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Abstract

Speech repairs occur often in spontaneous spo-
ken dialogues. The ability to detect and cor-
rect those repairs is necessary for any spoken
language system. We present a framework to
detect and correct speech repairs where all rel-
evant levels of information, i.e., acoustics, lexis,
syntax and semantics can be integrated. The
basic idea is to reduce the search space for re-
pairs as soon as possible by cascading �lters
that involve more and more features. At �rst an
acoustic module generates hypotheses about the
existence of a repair. Second a stochastic model
suggests a correction for every hypothesis. Well
scored corrections are inserted as new paths in
the word lattice. Finally a lattice parser decides
on accepting the repair.

1 Introduction

Spontaneous speech is disuent. In contrast
to read speech the sentences aren't perfectly
planned before they are uttered. Speakers of-
ten modify their plans while they speak. This
results in pauses, word repetitions or changes,
word fragments and restarts. Current auto-
matic speech understanding systems perform
very well in small domains with restricted
speech but have great di�culties to deal with
such disuencies. A system that copes with
these self corrections (=repairs) must recognize
the spoken words and identify the repair to get
the intended meaning of an utterance. To char-
acterize a repair it is commonly segmented into
the following four parts (cf. �g.1):

� reparandum: the \wrong" part of the ut-
terance

� interruption point (IP): marker at the end
of the reparandum

� editing term: special phrases, which indi-
cate a repair like \well", \I mean" or �lled

pauses such as \uhm", \uh"

� reparans: the correction of the reparandum
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Figure 1: Example of a self repair

Only if reparandum and editing term are
known, the utterance can be analyzed in the
right way. It remains an open question whether
the two terms should be deleted before a seman-
tic analysis as suggested sometimes in the liter-
ature1. If both terms are marked it is a straight-
forward preprocessing step to delete reparan-
dum and editing term. In the Verbmobil2 cor-
pus, a corpus dealing with appointment schedul-
ing and travel planning, nearly 21% of all turns
contain at least one repair. As a consequence a
speech understanding system that cannot han-
dle repairs will lose performance on these turns.
Even if repairs are de�ned by syntactic and

semantic well-formedness (Levelt, 1983) we ob-
serve that most of them are local phenomena.
At this point we have to di�erentiate between
restarts and other repairs3 (modi�cation re-
pairs). Modi�cation repairs have a strong corre-
spondence between reparandum and reparans,

1In most cases a reparandum could be deleted with-
out any loss of information. But, for example, if it in-
troduces an object which is referred to later, a deletion
is not appropriate.

2This work is part of the VERBMOBIL project and
was funded by the German Federal Ministry for Research
and Technology (BMBF) in the framework of the Verb-
mobil Project under Grant BMBF 01 IV 701 V0. The
responsibility for the contents of this study lies with the
authors.

3Often a third kind of repair is de�ned: \abridged
repairs". These repairs consist solely of an editing term
and are not repairs in our sense.



whereas restarts are less structured. In our be-
lieve there is no need for a complete syntactic
analysis to detect and correct most modi�cation
repairs. Thus, in what follows, we will concen-
trate on this kind of repair.
There are two major arguments to process

repairs before parsing. Primarily spontaneous
speech is not always syntactically well-formed
even in the absence of self corrections. Sec-
ond (Meta-) rules increase the parsers' search
space. This is perhaps acceptable for transliter-
ated speech but not for speech recognizers out-
put like lattices because they represent millions
of possible spoken utterances. In addition, sys-
tems which are not based on a deep syntactic
and semantic analysis { e.g. statistical dialog
act prediction { require a repair processing step
to resolve contradictions like the one in �g. 1.
We propose an algorithm for word lattices

that divides repair detection and correction in
three steps (cf. �g. 2) First, a trigger indi-
cates potential IPs. Second, a stochastic model
tries to �nd an appropriate repair for each IP by
guessing the most probable segmentation. To
accomplish this, repair processing is seen as a
statistical machine translation problem where
the reparandum is a translation of the reparans.
For every repair found, a path representing the
speaker's intended word sequence is inserted
into the lattice. In the last step, a lattice parser
selects the best path.
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Figure 2: An architecture for repair processing

