
XMLTrans: a Java-based XML Transformation Language for
Structured Data

Derek Walker and Dominique Petitpierre and Susan Armstrong
fDerek.Walker,Dominique.Petitpierre,Susan.Armstrongg@issco.unige.ch

ISSCO, University of Geneva
40 blvd. du Pont d'Arve

CH-1211 Geneva 4
Switzerland

Abstract

The recently completed MLIS DicoPro project
addressed the need for a uniform, platform-
independent interface for accessing multiple dic-
tionaries and other lexical resources via the In-
ternet/intranets. Lexical data supplied by dic-
tionary publishers for the project was in a vari-
ety of SGML formats. In order to transform this
data to a convenient standard format (HTML),
a high level transformation language was devel-
oped. This language is simple to use, yet power-
ful enough to perform complex transformations
not possible with similar transformation tools.
XMLTrans provides rooted/recursive transduc-
tions, similar to transducers used for natural
language translation. The tool is written in
standard Java and is available to the general
public.

1 Introduction

The MLIS DicoPro project1, which ran from
April 1998 to Sept 1999, addressed the need for
a uniform, platform-independent interface for
accessing multiple dictionaries and other lexi-
cal resources via the Internet/intranets. One
project deliverable was a client-server tool en-
abling translators and other language profes-
sionals connected to an intranet to consult dic-
tionaries and related lexical data from multiple
sources.
Dictionary data was supplied by participat-

ing dictionary publishers in a variety of propri-
etary formats2. One important DicoPro mod-
ule was a transformation language capable of

1DicoPro was a project funded within the Multilin-
gual Information Society programme (MLIS), an EU ini-
tiative launched by the European Commission's DG XIII
and the Swiss Federal O�ce of Education and Science.

2Project participants were: HarperCollins, Hachette
Livre, Oxford University Press.

standardizing the variety of lexical data. The
language needed to be straightforward enough
for a non-programmer to master, yet powerful
enough to perform all the transformations nec-
essary to achieve the desired output. The re-
sult of our e�orts, XMLTrans, takes as input
a well-formed XML �le and a �le containing a
set of transformation rules and gives as output
the application of the rules to the input �le.
The transducer was designed for the processing
of large XML �les, keeping only the minimum
necessary part of the document in memory at
all times. This tool should be of use for anyone
wishing to transform large amounts of (particu-
larly lexical) data from one XML representation
to another.

At the time XMLTrans was being developed
(mid 1998), XML was only an emerging stan-
dard. As a consequence, we �rst looked to more
established SGML resources to �nd a suitable
transformation tool. Initial experimentation be-
gan with DSSSL (Bingham, 1996) as a possible
solution. Some time was invested in develop-
ing a user-friendly \front-end" to the DSSSL
engine jade developed by James Clark (Clark,
1998). This turned out to be extremely cumber-
some to implement, and was abandoned. There
were a number of commercial products such
as Omnimark Light (Ominimark Corp_, 1998),
TXL (Legasys Corp_, 1998) and PatML (IBM
Corp_, 1998) which looked promising but could
not be used since we wanted our transducer to
be in the public domain.

We subsequently began to examine avail-
able XML transduction resources. XSL (Clark,
Deach, 1998) was still not mature enough to rely
on as a core for the language. In addition, XSL
did not (at the time) provide for rooted, recur-
sive transductions needed to convert the com-
plex data structures found in DicoPro's lexical



data.
Edinburgh's Language Technology Group

had produced a number of useful SGML/XML
manipulation tools (LTG, 1999). Unfortunately
none of these matched our speci�c needs. For
instance, sgmltrans does not permit matching
of complex expressions involving elements, text,
and attributes. Another LTG tool, sgrpg is more
powerful, but its control �les have (in our opin-
ion) a non-intuitive and complex syntax3.
Since a large number of standardized XML

