxarg j
c

cvote
j

return prediction
end



Table 2. The top micro-average F1 of each classifier

TCFP
TCFP

without
context

k-NN k-NNFP
k-NN
with

reduction

85.41 85.14 85.15 81.93 81.34

As a result, TCFP achieved the highest
micro-average F1 score. Also, TCFP without
contextual information presented the nearly
same performance as k-NN. Although, over all
vocabulary sizes, TCFP without contextual
information achieved little lower performance
than TCFP, it also can be useful classifier for its
simplicity and the fast running time(see Table 5).

3.2.2 Comparison with other classifiers
The comparisons with other classifiers are
shown in Figure 3 and Table 3. In this
experiment, we used Naïve Bayes, and Rocchio
classifier.
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Figure 3. Comparison with other classifiers

Table 3. The top micro-average F1 of each classifier

TCFP k-NN NB Rocchio

85.41 85.15 82.51 81.68

The result shows that TCFP produced the higher
performance than the other classifiers.

3.2.3 Comparison of performances in an
uneven data set, WebKB.
In the above experiments, the Newsgroup data
set, which is an evenly divided data set, was
used. If we use an uneven data set, we can face a
problem. The cause of the problem is that a
category of the larger size has more voting
candidates than a category of the smaller size.

We simply modified the majority voting score
calculated in TCFP algorithm by the following
formula:

{ } 





⋅= ),(/),(max][][ ji

c
jj cdnumcdnumcvotecvote

i

(9)

where num(d,cj) denotes the number of training
document in category cj.

The results of the modified algorithm are
shown in Table 4. As we can see in this table, the
modified TCFP algorithm performed similarly
on the uneven data set, WebKB; the modified
TCFP algorithm achieved the highest score.

Table 4. The top micro-average F1 of each classifier

TCFP k-NN NB Rocchio k-NNFP
k-NN

with
reduction

86.6 84.83 85.22 85.98 82.78 81.34

3.2.4 Run-time observation
Table 5 shows the average running times in CPU
seconds for each classifier on the Newsgroup
data. Note that we included only testing phase
with 4,000 documents.

Table 5. Average running time of each classifier

TCFP
without
context

Rocchio NB TCFP
k-NN

with
reduction

k-NN

0.69 0.8 1.22 1.38 37.97 142.5

Since the computations depend on the
vocabulary sizes, we calculated the above
numerical value by averaging running times
from 1,000 to 10,000 terms. In Table 5, the
running time of TCFP is similar to other faster
classifiers: Rocchio and Naïve Bayes. Also it is
about one hundred times faster than that of k-NN.
Note that TCFP without contextual information
is the fastest classifier.

4. Discussions

First of all, time complexities between k-NN and
TCFP are compared. Using the inverted-file
indexing of training documents, the time
complexity of k-NN is O(m2l/n) (Yang, 1994),
where m is the number of unique words in the
document, l is the number of training documents,



and n is the number of unique terms in the
training collection. TCFP has the time
complexity of O(m2). Even more, the time
complexity of TCFP without contextual
information is O(mc), where c is the number of
categories. That is, the classification of TCFP
requires a simple calculation in proportion to the
number of unique terms in the test document.
On the other hand, in k-NN, a search in the
whole training space must be done for each test
document.

The other strong points of TCFP are the
simplicity of algorithm and high-performance.
Since the algorithm of TCFP is very simple like
k-NN, TCFP can be implemented quite easily
and its training phase can also be a simple
process. In our experiments, we achieved the
better performance than k-NN. We analyze that
our algorithm is more robust from irrelevant
features than k-NN. When a document contains
irrelevant features, the angle of the document
vector is changed in k-NN. In TCFP, however,
the irrelevant features contribute to only voting
of the features. Hence TCFP decreases the bad
effect of the irrelevant features.

Conclusions

In this paper, a new type of text categorization,
TCFP, has been presented. This algorithm has
been compared with k-NN and other classifiers.
Since each feature in TCFP individually
contributes to the classification process, TCFP is
robust from irrelevant features. By the simplicity
of TCFP algorithm, its implementation and
training process can be done very easily. The
experimental results show that, on the
performance, TCFP is superior to Rocchio,
Naïve Bayes, and k-NN. Moreover, it
outperforms other classifiers for speeding
classification such as k-NNFP and k-NN with
reduction. In running time observation, TCFP is
about one hundred times faster than k-NN.
Therefore, we can use TCFP in the areas, which
require a fast and high-performance text
classifier.
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