2 Repair Triggers

Because it is impossible for a real time speech
system to check for every word whether it can
be part of a repair, we use triggers which indi-
cate the potential existence of a repair. These

triggers must be immediately detectable for ev-
ery word in the lattice. Currently we are using
two di�erent kind of triggers4:

1. Acoustic/prosodic cues: Speakers mark the
IP in many cases by prosodic signals like
pauses, hesitations, etc. A prosodic classi-
�er 5 determines for every word the proba-
bility of an IP following. If it is above a cer-
tain threshold, the trigger becomes active.
For a detailed description of the acoustic
aspects see (Batliner et al., 1998).

2. Word fragments are a very strong repair
indicator. Unfortunately, no speech recog-
nizer is able to detect word fragments to
date. But there are some interesting ap-
proaches to detect words which are not in
the recognizers vocabulary (Klakow et al.,
1999). A word fragment is normally an un-
known word and we hope that it can be
distinguished from unfragmented unknown
words by the prosodic classi�er. So, cur-
rently this is a hypothetical trigger. We
will elaborate on it in the evaluation sec-
tion (cf. sect. 5) to show the impact of this
trigger.

If a trigger is active, a search for an acceptable
segmentation into reparandum, editing term
and reparans is initiated.

3 Scope Detection

As mentioned in the introduction repair seg-
mentation is based mainly on a stochastic trans-
lation model. Before we explain it in detail we
give a short introduction to statistical machine
translation6. The fundamental idea is the as-
sumption that a given sentence S in a source
language (e.g. English) can be translated in any

sentence T̂ in a target language (e.g. German).

To every pair (S; T̂) a probability is assigned
which reects the likelihood that a translator
who sees S will produce T̂ as the translation.
The statistical machine translation problem is

4Other triggers can be added as well. (Stolcke et al.,
1999) for example integrate prosodic cues and an ex-
tended language model in a speech recognizer to detect
IPs.

5The classi�er is developed by the speech group of
the IMMD 5. Special thanks to Anton Batliner, Richard
Huber and Volker Warnke.

6A more detailed introduction is given by (Brown et
al., 1990)



formulated as:

T̂ = argmaxTP (T jS) (1)

This is reformulated by Bayes' law for a better
search space reduction, but we are only inter-
ested in the conditional probability P (T jS). For
further processing steps we have to introduce
the concept of alignment (Brown et al., 1990).
Let S be the word sequence S1; S2 : : :Sl � Sl

1

and T = T1; T2 : : :Tm � Tm
1
. We can link a

word in T to a word in S. This reects the
assumption that the word in T is translated
from the word in S. For example, if S is \On
Thursday" and T is \Am Donnerstag" \Am"
can be linked to \On" but also to \Thursday".
If each word in T is linked to exactly one word
in S these links can be described by a vector
am1 = a1 : : : am with ai 2 0 : : :l. If the word Tj
is linked to Si then aj = i. If it is not connected
to any word in S then aj = 0. Such a vector
is called an alignment a. P (T jS) can now be
expressed by

P (T jS) =
X

a is alignment

P (T; ajS) (2)

Without any further assumptions we can infer
the following:

P (T; ajS) = P (mjS) �
mY

j=1

P (aj ja
j�1
1

; T
j�1
1

; m; S) �

P (Tj ja
j
1
; T

j�1
1

; m; S) (3)