APIs had been developed for the Java program-
ming language this appeared to be a promising
direction. In addition, Java's portability was a
strong drawing point. The API model which
best suited our needs was the \Document Ob-
ject Model"(DOM) with an underlying \Simple
API for XML"(SAX) parser.
The event-based SAX parser reads into mem-

ory only the elements in the input document
relevant to the transformation. In e�ect, XML-
Trans is intended to process lexical entries
which are independent of each other and that
have a few basic formats. Since only one entry
is ever in memory at any given point in time,
extremely large �les can be processed with low
memory overhead.
The DOM API is used in the transformation

process to access the the element which is cur-
rently in memory. The element is transformed
according to rules speci�ed in a rule �le. These
rules are interpreted by XMLTrans as opera-
tions to perform on the data through the DOM
API.
We begin with a simple example to illus-

trate the kinds of transformations performed by
XMLTrans. Then we introduce the language
concepts and structure of XMLTrans rules and
rule �les. A comparison of XMLTrans with
XSLT will help situate our work with respect
to the state-of-the-art in XML data processing.

2 An example transformation

A typical dictionary entry might have a surpris-
ingly complex structure. The various compo-
nents of the entry: headword, part-of-speech,
pronunciation, de�nitions, translations, may
themselves contain complex substructures. For
DicoPro, these structures were interpreted in or-

3The LTG have since developed another interesting
transformation tool called XMLPerl.

der to construct HTML output for typographi-
cal rendition and also to extract indexing infor-
mation.
A �ctitious source entry might be of the form:

<entry>
<hw>my word</hw>
<defs>
<def num="1">first def.</def>
<def num="2">second def.</def>
</defs>
</entry>

We would like to convert this entry to HTML,
extracting the headword for indexing purposes.
Applying the rules which are shown in section
4, XMLTrans generates the following output:

<HTML>
<!-- INDEX="my word" -->
<HEAD>
<TITLE>my word</TITLE>
</HEAD>
<BODY>
<H1>my word</H1>
<OL>
<LI VALUE="1">first def.</LI>
<LI VALUE="2">second def.</LI>
</OL>
</BODY>
</HTML>

If this were an actual dictionary, the XMLTrans
transducer would iterate over all the entries in
the dictionary, converting each in turn to the
output format above.

3 Aspects of the XMLTrans
language

Each XMLTrans rule �le contains a number of
rule sets as described in the next sections. The
transducer attempts to match each rule in the
set sequentially until either a rule matches or
there are no more rules.
The document DTD is not used to check the

validity of the input document. Consequently,
input documents need not be valid XML, but
must still be well-formed to be accepted by the
parser.
The rule syntax borrows heavily from that of

regular expressions and in so doing it allows for
very concise and compact rule speci�cation. As
will be seen shortly, many simple rules can be
expressed in a single short line.



3.1 Rule Sets

At the top of an XMLTrans rule �le at least
one \trigger" is required to associate an XML
element(e.g. an element containing a dictionary
entry) with a collection of rules, called a \rule
set".
The syntax for a \trigger" is as follows:

element_name : @ rule_set_name

Multiple triggers can be used to allow di�erent
kinds of rules to process di�erent kinds of ele-
ments. For example:

ENTRY : @ normalEntryRules
COMPOUNDENTRY : @ compoundEntryRules

The rule set itself is declared with the following
syntax:

@ [rule set name]

For example4:

@ normalEntryRules
; the rules for this set follow
; the declaration...

The rule set is terminated either by the end of
the �le or with the declaration of another rule
set.

3.2 Variables

In XMLTrans rule syntax, variables (prefaced
with \$") are implicitly declared with their �rst
use. There are two types of variables:

� Element variables: created by an assign-
ment of a pattern of elements to a vari-
able. For example: $a = LI, where <LI>
is an element. Element variables can con-
tain one or more elements. If a given vari-
able $a contains a list of elements f A, B,
C, ...g, transforming $a will apply the
transformation in sequence to <A>, <B>,
<C> and so on.

� Attribute variables: created by an assign-
ment of a pattern of attributes to a vari-
able. For Example: LI[ $a=TYPE ], where
TYPE is a standard XML attribute.

While variables are not strongly typed (i.e. a
list of elements is not distinguished from an in-
dividual element), attribute variables cannot be
used in the place of element variables and vice
versa.

4XMLTrans comments are preceded by a semicolon.

3.3 Rules

The basic control structure of XMLTrans is the
rule, consisting of a left-hand side (LHS) and
a right-hand side (RHS) separated by an arrow
("� >"). The LHS is a pattern of XML ele-
ment(s) to match while the RHS is a speci�ca-
tion for a transformation on those elements.

