Rule Merging in a Rule-Based Arabic Stemmer

Ibrahim A. Al Kharashi
Tel: 481-3273, fax: 481-3764
Kharashi@kacst edu.sa

Imad A. Al Sughaiyer
Tel: 481-3217, fax: 481-3764
imad@kacst.edu.sa

Computer and Electronics Research Institute
King Abdulaziz City for Science and Technology
P. O. Box 6086, Riyadh 11442, Saudi Arabia

Abstract

Semitic languages require more complicated
systems for processing their morphology. Arabic
language, for example, exhibits a very complex
but very regular morphological struct ure. Many
approaches were proposed to analyze Arabic
language at the morphological level. Proposed
approaches can be classified into table lookup,
linguistic, combinatorial and rule-based
techniques.

This paper proposes a new approach to
enhance a rule-based Arabic stemmer. The
enhancement is based on rule merging process to
reduce number of rules, increase language

coverage and maintain the same level of
performance.
Introduction
Stemming and morphological analysis

techniques are computational processes that
analyze natural words by considering their
internal structures. Stemming term is usually
used by researchers dealing with languages with
simple morphological systems while
morphological analysis term, is widely used by
researchers in languages with complex
morphological systems.

Stemming and morphological analysis
techniques can be viewed as clustering
mechanisms and usually help in resolving the
lexical ambiguity. The main objective of the
stemming algorithms and one objective of
morphological analysis techniques is to remove
all possible affixes and thus reduce the word to
its stem. Both processes are very useful in many

natural language applications such as
information retrieval, text classification and
categorization, text compression, data
encryption, vowelization and spelling aids and
automatic translation Lovins (1968), Dawson
(1974).

Popovic showed that the effectiveness of a
stemming algorithm of a given language is
determined by its morphological complexity
Popovic (1992). Semitic languages are
derivational while most of other languages are
concatenative. Arabic words are generated
based on root-pattern structure Ali (1988),
Alsuwaynea (1995), Al-Atram (1990). Stems
are generated from roots using a few patterns.
Affixes can be added to a stem to generate an
Arabic word. A reverse process is used to
analyze Arabic words. Figure 1. shows Arabic
analysis and generation processes.

roots @

Stem

pattern

- G @ G
Word @
pattern / : \

Figure 1. Generating/analyzing processes

1. Arabic Morphological System
and Techniques

Arabic language exhibits a very complex but
straightforward morphological system. Arabic
root is the word's origin, usually trilateral or
quadrilateral, before any transformation process.
A Stem is a morpheme or a set of concatenated
morphemes usually derived by applying pattern
on a root and accepts affixes. A single root can
create a set of stems using tens of patterns.
Hundreds of natural Arabic words are created by
applying affixation process on those stems. In
addition, Arabic has a high degree of ambiguity
because of many reasons such as missing of
vowels and similarity between affixation letters
and stem boundary letters. Any morphological
analysis technique for Arabic language should
consider such phenomena in order to correctly
extract stem or root.

Computational Arabic morphology drew the
attention during the last two decades. This,
consequently, has led to the emerging of some
morphological analysis techniques. Some
researchers suggested analyzing Arabic words to
reach their roots Ali (1988) while others
suggested analyzing them to their stems only
Alsuwaynea (1995), Al-Atram (1990).
Analyzing words to their roots is preferred in
linguistic-based applications while analyzing
words to their stems is more useful in some
other applications such as information retrieval-
based systems.

Arabic morphological analysis techniques can be
classified into table lookup, linguistic,
combinatorial and rule-based approaches Ali
(1988), El-Affendi (1991), Al-Fadaghi (1989).

Table lookup approaches uses huge list that
stores all valid natural Arabic words along with
their morphological decompositions. Arabic
words are analyzed by searching for entries in

the list and retrieving corresponding
information.
Linguistic approaches, on the other hand,

simulate the behavior of a linguist by
considering Arabic morphological system and
thoroughly analyzing Arabic words accordingly

to their morphological components. Most of the
published works were mainly linguistic based
Ali (1988), Thalouth (1987), El-Affendi (1991),
El-Sadany (1989), Kiraz (1995), Hegazi (1986),
Hlal (1990), Gheith (1987), Aluthman (1990),
Beesley (2001), Aref (1997), Albawab (1998).

In combinatorial approaches a given word is
used to generate all combinations of letters.
These combinations are compared against
predefined lists of Arabic roots. On a match,

root, stem, and patterns are extracted. Otherwise
other combinations should be investigated Al-
Fadaghi (1989), Al-Shalabi (1996), El-Affindi.

It should be noticed, however, that ambiguity of
any word-based approach is a common
symptom. Higher-level contextual analysis is
usually the solution for such symptom.