Now we return to self corrections. How can this
framework help to detect the segments of a re-
pair? Assume we have a lattice path where the
reparandum (RD) and the reparans(RS) are
given, then (RS;RD) can be seen as a transla-
tion pair and P (RDjRS) can be expressed ex-
actly the same way as in equation (2). Hence
we have a method to score (RS;RD) pairs. But
the triggers only indicate the interruption point,
not the complete segmentation. Let us �rst
look at editing terms. We assume them to be
a closed list of short phrases. Thus if an entry
of the editing term list is found after an IP, the
corresponding words are skipped. Any subse-
quence of words before/after the IP could be the
reparandum/reparans. Because turns can have
an arbitrary length it is impossible to compute
P (RDjRS) for every (RS;RD) pair. But this

is not necessary at all, if repairs are considered
as local phenomena. We restrict our search to a
window of four words before and after the IP. A
corpus analysis showed that 98% of all repairs
are within this window. Now we only have to
compute probabilities for 42 di�erent pairs. If
the probability of a (RS;RD) pair is above a
certain threshold, the segmentation is accepted
as a repair.

3.1 Parameter Estimation

The conditional probabilities in equation (3)
cannot be estimated reliably from any corpus
of realistic size, because there are too many pa-
rameters. For example both P in the product
depend on the complete reparans RS. There-
fore we simplify the probabilities by assuming
that m depends only on l, aj only on j,m and
l and �nally RDj on RSaj . So equation (3) be-
comes

P (RD; ajRS) = P (mjl)�
mY

j=1

P (aj jj;m; l) � P (RDj jRSaj) (4)

These probabilities can be directly trained from
a manually annotated corpus, where all repairs
are labeled with begin, end, IP and editing term
and for each reparandum the words are linked
to the corresponding words in the respective
reparans. All distributions are smoothed by a
simple back-o� method (Katz, 1987) to avoid
zero probabilities with the exception that the
word replacement probability P (RDjjRSaj) is
smoothed in a more sophisticated way.

3.2 Smoothing

Even if we reduce the number of parameters for
the word replacement probability by the sim-
pli�cations mentioned above there are a lot of
parameters left. With a vocabulary size of 2500
words, 25002 parameters have to be estimated
for P (RDj jRSaj). The corpus7 contains 3200
repairs from which we extract about 5000 word
links. So most of the possible word links never
occur in the corpus. Some of them are more
likely to occur in a repair than others. For ex-
ample, the replacement of \Thursday" by \Fri-
day" is supposed to be more likely than by \eat-
ing", even if both replacements are not in the
training corpus. Of course, this is related to

7
�11000turns with �240000 words



the fact that a repair is a syntactic and/or se-
mantic anomaly. We make use of it by adding
two additional knowledge sources to our model.
Minimal syntactic information is given by part-
of-speech (POS) tags and POS sequences, se-
mantic information is given by semantic word
classes. Hence the input is not merely a se-
quence of words but a sequence of triples. Each
triple has three slots (word, POS tag, seman-
tic class). In the next section we will describe
how we obtain these two information pieces for
every word in the lattice. With this additional
information, P (RDj jRSaj) probability could be
smoothed by linear interpolation of word, POS
and semantic class replacement probabilities.

P (RDj jRSaj) =

� � P (Word(RDj)jWord(RSaj))

+ � � P (SemClass(RDj)jSemClass(RSaj))

+  � P (POS(RDj)jPOS(RSaj)) (5)

with �+ � +  = 1.
Word(RDj) is the notation for the selector of

the word slot of the triple at position j.

4 Integration with Lattice
Processing

We can now detect and correct a repair, given a
sentence annotated with POS tags and seman-
tic classes. But how can we construct such a
sequence from a word lattice? Integrating the
model in a lattice algorithm requires three steps:

� mapping the word lattice to a tag lattice
� triggering IPs and extracting the possible
reparandum/reparans pairs

� introducing new paths to represent the
plausible reparans

The tag lattice construction is adapted from
(Samuelsson, 1997). For every word edge and
every denoted POS tag a corresponding tag
edge is created and the resulting probability
is determined. If a tag edge already exists,
the probabilities of both edges are merged.
The original words are stored together with
their unique semantic class in a associated list.
Paths through the tag graph are scored by a
POS-trigram. If a trigger is active, all paths
through the word before the IP need to be tested
whether an acceptable repair segmentation ex-
ists. Since the scope model takes at most four
words for reparandum and reparans in account

it is su�cient to expand only partial paths.
Each of these partial paths is then processed by
the scope model. To reduce the search space,
paths with a low score can be pruned.
Repair processing is integrated into the Verb-

mobil system as a �lter process between speech
recognition and syntactic analysis. This en-
forces a repair representation that can be inte-
grated into a lattice. It is not possible to mark
only the words with some additional informa-
tion, because a repair is a phenomenon that de-
pends on a path. Imagine that the system has
detected a repair on a certain path in the lattice
and marked all words by their repair function.
Then a search process (e.g. the parser) selects a
di�erent path which shares only the words of the
reparandum. But these words are no reparan-
dum for this path. A solution is to introduce a
new path in the lattice where reparandum and
editing terms are deleted. As we said before, we
do not want to delete these segments, so they
are stored in a special slot of the �rst word of
the reparans. The original path can now be re-
construct if necessary.
To ensure that these new paths are compa-

rable to other paths we score the reparandum
the same way the parser does, and add the re-
sulting value to the �rst word of the reparans.
As a result, both the original path and the one
with the repair get the same score except one
word transition. The (probably bad) transition
in the original path from the last word of the
reparandum to the �rst word of the reparans is
replaced by a (probably good) transition from
the reparandum's onset to the reparans. We
take the lattice in �g. 2 to give an example.
The scope model has marked \I cannot" as the
reparandum, \no" as an editing term, and \I
can" as the reparans. We sum up the acoustic
scores of \I", "can" and \no". Then we add the
maximum language model scores for the tran-
sition to \I", to \can" given \I", and to \no"
given \I" and \can". This score is added as an
o�set to the acoustic score of the second \I".

5 Results and Further Work

Due to the di�erent trigger situations we per-
formed two tests: One where we use only
acoustic triggers and another where the exis-
tence of a perfect word fragment detector is as-
sumed. The input were unsegmented translit-
erated utterance to exclude inuences a word



recognizer. We restrict the processing time on
a SUN/ULTRA 300MHZ to 10 seconds. The
parser was simulated by a word trigram. Train-
ing and testing were done on two separated
parts of the German part of the Verbmobil cor-
pus (12558 turns training / 1737 turns test).

Detection Correct scope
Recall Precision Recall Precision

Test 1 49% 70% 47 % 70%
Test 2 71% 85% 62% 83%

A direct comparison to other groups is rather
di�cult due to very di�erent corpora, eval-
uation conditions and goals. (Nakatani and
Hirschberg, 1993) suggest a acoustic/prosodic
detector to identify IPs but don't discuss the
problem of �nding the correct segmentation in
depth. Also their results are obtained on a
corpus where every utterance contains at least
one repair. (Shriberg, 1994) also addresses the
acoustic aspects of repairs. Parsing approaches
like in (Bear et al., 1992; Hindle, 1983; Core and
Schubert, 1999) must be proved to work with
lattices rather than transliterated text. An al-
gorithm which is inherently capable of lattice
processing is proposed by Heeman (Heeman,
1997). He rede�nes the word recognition prob-
lem to identify the best sequence of words, cor-
responding POS tags and special repair tags.
He reports a recall rate of 81% and a precision
of 83% for detection and 78%/80% for correc-
tion. The test settings are nearly the same as
test 2. Unfortunately, nothing is said about the
processing time of his module.
We have presented an approach to score po-

tential reparandum/reparans pairs with a rela-
tive simple scope model. Our results show that
repair processing with statistical methods and
without deep syntactic knowledge is a promis-
ing approach at least for modi�cation repairs.
Within this frameworkmore sophisticated scope
models can be evaluated. A system integration
as a �lter process is described. Mapping the
word lattice to a POS tag lattice is not optimal,
because word information is lost in the search
for partial paths. We plan to implement a com-
bined combined POS/word tagger.
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