3.3.1 The Left-hand Side

The basic building block of the LHS is the ele-
ment pattern involving a single element, its at-
tributes and children.
XMLTrans allows for complex regular expres-

sions of elements on the LHS to match over the
children of the element being examined. The
following rule will match an element <Z> which
has exactly two children, <X> and <Y> (in the
examples that follow \..." indicates any comple-
tion of the rule):

Z{ X Y } -> ...;

XMLTrans supports the notion of a logical NOT
over an element expression. This is represented
by the standard "!" symbol. Support for gen-
eral regular expressions is built into the lan-
guage grammar: \Y*" will match 0 or more
occurences of the element <Y>, \Y+" one or
more occurences, and \Y?" 0 or 1 occurences.
In order to create rules of greater generality,

elements and attributes in the LHS of a rule
can be assigned to variables. For instance, we
might want to transform a given element <X>
in a certain way without specifying its children.
The following rule would be used in such a case:

; Match X with zero or more unspecified
; children.
X{$a*} -> ...;

In the rule above, the variable $a will be ei-
ther empty (if <X> has no children), a single
element (if <X> has one child), or a list of el-
ements (if <X> has a series of children. Sim-
ilarly, the pattern Xf$ag matches an element
<X> with exactly one child.
If an expression contains complex patterns,

it is often useful to assign speci�c parts to dif-
ferent variables. This allows child nodes to be
processed in groups on the LHS, perhaps being
re-used several times or reordered. Consider the
following rule:

Z{ $a = (X Y)* $b = Q} -> ... ;



In this case $a contains a (possibly empty) list
of f<X>, <Y>g element pairs. The variable $b
will contain exactly one <Q>. If this pattern
cannot be matched the rule will fail.
Attributes may also be assigned to variables.

The following three rules demonstrate some pos-
sibilities:

; Match any X which has an attribute ATT
;
X[ $att = ATT ] -> ...;

; Match any X which has an attribute
; ATT with the value "VALUE".
;
X[ $att = ATT == "VALUE"] -> ...;

; Match any X with an attribute
; which is NOT equal to "VALUE"
;
X[ $att = ATT != "VALUE"] -> ...;

The last type of expressions used on the LHS
are string expressions. Strings are considered
to be elements in their own right , but they are
enclosed in quotes and cannot have attribute
patterns like regular elements can. A special
syntax, =:�=, is used to mean any element which
is a string. The following are some sample string
matching rules:

; Match any string
/.*/ -> ... ;

; Match text "suppress" & newline.
"suppress\n" -> ...;

3.3.2 The Right-hand Side

The RHS supplies a construction pattern for the
transformed tree node.
A simple rule might be used to replace an

element and its contents with some text:

X -> "Hello world"

For the input <X>Text</X>, this rule yields
the output string Hello world. A more useful
rule might strip o� the enclosing element using
a variable reference on the LHS :

$X{$a*} -> $a

For the input <X>Text</X>, this rule gener-
ates the output Text. Elements may also be re-
named while their contents remain unmodi�ed.
The following rule demonstrates this facility:

$X{$a*} -> Y{$a}

For the input <X>Text</X>, the rule yields
the output <Y>Text</Y>. Note that any chil-
dren of <X> will be reproduced, regardless of
whether they are text elements or not.
Attribute variables may also be used in XML-

Trans rules. The rule below shows how this is
accomplished:

X[$a=ATT]{$b*} -> Y[OLDATT=$a]{$b}

Given the input <X ATT="VAL">Text</X>,
the rule yields the output <Y
OLDATT="VAL">Text</Y>.
Recursion is a fundamental concept used

in writing XMLTrans rules. The expression
@set name(variable name) tells the XML-
Trans transformer to continue processing on the
elements contained in the indicated variable.
For instance, @set1($a) indicates that the el-
ements contained in the variable $a should be
processed by the rules in the set set1. A spe-
cial notation @(variable name) is used to tell
the transformer to continue processing with the
current rule set. Thus, if the current rule set
is set2, the expression @($a) indicates that
processing should continue on the elements in
$a using the rule set set2. the following rule
demonstrates how transormations can be ap-
plied recusively to an element:

X{$a*} -> Y{@($a)}

"Text" -> "txeT"

For the input element <X>Text</X>, the rule
generates the output <Y>txeT</Y>. Di�erent
rule sets can be accessed as in the following rule
�le segment:

X : set1

@ set1

X{$a*} -> Y{@set2($a)}

"Text" -> "txeT"

@ set2

"Text" -> "Nothing"

Initially, set1 is invoked to process the ele-
ment <X>, but then the rule set set2 is in-
voked to process its children. Consequently,
for the input <X>Text</X>, the output is
<Y>Nothing</Y>.