2. Rule-Based Arabic Stemmer

Researchers, who proposed different
morphological analysis techniques, were seeking
for a high degree of accuracy. This caused
proposed systems to be based on heavy

computational processes and/or the usage of
large amount of associated information.

The rule-based stemmer utilizes the apparent
symmetry of generated natural Arabic words to
suggest the stem of a given Arabic word. In this
approach, a unique regular expression-based rule
is generated for group of similar Arabic words
as shown in Figure 2. To analyze Arabic words,
some researchers suggested to reach their roots
Ali (1988) while others suggested analyzing them
to their stems only Al-Atram (1990), Alsuwaynea
(1995). Analyzing words to their roots is useful
in linguistic processing, while analyzing words
to their stems is preferred in some other
applications such as information retrieval-based
systems.

Rules are written from right to left to match
script writing direction of Arabic language.
Rules are used to describe the internal
morphological structure of Arabic words and
guide the decomposition process of a given word
to its main parts i.e. stem, prefix and suffix.
Rule pattern may contain up to three distinct

parts. The first and last parts describe affixation
properties of the word while the middle part
controls the stem extraction process. Pairs of
angle brackets surround affixation parts.
Absence of prefix or suffix in the rule patterns is
sometimes denoted by empty angle brackets.
This is necessary in order to distinguish them
from an angle-bracketed part of the stem.

e o

Figure 2. Regular expression-based rule.

words

Rule complexity varies from very simple ones to
very complicated rules that deal with complex

morphological behaviors. Their syntax were
generated after deep analysis of a randomly
selected Arabic text and created with the

following structure:

prefix-part stem-part suffix-part

where prefix-part/suffix-part represents
attached prefix/suffix, if any and stem-part

represents stem structure and guide the process
of extracting its original form.

Rule patterns are
following conventions:

constructed using the

<str> to match the string s#r and delete it if

in the stem part or consider it as

prefix/suffix if in the prefix/suffix part.

<s1”s2> to substitute s7 by s2 in stem and suffix
parts. This notation is also used for
insertion </s2>,

<> An empty bracketed string to indicate
null prefix or suffix. This is necessary

to distinguish the prefix/suffix from
the start/end part of the stem part.

n to match » number of characters where
n is an integer greater than one. Single
letter is denoted by single dot.
Matched characters are wused to
construct the stem.

Simple rules are created to handle words already
in stem forms, isolated articles, proper names
and foreign words. Other rules are created to
treat words with more complicated
morphological structure. Table 1. Shows a small
set of rules extracted from a list of about1200

rules generated using the text collection.

To process rules and extract morphological
components of word, a very simple rule parser
was developed. The parser tries to match
between rules and a given Arabic word. The
matching process is achieved when the parser
successively analyzes the word and decomposes
it to its wvalid components according to the
parsed rule.

The parser is divided into three distinct parts to
treat prefix, suffix and stem. Interpreting the
corresponding part of the rule mostly end up
with extracting morphological components of a
given word. Initially, the parser scans the
suggested rule to identify boundaries of each
part. The angle-bracketed substring at the rule
boundaries distinguishes prefix/suffix parts. The
remaining middle part of the rule is the stem
part. Each part guides the parser during the
process of extracting word morphological
components.

Prefix and suffix are extracted using simple
string matching process between word
boundaries and prefix/suffix parts of the rule.
Suffix may affect extracted stem. Stem part is
generated by sequential copying from the middle
of the word with the possibility of going through
insertion, deletion and/or substitution.

A rule is said to be fired if it has the same length
as the length of the processed word. A match is
achieved if and only if a fired rule produces the
correct morphological components. A given
word should fire at least one rule and match only
one rule. An Arabic data set Al kharashi (2002)
has been used to test the correctness of the
stemmer. A straightforward experimentation
showed 80% correctness on identifying stems.
The correctness of the stemmer can be improved
by applying different firing policies.

Table 1. Small set of sample rules”.

. Resultant
Applied Rule Word Profix Stem Suffix
2 g o
2 fy fy
<d>4 <> du gagdl J pod “
<al>.4<yp> alhjwmyp al hjwm yp
<IN << DR I
<><t> <WAAS tzwr zAr
<>< > e J L
<|><hA> IhA [hA
5.<> salady e bald
5 bayAdp b qyAdp
<:>6. Ao e g e :
6<p> mtsArEp mtsArE p

" Roman transliteration of sample rules is provided using the convention adopted by Beesley (1998)

3. Rule merging

It is clear that number of rules generated for
pattern-based stemmer gets larger as language
coverage increases. Such situation requires
more management overhead and larger list of
rules to maintain. Enhancement can be achieved
by reducing number of rules while maintaining
the same functionality.

Merging rules is one method that can be used for
enhancing the rule-based stemmer. Rule
merging is a clustering process performed on
rule list to reduce its size and hence make it
more manageable. Merging process basically
decreases number of rules and makes single rule
recognizes more than one pattern.

Many proposals for merging rules can be
suggested. Stem-based merging class utilizes
the similarity of affixation of different stem
patterns while affixation-based merging class
utilizes the similarity of stem patterns with
different affixation. Based on its syntax, a given
rule can be merged with either classes or left
with no merging. For both merging approaches
a new operator was introduced to express new
merged rule. The operator “~” is used as logical
or while merged parts of merged rules are listed
between parenthesis and separated by the merge
operator. Figure 3. shows two merging

examples while Table 2. shows a small set of
merged rules using both approaches.

@@

Figure 3. Example of merging rules.

Table 2. A small set of merged rules.
Stem-based:
(12~11~10~9~8~7~6~5~4~3~2).
(10~9~8~7~B~5~4~3~2) <JI> .
<> B> (3~2) . <>
<> (5~4~3) . <Ih><>
Affixation-based:
(BA L~ g~BMan ~aS ~ agi~)53
<><(3Ma~3Mh~3A 4a)>2.<dl>
<><(s~el)> <2 <d>
<(br d~l~ 1M > 2 < dus

4. Empirical Evaluations

About 1120 rules generated for more than 23000
Arabic words were manually investigated and
then merged to produce list of about 560 merged
rules. A rule preprocessor was developed to
handle merged rules before parsing any given
word for analysis.

Growth of merged and non-merged rules needed
to analyze the Arabic data set was studied. The
parser has access to a list of accumulated rules
both merged and non-merged. The parser fires
rules in sequence to analyze a given Arabic
word. On match, the word structure will be
updated with number of fired rules, the id of
matched rule and its sequence. On mismatch, a
new rule should be created and appended to the
rule lists. For merged rule list, an existing
expandable rule can be updated to correctly
analyze the new word.

Figure 4. shows very rapid growth at lower
number of words and a tendency to be stabilized
as more words introduced. Merged rules,
however, show a tendency to stabilize faster
than non-merged rule case. Figure 5. depicts
number of generated rules for every thousand
words. It clearly shows that number of
generated rules decreases as number of words
increases in both cases but faster in the merged
rules case.

Rules - Non-merged

1200 — Merged
S0l T
3 -

B0 4 e

400 4 e

200 4 .-

s A A S B

0
5000 10000 15000 20000 Werds

Figure 4. Growth of merged and non-merged
rules per 1000 words

Time needed to analyze word collection using
both merged and non-merged rules was studied.
Figure 6. shows time neceded for analyzing
words in both cases per 1000 words. Figure 7.
shows accumulated time to analyze words per
1000 words. The study shows a small time
overhead needed to preprocess the merged rule
set. Such overhead can be tolerated as long as a
smaller set of manageable and expandable rule
set can be produced.

Analyzer efficiency is greatly affected by the
order of rule firing. It is desirable for any word
to fire less number of rules and to maintain
firing order in such a way that first fired rule is
the matched one. In order to optimize the
stemmer performance the average number of
fired rules should be as low as possible.

Although it is impractical to achieve ideal state,
it is possible to have certain rule ordering that
produces the best performance for such rule set.
Figure 8. shows the average number of matched
rules for each rule sequence per thousand words
for both merged and non-merged cases. The
figure shows that performance of merged rules
outperforms the non-merged due to the higher
number of matched rules with sequence zero.
The curve shows a sharp drop for the merged
rules indicating decrease in the number of
matched rules with higher frequency sequences.

Rules
200 .
150 *
100

50

-~ Non-merged

— Merged

L L T T
0
5000 10000 15000 20000 Words

Figure 5. Number of merged and non-merged
rules generated per 1000 words.

Time in sec. -~ Non-merged

— Merged

W77

0 5000 10000 15000 o000 YWords

Figure 6. Time needed for analyzing words in
merged and non-merged cases per 1000 words.

Time in sec. -~ Non-merged

—— Merged

LA L B ey B S S S S

0
5000 10000 15000 20000 Werds

Figure 7. Accumulated time needed for
analyzing words in merged and non-merged
cases per 1000 words.

Figure 9. shows the relationship between
matched and total firings per rule for merged
and non-merged cases. It reflects the firing
behavior of the stemmer for the set of rules
arranged according to their generation order.
Having different rule orders will produce

different plots. In order to achieve optimized
performance the curve of Figure 9. should
follow the horizontal line. Despite the
uncontrolled ordering of rules, the experiment
reveals promising behavior. Fora given word
that fires a set of rules, it is most likely that the
first fired rule will achieve a match. Although it
is impractical to achieve ideal state, it is possible
to have certain rule ordering that produces the
best performance for such rule set.

Average matched rules

04 Non-merged

1000 — Merged
800 -~
600 |
400 +

200 A

T T T i 1 T T 1

o 1 2 2% 4 65 6 7 8 9 10 11 12

Firing Sequence

Figure 8. Average number of matched rules for
each sequence per 1000 words.

Match/total
12

4
038
0.6
0.4
02

0 4

Merged Non-merged

200 400 600 800 1000 1200

Rule sequence in ascending ratio order

Figure 9. Relation between matched and total firings.

Conclusion

This paper introduced the concept of rule
merging for rule-based Arabic stemmer. The

stemmer has been expanded to handle merged
rules. While keeping the time efficiency almost

the same, merging rules reduces the rule list
dramatically. Also merged rules shows a better

performance in terms of average number of
matched rules for every rule sequence and in
terms of the match/total firing ratio. Merging

concept opens the possibility to increase the
system coverage by expanding most of the
existing rules.

Rule merging can be utilized to enhance the
stemmer performance. Better enhancement can
be achieved by introducing better clustering

mechanism such as cascading and back
referencing.

References

Al-Atram M. (1990) Effectiveness of Natural

Language in Indexing and Retrieving Arabic
Documents. KACST, AR-8-47. (in Arabic)
Al-Kharashi 1. and Al-Sughaiyer 1. (2002) Data Set

for Designing and Testing an Arabic Stemmer.
Proceedings of Arabic Language Resources
and Evaluation: Status and Prospects. Spain.
Al-Shalabi R. (1996) Design and implementation of
an Arabic morphological system to support
natural language processing. Ph. D.
Dissertation. Computer Science Department,

Ilinois Institute of Technology. Chicago.

Al-Fadaghi S. and Al-Anzi F. (1989) A new
algorithm to generate root-pattern forms .
Proceedings of the 11th National Computer
Conference, KFUPM, pp. 391-400.

Albawab M. and Altabban M. (1998)
Morphological — computer processing for
Arabic. Arabian Journal for Sciences, 32, pp.
6-13. (in Arabic)

Ali N. (1988) Arabic Language and Computer.
Ta'reeb. (in Arabic)

Aref M. (1997) Object -oriented approach for
morphological analysis. Proceedings of the
15th National Computer Conference. Pp. 5-11,
KFUPM.

Alsuwaynea A. (1995) Information Retrieval in

Arabic language. King Fahad National
Library. (in Arabic).
Aluthman A. 1990) A Morphological Analyzer

Jor Arabic. M. S. Thesis, KFUPM.

Beesley K. (1998) Romanization, Transcription and
Transliteration,
http://www.xrce.xerox.com/competencies/conte
nt-analysis/arabic/info/romanization.html

Beesley K. (2001) Finite state morphological
analysis and generation of Arabic at Xerox
research: status and plans in 2001. http://
www.elsnet.org / arabic2001 / beesley.pdf

Dawson J. (1974) Suffix removal and word
conflation. ALLC Bulletin, 2/3, pp. 33-46.

El-Affendi M. (1991) An algebraic algorithm for
Arabic morphological analysis. The Arabian
Journal for Science and FEngineering 16/4B,
pp- 605-611.

El-Affindi M. Performing Arabic morphological
search on the internet: a sliding window

approximate matching (SWAM) algorithm and
its performance. Dept. of Computer Science.
CCIS, KSU. Saudi Arabia.

El-Sadany T. and Hashish M. (1989) An Arabic
morphological system. IBM Systems Journal,
28/4, pp. 600-612.

Gheith M. and El-Sadany T. (1987) Arabic
morphological — analyzer on a personal
computer. Proceedings of the Ist KSU
Symposium on Computer Arabization, pp. 55-
65.

Hegazi N. and Elsharkawi A. (1986) Natural Arabic
language processing. Proceedings of the 9th
National Computer Conference, 2, pp. (10-5-
1)-(10-5-17).

Hlal Y. (1990) Morphology and syntax of the
Arabic language. Proceedings of the Arab
School of Science and Technology, pp. 201-
207.

Kiraz G. (1995) Computational analysis of Arabic
morphology. Computer Laboratory, University
of Cambridge.

Lovins J. (1968) Development of a stemming
algorithm. Mechanical — Translation —and
Computational Linguistics, 11, pp. 22-31.

Popovic M. and Willet P. (1992) The effectiveness
of stemming for natural-language access to
Slovene textual data. Journal of the American
Society for Information Sciences. 43/5, pp. 384-
390.

Thalouth B. and Al-Dannan A. (1987) A
comprehensive Arabic morphological
analyzer/generator. 1BM Kuwait Scientific
Center.

	Table of Content
	Topics
	Authors