4 Rules for the example
transformation

The transformation of the example in section
2 can be achieved with a few XMLTrans rules.
The main rule treats the <entry> element, cre-
ating a HTML document from it, and copying
the headword to several places. The subsequent
rules generate the HTML output from section 2:

entry : @ entrySet

@ entrySet
entry{$a=hw $b=defs*}
-> HTML{"<!-- INDEX=" $a "-->"

HEAD{TITLE{$a} BODY{H1{$a}
@($b)}}

defs{$a=def*} -> OL{@($a)}

def[$att=NUM]{$a*}
->LI[VALUE=$att]{$a}

5 Comparison with XSLT

The advent of stable versions of XSLT (Clark,
2000) has dramatically changed the landscape
of XML transformations, so it is interesting to
compare XMLTrans with recent developments
with XSLT.
It is evident that the set of transformations

described by the XMLTrans transformation lan-
guage is a subset of those described by XSLT. In
addition, XSLT is integrated with XSL allowing
the style sheet author to access to the rendering
aspects of XSL such as formatting objects.
Unfortunately, it takes some time to learn

the syntax of XSL and the various aspects of
XSLT, such as XPath speci�cations. This task
may be particularly di�cult for those with no
prior experience with SGML/XML documents.
In contrast, one needs only have a knowledge of
regular expressions to begin writing rules with
XMLTrans.

6 Conclusion

The XMLTrans transducer was used to success-
fully convert all the lexical data for the DicoPro
project. There were 3 bilingual dictionairies and
one monoligual dictionary totalling 140 Mb in
total( average size of 20 MB), each requiring its
own rule �le (and sometimes a rule �le for each
language pair direction). Original SGML �les
were preprocessed to provide XMLTrans with
pure, well-formed XML input. Inputs were in
a variety of XML formats, and the output was

HTML. Rule �les had an average of 178 rules,
and processing time per dictionary was approxi-
mately 1 hour (including pre- and postprocesss-
ing steps).
This paper has presented the XMLTrans

transduction language. The code is portable
and should be executable on any platform for
which a Java runtime environment exists. A
free version of XMLTrans can be downloaded
from5: http://issco-www.unige.ch/projects
/dicopro public/XMLTrans/

References

Bingham, H.:1996 `DSSSL Syntax Summary In-
dex', at http://www.tiac.net/users/bingham/
dssslsyn/index.htm

Clark, J.:1998 `Jade - James' DSSSL Engine',
at http://www.jclark.com/jade/

Clark, J. Ed.:2000 `XSL Transformations
(XSLT) Version 1.0: W3C Recommendation
16 November 1999,' at
http://www.w3.org/TR/1999/REC-xslt-
19991116

Clark, J. and Deach, S. eds.:1998 `Extensible
Stylesheet Language (XSL) Version 1.0 W3C
Working Draft 16-December-1998' at
http://www.w3.org/TR/1998/WD-xsl-
19981216

Glazman, D.:1998 `Simple Tree Transformation
Sheets 3', at http://www.w3.org/TR/NOTE-
STTS3

IBM Corp.:1999 `IBM/Alphawork's PatML', at
http://www.alphaWorks.ibm.com/tech/patml

Language Technology Group:1999 `LT XML
version 1.1' at
http://www.ltg.ed.ac.uk/software/xml/index.html

Legasys Corp.:1998 `The TXL Source Transfor-
mation System', at
http://www.qucis.queensu.ca/ legasys/
TXL Info/index.html

Omnimark Corp.:1998 `Omnimark Corporation
Home Page', at
http://www.omnimark.com/

5Users will also need Sun's SAX and DOM Java
libraries (Java Project X) available from:
http://java.sun.com/products/javaprojectx/index.html:


